
p-adic numbers

Most of the familiar properties of the ordinary absolute value on the
real or complex fields are consequences of the following three:

(i) \r\ > 0, with equality precisely for r = 0.
(ii) M = |HI4
(iii) |r + a|<|r| + M.
A real-valued function |.| on afield k is said to be a valuation if it satisfies
(i), (ii) (iii). Since ( —I)2 = 1, properties (i)-(iii) imply that | — 1| = 1,
| - r | = |r |(allr).

The rational field Q has other valuations than the absolute value. Let
p be a fixed prime. Any rational r ^ 0 can be put in the shape

r = ppu/v, pel, u, v G Z, pj[u, pj(v.

We define

\r\P=p-p

and

|0|, = 0.

This definition clearly satisfies (i), (ii) above. Let

s=p°m/n m, n £ Z, p / m , p / n ,

so

where without loss of generality

<J>p, i.e. |s|, < |r|,.
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2: p-adic numbers 7

Then

r + s = pp{un + p"~pmv)/vn.

Here p / vn. The numerator un -\-p"~l>mv is an integer, but, at least for
for p = a, it may be divisible by p. Hence

\r + s\p<p-",

that is

(iii*) \r + s\p < max{|r|p, |s | p}.
Clearly (iii*) implies (iii), so | |p is a valuation. We call it the p-adic

valuation. The inequality (iii*) is called the ultrametric inequality, since
(iii), the triangle inequality, expresses the fact that |r — s\ is a metric.
A valuation which satisfies the ultrametric inequality is said to be non-
archimedean.

We can transfer familiar terminology from the ordinary absolute value
to the p-adic case. For example, we say that a sequence {on}, n = 1,2,...
is a fundamental sequence if for any e > 0 there is an no (e) such that

\am — an\p < e whenever m,n > no (e).

The sequence {an} converges to b if

\an — b\p < e (all n>n0 (e)).

For example let

p = b

and consider the sequence

{an} : 3, 33, 333, 3333, . . . .

Then

am = an mod 5" (m > n)

i.e.

| a m - a n | s < 5 - n (m>n).

Hence {on} is a fundamental sequence. Indeed it is a convergent se-
quence, since

3an = 99...99 = - l (5 n ) ,

i.e.

|3an + l|5 < 5 ~ n

and so

on -+ - 1 / 3

5-adically.
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8 Lectures on Elliptic Curves

As the above example shows, the main difficulties with the p-adic val-
uation are psychological: something is p-adically small if it is divisible
by a high power of p. Not every p-adic fundamental sequence is conver-
gent. Let us take p = 5 again. Then we construct a sequence of an € Z
such that

< + 1 = 0 (5n)
and

an+1 = an (5n).

We start with at = 2. Suppose that we already have an for some n and
put an+i = an + 65", where 6 6 Z is to be determined. We require

( a n + 6 5 n ) 2 + l = 0 ( 5 n + 1 ) ,

that is

2anb + c = 0(5), (*)

where we already have

c = (a2
n + l ) / 5 " G Z.

Clearly 5 / an and so we can solve the congruence (*) for the unknown
b.

The sequence {an} just constructed is a 5-adic fundamental sequence
since

\am-an\s<5~n {m>n).

Suppose, if possible, that an tends 5-adically to some e £ Q. Then

a2
n + 1 - e2 + 1.

On the other hand, by our construction,

4 + 1-0.
Hence e2 + 1 = 0; a contradiction.

Just as the real numbers are constructed by completing the rationals
with respect to the ordinary absolute value, so the rationals can be
completed with respect to | \p to give the field Qp of p-adic numbers. In
fact the process can be simplified because | \p is non-archimedean. For
the reader who is unfamiliar with this way of constructing the reals, we
sketch a construction of Qp at the end of this section.

We say that a field K is complete with respect to a valuation |.| if
every fundamental sequence is convergent. A field K with valuation ||.||
is said to be the completion of the field k with valuation |.| if there is an
injection

A: k-> K
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2: p-adic numbers 9

which preserves the valuation:

||Aa|| = \a\ (a € *)

and such that

(i) K is complete with respect to ||.||
(ii) K is the closure of Xk with respect to the topology induced by ||.||

(K is not "too large").

