p-adic numbers

Most of the familiar properties of the ordinary absolute value on the real or complex fields are consequences of the following three:

- (i) $|r| \ge 0$, with equality precisely for r = 0.
- (ii) |rs| = |r||s|.
- (iii) $|r+s| \le |r|+|s|$.

A real-valued function |.| on a field k is said to be a valuation if it satisfies (i), (ii) (iii). Since $(-1)^2 = 1$, properties (i)-(iii) imply that |-1| = 1, |-r| = |r| (all r).

The rational field Q has other valuations than the absolute value. Let p be a fixed prime. Any rational $r \neq 0$ can be put in the shape

$$r = p^{\rho}u/v, \ \rho \in \mathbb{Z}, \ u, \ v \in \mathbb{Z}, \ p \not\mid u, \ p \not\mid v$$

We define

$$|r|_p = p^{-\rho}$$

and

$$|0|_{p} = 0.$$

This definition clearly satisfies (i), (ii) above. Let

$$s = p^{\sigma} m/n$$
 $m, n \in \mathbb{Z}, p \not m, p \not n,$

so

$$|s|_p = p^{-\sigma},$$

where without loss of generality

$$\sigma \geq \rho$$
, i.e. $|s|_p \leq |r|_p$.

$$r+s=p^{\rho}(un+p^{\sigma-\rho}mv)/vn.$$

Here $p \not\mid vn$. The numerator $un + p^{\sigma-\rho}mv$ is an integer, but, at least for for $\rho = \sigma$, it may be divisible by p. Hence

$$|r+s|_p \le p^{-\rho},$$

that is

(iii*) $|r+s|_p \leq \max\{|r|_p, |s|_p\}.$

Clearly (iii*) implies (iii), so $||_p$ is a valuation. We call it the *p*-adic valuation. The inequality (iii*) is called the ultrametric inequality, since (iii), the triangle inequality, expresses the fact that |r - s| is a metric. A valuation which satisfies the ultrametric inequality is said to be non-archimedean.

We can transfer familiar terminology from the ordinary absolute value to the *p*-adic case. For example, we say that a sequence $\{a_n\}, n = 1, 2, ...$ is a fundamental sequence if for any $\varepsilon > 0$ there is an $n_0(\varepsilon)$ such that

 $|a_m - a_n|_p < \varepsilon$ whenever $m, n \ge n_0$ (ε) .

The sequence $\{a_n\}$ converges to b if

$$|a_n - b|_p < \varepsilon$$
 (all $n \ge n_0 (\varepsilon)$).

For example let

p = 5

and consider the sequence

 $\{a_n\}$: 3, 33, 333, 3333, ...

Then

$$a_m \equiv a_n \mod 5^n \qquad (m \ge n)$$

i.e.

$$|a_m - a_n|_5 \le 5^{-n} \qquad (m \ge n).$$

Hence $\{a_n\}$ is a fundamental sequence. Indeed it is a convergent sequence, since

$$3a_n = 99\dots 99 \equiv -1(5^n),$$

i.e.

 $|3a_n + 1|_5 \le 5^{-n}$

and so

$$a_n \rightarrow -1/3$$

5-adically.

8

As the above example shows, the main difficulties with the *p*-adic valuation are psychological: something is *p*-adically small if it is divisible by a high power of *p*. Not every *p*-adic fundamental sequence is convergent. Let us take p = 5 again. Then we construct a sequence of $a_n \in \mathbb{Z}$ such that

$$a_n^2 + 1 \equiv 0 \ (5^n)$$

and

$$a_{n+1} \equiv a_n \ (5^n).$$

We start with $a_1 = 2$. Suppose that we already have a_n for some n and put $a_{n+1} = a_n + b5^n$, where $b \in \mathbb{Z}$ is to be determined. We require

$$(a_n + b5^n)^2 + 1 \equiv 0 \ (5^{n+1}),$$

that is

$$2a_nb + c \equiv 0 \ (5), \tag{(*)}$$

where we already have

$$c = (a_n^2 + 1)/5^n \in \mathbb{Z}.$$

Clearly 5 $/ a_n$ and so we can solve the congruence (*) for the unknown b.

The sequence $\{a_n\}$ just constructed is a 5-adic fundamental sequence since

$$|a_m - a_n|_5 \le 5^{-n} \qquad (m \ge n).$$

Suppose, if possible, that a_n tends 5-adically to some $e \in \mathbf{Q}$. Then

$$a_n^2 + 1 \to e^2 + 1$$

On the other hand, by our construction,

$$a_n^2 + 1 \to 0.$$

Hence $e^2 + 1 = 0$; a contradiction.

Just as the real numbers are constructed by completing the rationals with respect to the ordinary absolute value, so the rationals can be completed with respect to $||_p$ to give the field \mathbf{Q}_p of *p*-adic numbers. In fact the process can be simplified because $||_p$ is non-archimedean. For the reader who is unfamiliar with this way of constructing the reals, we sketch a construction of \mathbf{Q}_p at the end of this section.

