Elliptische Kurven und Kryptographie

Serie 5

zur Hesse'schen Normalform

Besprechung am 31. Oktober

Eine cubische Kurve C in der reellen projektiven Ebene ist in $\it Hesse$ 'scher $\it Normalform$ (HNF) falls

$$C: X^3 + Y^3 + Z^3 + cXYZ = 0$$
 für $c \in \mathbb{R}$.

- **16.** Zeige: Die Hesse'sche Kurve einer Kurve in HNF mit $c \neq 0$ ist, nach Division durch $-6c^2$, in HNF.
- 17. Zeige, dass eine Kurve in HNF nur für c = -3 singulär ist.
- 18. Zeige, dass jede nicht-singuläre Kurve in HNF die drei Wendepunkte

$$(-1,1,0), (0,-1,1), (-1,0,1)$$

besitzt.

19. Zeige: Ist (X_0, Y_0, Z_0) ein Punkt auf einer Kurve in HNF, so gilt:

$$(X_0, Y_0, Z_0) \# (X_0, Y_0, Z_0) = (X_0(Y_0^3 - Z_0^3), Y_0(Z_0^3 - X_0^3), Z_0(X_0^3 - Y_0^3))$$

20. Sei C eine Kurve in HNF mit $c=-\frac{2q^3+1}{q^2}$ für $q\in\mathbb{Q}\setminus\{-\frac{1}{2},1\}$ und sei $\mathscr{O}:=(-1,1,0)$ das Neutralelement der elliptischen Kurve $C(\mathbb{Q})$.

Zeige: $(\frac{1}{q},1,1)$ ist ein Element von $C(\mathbb{Q})$ der Ordnung 6.