The completion always exists and is unique (up to a unique isomor-
phism). We henceforth identify k with Xk and |.| with ||.||, so regard k
as a subfield of K.

We now discuss the structure of the p-adic field Qp with its valuation

UP-
We note that

|a + 6|, = |o| , if \b\P<\a\p.

For by (iii*) \a + b\p < \a\p and, since a = (a -f b) + (—&), we have a
contradiction if \a + b\p < \a\p. It follows that the set of values taken
by | \p on Qp is precisely the same as the set for Q. Indeed if a 6 Qp,
a ^ O then by (ii) of the definition of the completion, there is an a 6 Q
with \a — a\p < \a\p, so \a\p = \a\p.

The set of a G Qp with |a | < 1 is called the set of p-adic integers 2p.
Because | \p is non-archimedean, Zp is a ring:

|«1,, \P\, < 1 =*> \<*P\, < 1, \* + 0\,<l.
A rational number b is in Zp precisely when it has the form 6 = u/v,

where u, v € Z, p / v.
The numbers £ € Qp with |e| = 1 are the p-adic units. From what

was said about the values taken by |.|p on Qp, every /? ^ 0 in Qp is of
the shape j3 = pne, where n G Z and e is a unit. The units are just the
elements e of Qp such that e G Zp, e"1 € Zp.

As we have already noted, elementary analysis continues to hold in
Qp, but can be simpler; as the following lemma shows.

Lemma 1. In Qp the series ^ ^ ° /?„ converges if and only if /?„ —» 0.

Proof. By saying that the sum converges, we mean, of course, that the
partial sums ^ 0 tend to a limit.

That convergence implies /?„ —» 0 is true even in real analysis. To
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10 Lectures on Elliptic Curves

prove the opposite implication, we note that
N M N

0 0 M + \

< max |/?nL
~ M<n<N P

by an obvious extension of the ultrametric inequality (iii*) to several

summands. Hence < £20 /Jn > is a fundamental sequence, so tending to

a limit by the completeness of Qp.
We are now in a position to give an explicit description of J.p. We

write

Lemma 2. The elements of Zp are precisely the sums
oo

where

an£A (all n).

Proof. By the preceeding lemma, the infinite sum converges, and its
value is clearly in Zp.

Now let a 6 Zp be given. There is a b € Q such that |6 — a\p < 1,
and it is easy to prove that there is precisely one ao € A such that
|oo — b\p < 1. Then

a = a0 + pax

where | a j | < 1, i.e. at £ Zp. Proceeding inductively, we get

a = a0 + a-ip + ... + aNpN + aNpN+1

with a AT € Zp.
For the final result we must distinguish between p = 2 and p ^ 2.

Lemma 3 (p ^ 2). Let a € Qp be a unit. A necessary and sufficient
condition that a = fP for some /? 6 Qp in that there is some 7 G Qp
with

Proof. Necessity is obvious. We have already in effect given a proof in
the special case p = 5, a = — 1. That in the general case is similar: one
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§2: Exercises 11

constructs inductively /?i = 7, fc, /?3, • • • such that

\Pl ~ "I < P""
I&. + 1 - ^ n | < p - "

If we already have /?„, we take /?n+i = ^ + i , so

and it is enough to take

6 = (a - fi)/2(Jn.

This lemma ceases to hold for p = 2 (consider a = 5, /? = 1). We have

Lemma 4 (p = 2). Lei a € Q2 &e « U7ii<. A necessary and sufficient
condition that a = /?2 /or tome /? 6 Q2 w that \a - 1| < 2~3.

Proof. Here again, the necessity is obvious. For sufficiency we construct
a sequence /?] = 1, /?2, /?3, • • • as in the previous proof. The details are
left to the reader.

We conclude this section by the promised sketch of the construction
ofQP .

Denote by 5 the set of fundamental sequences {an} for | \p, where
an € Q. Then 5 is a ring under componentwise addition and multipli-
cation.

{an} + {bn} - {an + bn} : {an}{bn} = {anbn}.