We say that a field K is complete with respect to a valuation |.| if every fundamental sequence is convergent. A field K with valuation ||.||is said to be the completion of the field k with valuation |.| if there is an injection

$$\lambda: k \to K$$

which preserves the valuation:

$$||\lambda a|| = |a| \qquad (a \in k)$$

and such that

- (i) K is complete with respect to $\|.\|$
- (ii) K is the closure of λk with respect to the topology induced by ||.|| (K is not "too large").

The completion always exists and is unique (up to a unique isomorphism). We henceforth identify k with λk and |.| with ||.||, so regard k as a subfield of K.

We now discuss the structure of the *p*-adic field \mathbf{Q}_p with its valuation $||_p$.

We note that

 $|a+b|_p = |a|_p$ if $|b|_p < |a|_p$.

For by (iii*) $|a + b|_p \leq |a|_p$ and, since a = (a + b) + (-b), we have a contradiction if $|a + b|_p < |a|_p$. It follows that the set of values taken by $||_p$ on \mathbb{Q}_p is precisely the same as the set for \mathbb{Q} . Indeed if $\alpha \in \mathbb{Q}_p$, $\alpha \neq 0$ then by (ii) of the definition of the completion, there is an $a \in \mathbb{Q}$ with $|a - \alpha|_p < |\alpha|_p$, so $|\alpha|_p = |a|_p$.

The set of $\alpha \in \mathbb{Q}_p$ with $|\alpha| \leq 1$ is called the set of *p*-adic integers \mathbb{Z}_p . Because $||_p$ is non-archimedean, \mathbb{Z}_p is a ring:

 $|\alpha|_p, \ |\beta|_p \leq 1 \Rightarrow |\alpha\beta|_p \leq 1, \ |\alpha+\beta|_p \leq 1.$

A rational number b is in \mathbb{Z}_p precisely when it has the form b = u/v, where $u, v \in \mathbb{Z}$, $p \not\mid v$.

The numbers $\varepsilon \in \mathbf{Q}_p$ with $|\varepsilon| = 1$ are the *p*-adic units. From what was said about the values taken by $|.|_p$ on \mathbf{Q}_p , every $\beta \neq 0$ in \mathbf{Q}_p is of the shape $\beta = p^n \varepsilon$, where $n \in \mathbb{Z}$ and ε is a unit. The units are just the elements ε of \mathbf{Q}_p such that $\varepsilon \in \mathbb{Z}_p$, $\varepsilon^{-1} \in \mathbb{Z}_p$.

As we have already noted, elementary analysis continues to hold in Q_p , but can be simpler; as the following lemma shows.

Lemma 1. In \mathbf{Q}_p the series $\sum_{n=0}^{\infty} \beta_n$ converges if and only if $\beta_n \to 0$.

Proof. By saying that the sum converges, we mean, of course, that the partial sums \sum_{0}^{N} tend to a limit.

That convergence implies $\beta_n \to 0$ is true even in real analysis. To

prove the opposite implication, we note that

$$\sum_{0}^{N} - \sum_{0}^{M} |_{p} = |\sum_{M+1}^{N} \beta_{n}|_{p}$$
$$\leq \max_{M < n \leq N} |\beta_{n}|_{p}$$

by an obvious extension of the ultrametric inequality (iii*) to several summands. Hence $\left\{\sum_{0}^{N} \beta_{n}\right\}$ is a fundamental sequence, so tending to a limit by the completeness of \mathbf{Q}_{p} .

We are now in a position to give an explicit description of Z_p . We write

$$\mathcal{A} = \{0, 1, \ldots, p-1\}.$$

Lemma 2. The elements of Z_p are precisely the sums

$$\alpha=\sum_{0}^{\infty}a_{n}p^{n},$$

where

$$a_n \in \mathcal{A}$$
 (all n).

Proof. By the preceeding lemma, the infinite sum converges, and its value is clearly in \mathbb{Z}_p .

Now let $\alpha \in \mathbb{Z}_p$ be given. There is a $b \in \mathbb{Q}$ such that $|b - \alpha|_p < 1$, and it is easy to prove that there is precisely one $a_0 \in \mathcal{A}$ such that $|a_0 - b|_p < 1$. Then

$$\alpha = a_0 + p\alpha_1$$

where $|\alpha_1| \leq 1$, i.e. $\alpha_1 \in \mathbb{Z}_p$. Proceeding inductively, we get

$$\alpha = a_0 + a_1 p + \ldots + a_N p^N + \alpha_N p^{N+1}$$

with $\alpha_N \in \mathbb{Z}_p$.

For the final result we must distinguish between p = 2 and $p \neq 2$.