A sequence {an} is a null sequence if an —* 0 (p-adically). The set 91 of
null-sequences is clearly an ideal in $.

Let {an} £ 5 but {an} (£ 91. Then it is easy to see that there is at least
one N such that \apj — an\ < |ajv|p for all n > N. Then |an |p = \ai^\p

for all n > N. We write |{an}|p = law|p- If <>„ ^ 0 for all n, it is now
easy to deduce that {a"1} € 5-

We show that 91 is a maximal ideal in 5- For, if not, let 9JI be a
strictly bigger ideal than 91. It must contain an {an} (£ 91. Then only
finitely many of the on can be 0, and replacing them by (say) 1 merely
adds an element of 91. Hence we can suppose that an ^ 0 for all n. Then
{a"1} € 5, and so {a~'}{an} € W. Hence we should have OT = 5, a
contradiction. We conclude that 91 is maximal, and thus 5/91 is a field.

The field Q is mapped into 5/91 by

r^{r}£ 5-

The function |{on}| on 5 induces a function on 5/91 which is easily seen
to be a valuation and to coincide with | |p on the image of Q.
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12 Lectures on Elliptic Curves

Finally, it is not difficult to check that 5/9t is itself complete by a
diagonal argument on a sequence of elements of J .

§2. Exercises

1. For each of the sets of p, m, r given, either find an x € Z such that

\r-x\p<p-m,

or show that no such x exists.

(i) p = 257, r = l /2 , m = l;
(ii) p = 3, r = 7/8, m = 2;
(iii) p = 3, r = 7/8, m = 7;
(iv) p = 3, r = 5/6, m = 9;
(v) p = 5 , r = 1/4, m = 4.

2. Construct further examples along the lines of Exercise 1 until the
whole business seems trivial.

3. For given p, m, r either find an x 6 Z such that

\r-x\<p-m

or show that no such x exists.

(i) p= 5, r = - 1 , m = 4;
(ii) p = 5, r = 10, m = 3;
(iii) p = 13, r = - 4 , m = 3;
(iv) p = 2 , r = - 7 , m = 6;
(v) p = 7, r = -14, m = 4;
(vi) p = 7, r = 6, m = 3;
(vii) p = 7, r = 1/2, m = 3.

4. As Exercise 2.

5. Let p > 0 be prime, p = 2 (3). For any integer a, p J( a, show that
there is an x € T-T with x3 = a.
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The local-global principle for conies

We have seen that the theory of curves of genus 0 over Q turns on
deciding whether a given conic has a rational point.

We use homogeneous co-ordinates. A conic C defined over Q is given
by an equation

where X = (XuXi,Xa),

fij = fji G Q
and the quadratic form F (recall a form is a homogeneous polynomial)
is nonsingular, i.e.

det(/0) ± 0.

In our initial discussion we noted that, apart from reality considera-
tions, we could disprove the existence of rational points by congruence
considerations. These we now replace by reference to p-adic numbers.

A criterion for the existence of a rational point on a conic was given
by Legendre. It was left to Hasse to give it the following succinct for-
mulation.

Theorem 1. A necessary and sufficient condition for the existence of a
rational point on a conic C defined over Q is that there is a point defined
over the real field R and over Qj, for every prime p.

Necessity is trivial. We shall prove sufficiency, but it will require some
time and preparation. First we introduce some conventional terminol-
ogy.
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14

The real field R is somewhat analogous to the Qp and is conventionally
denoted by QOQ. When we write Qp we will not include p = oo unless
we explicitly say so. The fields Qp (including p = oo) are called the
localizations of Q. In contrast, Q is called the global field. We say that
something is true "everywhere locally" if it is true for all Qp (including
oo). In this lingo the theorem becomes "A necessary and sufficient con-
dition for the existence of a global point on a conic is that there should
be a point everywhere locally".

The local-global theorem for conies implies a local-global theorem for
curves of genus 0 but some care must be taken in the formulation ["point"
must be interpreted as "place"]. We do not pursue this further.

In the rest of this section we transform the theorem into a shape better
suited for attack1.

A transformation

T: Xi

with

ta € Q, det(t,v) ± 0

takes the quadratic form -F*(X) into a quadratic form G(Y), say. Then
T takes points defined over Q on F(X.) = 0 into points defined over Q
on G(Y) = 0 and, similarly, the inverse T"1 takes points on G(Y) = 0
to points on F(X.) = 0. Likewise for points defined over Qp for each p
(including oo). Hence the theorem holds for F(X) = 0 if and only if it
holds for G(Y) = 0.

By suitable choice of transformation T we thus need consider only
"diagonal" forms

By substitutions Xj —• tjXj (tj € Q) we may suppose without loss of
generality that the

are square free.
If / i , /2, fz have a prime factor p in common, we replace F(1L) by

p~1F(l£). If two of the fj, say f\, fa have a prime p in common but
P K Szi w e replace X3 by pXs and then divide F by p. Both of these

1 The details of the proof of Theorem 1 will not be required for the treatment
of elliptic curves. The reader who is interested only in the latter should omit
the rest of this § and also omit §§4,5.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139172530.004
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 25 Sep 2018 at 11:15:48, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139172530.004
https://www.cambridge.org/core


3: The local-global principle for conies 15

transformations reduce the absolute value of the integer /1/2/3- After a
finite number of steps we are reduced to the case when /1/2/3 is square
free. We have thus proved the

Metalemma 1. To prove the Theorem, it is enough to prove it for

conies

F(X) = fxXl + f2Xl + f3Xl = 0,

where fj 6 Z and /1/2/3 is square free.

The next stage is to draw conclusions from the hypothesis that a conic
as described in the Metalemma has points everwhere locally. There is a
point defined over Qp when there is a vector a = (01,02,03) ^ (0,0,0)
with aj € Qp such that F(a) = 0. By multiplying the Oj by an element
of Qp we may suppose without loss of generality that

For our later purposes we have to consider several cases.

First case, p ^ 2, p | fifjh- Without loss of generality p | / 1 , so p / fi,
P K h- Then |/iaf |p < 1. Suppose, if possible that |o2|p < 1. Then

l/sall, = |/iaf + /3ai|p < 1
and |o3|p < 1. Now

\ha\\p = \ha\ + hal\p<p-2

and so \ai\p < 1 since f\ is square free. This contradicts the normaliza-
tion (*), and so |<Z2|P = |o3|p = 1. But now

On dividing by the unit 02, we deduce that there is some rp £ Z such
that

h + r2
pf3 = 0 (p).

Second case, p = 2, 2 /f f\fifz- It is easy to see that precisely two of
the aj are units, say a2 and a3. Now a2 = 1 or 0 (4) for a £ Z; and so

h + h = 0 (4).

Third case, p = 2, 2 | /1/2/3, say 2 | f\. Now |a2|2 = |a3|3 = 1. Now
a2 = 1 (8) for a € Z, 2 j( a; and so

h + h = 0 (8)
or

/ i + /s + / i s 0 (8)
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16

according as |ai {2 < 1 or |ai|2 = 1.

In the next two sections, we show that the conditions just derived are
sufficient to ensure the existence of a global point on F(X) = 0.

§3. Exercises

1. (i) Let p > 2 be prime and let 6, c € Z, p j[ b. Show that bx2 + c takes
precisely | (p + 1) distinct values p for x G Z. (ii) Suppose that, further,
a G Z, p / a. Show that there are x, y € Z such that bx2 + c = ay2 (p).

2. Let a, 6, c € Zp, |a|p = |6|p = |c|p = 1 where p is prime, p > 2. Show
that there are x, y G Zp such that bx2 •+ c = ay2.

3. Let p > 2 be prime, aij G Z (1 < i, j < 3), a^ = a^ and let
rf = det(ay). Suppose that p / d . Show that there are x\, x2, x3 G Z,
not all divisible by p, such that £ \ j . aijxixj = 0 (p).

4. Let a, 6, c £ Z, 2 1 a6c. Show that a necessary and sufficient condition
that the only solution in Q2 of ax2 + by2 + cz2 = 0 is the trivial one is
that a = b = c (4).

5. For each of the following sets of a, 6, c find the set of primes p
(including 00) for which the only solution of ax2 + by2 + cz2 = 0 in Qp

is the trivial one:

(i) (a,6,c) = ( l , l , -2 )
(ii) (a,6,c) = ( l , l , -3 )
(iii) (a,6,c) = ( l , l , l )
(iv) (a,b,c) = (14,-15,33)

6. Do you observe anything about the parity of the number N of primes
(including 00) for which there is insolubility? If not, construct similar
exercises and solve them until the penny drops.

7.(i) Prove your observation in (6) in the special case a — 1, 6 = —r,
c = — s, where r, s are distinct primes > 2.
[Hint. Quadratic reciprocity]
(ii) [Difficult]. Prove your observation for all a, 6, c G Z.
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Geometry of numbers

At this stage we require a tool from the Geometry of Numbers, which
we shall develop from scratch.

A generalization of the pigeon-hole principle (Schubfachprinzip) says
that if we have TV things to file in H holes and N > mH for an integer
m, then at least one of the holes will contain > (m + 1) things. We start
with a continuous analogue.

Let Rn denote the vector space of real n-tuples r = ( r i , . . . , r n ) . It
contains the group Z" of r for which r ; € Z (all j). By the volume
V(S) of a set S C Rn we shall mean its Lebesgue measure, but in the
applications we will be concerned only with very simple-minded S.

Lemma 1. Let m > 0 be on integer and let S C R" with

V(S) > m.

Then there are m + 1 distinct points So,... , s m of S such that

s; - sy £ Z " (0 < i, j < m).

Proof. Let W C Rn be the "unit cube" of points w with

0 < WJ < 1 (1 < j < n).

Then every x € Rn is uniquely of the shape

X = W -(- Z,

where z G Z". Let r/>(x) be the characteristic function of S (= 1 if x 6 S,
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18 Lectures on Elliptic Curves

— 0 otherwise). Then

m < V(S) = I ^(x)cix
Jw

Since F(W) = 1, there must be some w0 £ VV such that

V>(wo + z ) > m,

so > m + 1.

We may now take for the Sj the Wo + z for which V"(wo + z) > 0.

The set S is said to be symmetric (about the origin) if —x £ S when-
ever x E S. It is convex if whenever x, y G 5 , then the whole line-
segment

Ax + ( l - A ) y e S ( 0 < A < l )

joining them is in 5. In particular, the mid-point £(x + y) is in S.

Theorem 1. Let A. be a subgroup of Zn of index m. Let C C R" be a
symmetric convex set of volume

V(C) > 2nm.

Then C and A have a common point other than 0 = (0 , . . . ,0).

Proof. Let S = \C be the set of points ±c, c € C. Then

V(-C) = 2-"V(C) > m.
2

By Lemma 1, there are m + 1 distinct points Co, . . . , c m € C such that

-d - -Cj € Z" . (0 < t, j < m).
2 2

There are m + 1 points
-<:,• Co (0 < i < m)
1 2

and m cosets of Zn modulo A. By the pigeon hole principle, two must
be in the same coset, that is there are i, j with i ^ j such that

1 l ,
- c ; - - c , € A.
2 2

Now —cy £ C by symmetry; and so
1 I l l . .
- C ; - - C , - - C ; -(- - - C > € C
2 2 ^ 2 2

by convexity.
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§f- Exercises 19

Note. Lemma 1 and Theorem 1 with m = 1 are due to Blichfeldt and
Minkowski respectively. The generalizations to m > 1 are by van der
Corput.

As a foretaste of the flavour of the application in the next section, we
give

Lemma 2. Let N be a positive integer. Suppose that there is an I £ 2
such that

I2 = - 1 (iV).

Then N = u2 + v2 for some u, v £ Z.

Proof. We take n = 2 and denote the co-ordinates by x, y. For C we
take the open disc

x2 + y2 < 2m

of volume (= area)

V(C) = 27rm > 22m.

The subgroup A of Z2 is given by

x,y £l, y i l i (m).

It is clearly of index m. Hence by the Theorem there is

(0,0)^(u,i ;)e AHC.
Then

0 < u2 + v2 < 2m

and

U 2 + U 2 = U2(1 + /2) = 0 (m).

Hence u2 + v2 = m, as required.
We note, in passing, that the condition of the lemma is certainly

satisfied for primes p with p = 1 (4).

§4. Exercises

1. Let m € Z, m > 1 and suppose that there is some / 6 Z such that
f2 + / + 1 = 0 (m). Show that m = u2 + uv + v2 for some u, u G Z.

2. Find a prime p > 0 for which there is an / £ Z such that

1 + 5 /2=0 (p)
but p is not of the shape u2 + 5v2 (u, u 6 Z).
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Local-global principle. Conclusion of proof

We now complete the proof of the local-global principle for conies
using the theorem of the last section. We recall that we had reduced the
proof to that for

H -*1 + /2^2 + /3^3 = 0
where / i , /2> /3 £ Z and /1/2/3 is square free. We assume that there
are points everywhere locally and we showed that this implied certain
congruences to primes p dividing 2/1/2/3.

We first define a subgroup A of Z3 by imposing congruence conditions
on the components of x = {x\, x2, X3).

First case, p / 2, P/ /1/2/3, say p \ f\. We saw (end of §3) that then
there is an rp € Z and that

We impose the condition

£3 = rpX2 (p)-

Then
F(X) = fix\ +/2Z2 +/3^3

= 0 (p).

Second case, p = 2, 2 / /1/2/3. Then without loss of generality

/2 + /3 = 0 (4).
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5: Local-global principle. Conclusion of proof 21

We impose the conditions

H s O (2) 1

*2=*3 ( 2 ) ] '
which imply

F(x) = 0 (4).

Third cast, p = 2, 2 | A/2/3, say 2 | / 1 . Then

s2fi+f2+f»=0 (8),
where s = 0 or 1. We impose the conditions

x2 = x3 (4) 1

U S * * , ( 2 ) / '
which imply

F(x) = 0 (8).

To sum up. The group A is of index m (say) = 4I/1/2/3I in Z3, where
throughout this section | | is the absolute value. Further,

F(x) = 0 (4 | / , / 2 / , |)

for x £ A.
We apply the theorem of the previous section to A and the convex

symmetric set

C:|/i|*M/al*2 + l/s|*2<4|/,/2/3|.
School geometry shows that

>2 3 |4 / 1 / 2 / 3 |

= m.

Hence there i s a n c ^ O i n A f l C . For this x we have

F(x) = 0 (4|/ ,/2/ , |)

and
\n*)\<\fi\*2i + \f2\*i + \f»\*i

< 4I/1/2/31;
so

F{x) = 0,
as required.

We conclude with some remarks.
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22 Lectures on Elliptic Curves

Remark 1. We have not merely shown that there is a solution of
F(x) = 0, but we have found that there is one in a certain ellipsoid.
This facilitates the search in explicitly given cases.

Remark 2. We have made no use of the condition of solubility in Qp for
P Jt 2/1/2/3- In fact this condition tells us nothing [cf. §3, Exercises 2,
3]. It is left to the reader to check that for any / 1 , / 2 , $3 and p with
P X 2/1/2/3 there is always a point defined over Qp on

fiX? + f,XZ + faX? = 0.

Remark S. We have also nowhere used that there is local solubility for
Q.O = R

Hence solubility at Qoo is implied by solubility at all the Qj, (p ^ 00).
This phenomenon is connected with quadratic reciprocity. In fact for
any conic over Q, the number of p (including 00) for which there is not
a point over Qp is always even [cf. §3, Exercises 6,7]. See a book on
quadratic forms (such as the author's).

§5. Exercises

1. Let

F(X, Y, Z) = 5X2 + 3F2 + 8Z2 + 6{YZ + ZX + XY).

Find rational integers x, y, z not all divisible by 13, such that

[Hint. cf. Hensel's Lemma 2 of §10.]

2. Let

F{X, Y, Z) = IX2 + 3F2 - 2Z2 + 4YZ + 6ZX + 2XY.

Find rational integers x, y, z not all divisible by 17 such that

F(x,y,2) = 0(modl73).
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