Lemma 3 ($p \neq 2$). Let $\alpha \in \mathbf{Q}_p$ be a unit. A necessary and sufficient condition that $\alpha = \beta^2$ for some $\beta \in \mathbf{Q}_p$ in that there is some $\gamma \in \mathbf{Q}_p$ with

$$|\alpha - \gamma^2|_p < 1.$$

Proof. Necessity is obvious. We have already in effect given a proof in the special case p = 5, $\alpha = -1$. That in the general case is similar: one

constructs inductively $\beta_1 = \gamma, \beta_2, \beta_3, \dots$ such that $|\beta^2 - \gamma| \le n^{-n}$

$$|\beta_n - \alpha| \le p^{-n}$$
$$|\beta_{n+1} - \beta_n| \le p^{-n}$$

If we already have β_n , we take $\beta_{n+1} = \beta_n + \delta$, so

$$\beta_{n+1}^2 = \beta_n^2 + 2\beta_n\delta + \delta^2$$

and it is enough to take

$$\delta = (\alpha - \beta_n^2)/2\beta_n.$$

This lemma ceases to hold for p = 2 (consider $\alpha = 5, \beta = 1$). We have

Lemma 4 (p = 2). Let $\alpha \in \mathbf{Q}_2$ be a unit. A necessary and sufficient condition that $\alpha = \beta^2$ for some $\beta \in \mathbf{Q}_2$ is that $|\alpha - 1| \le 2^{-3}$.

Proof. Here again, the necessity is obvious. For sufficiency we construct a sequence $\beta_1 = 1, \beta_2, \beta_3, \ldots$ as in the previous proof. The details are left to the reader.

We conclude this section by the promised sketch of the construction of \mathbf{Q}_p .

Denote by \mathfrak{F} the set of fundamental sequences $\{a_n\}$ for $||_p$, where $a_n \in \mathbb{Q}$. Then \mathfrak{F} is a ring under componentwise addition and multiplication.

 $\{a_n\} + \{b_n\} = \{a_n + b_n\} : \{a_n\}\{b_n\} = \{a_n b_n\}.$

A sequence $\{a_n\}$ is a null sequence if $a_n \to 0$ (*p*-adically). The set \mathfrak{N} of null-sequences is clearly an ideal in \mathfrak{F} .

Let $\{a_n\} \in \mathfrak{F}$ but $\{a_n\} \notin \mathfrak{N}$. Then it is easy to see that there is at least one N such that $|a_N - a_n| < |a_N|_p$ for all n > N. Then $|a_n|_p = |a_N|_p$ for all $n \ge N$. We write $|\{a_n\}|_p = |a_N|_p$. If $a_n \ne 0$ for all n, it is now easy to deduce that $\{a_n^{-1}\} \in \mathfrak{F}$.

We show that \mathfrak{N} is a maximal ideal in \mathfrak{F} . For, if not, let \mathfrak{M} be a strictly bigger ideal than \mathfrak{N} . It must contain an $\{a_n\} \notin \mathfrak{N}$. Then only finitely many of the a_n can be 0, and replacing them by (say) 1 merely adds an element of \mathfrak{N} . Hence we can suppose that $a_n \neq 0$ for all n. Then $\{a_n^{-1}\} \in \mathfrak{F}$, and so $\{a_n^{-1}\}\{a_n\} \in \mathfrak{M}$. Hence we should have $\mathfrak{M} = \mathfrak{F}$, a contradiction. We conclude that \mathfrak{N} is maximal, and thus $\mathfrak{F}/\mathfrak{N}$ is a field.

The field Q is mapped into $\mathfrak{F}/\mathfrak{N}$ by

$$r \to \{r\} \in \mathfrak{F}.$$

The function $|\{a_n\}|$ on \mathfrak{F} induces a function on $\mathfrak{F}/\mathfrak{N}$ which is easily seen to be a valuation and to coincide with $||_p$ on the image of \mathbf{Q} .

Finally, it is not difficult to check that $\mathfrak{F}/\mathfrak{N}$ is itself complete by a diagonal argument on a sequence of elements of \mathfrak{F} .

§2. Exercises

1. For each of the sets of p, m, r given, either find an $x \in \mathbb{Z}$ such that $|r - x|_p \leq p^{-m}$,

or show that no such x exists.

(i) p = 257, r = 1/2, m = 1;(ii) p = 3, r = 7/8, m = 2;(iii) p = 3, r = 7/8, m = 7;(iv) p = 3, r = 5/6, m = 9;(v) p = 5, r = 1/4, m = 4.

2. Construct further examples along the lines of Exercise 1 until the whole business seems trivial.

3. For given p, m, r either find an $x \in \mathbb{Z}$ such that

$$|r-x^2|_p \leq p^{-1}$$

or show that no such x exists.

4. As Exercise 2.

5. Let p > 0 be prime, $p \equiv 2$ (3). For any integer $a, p \not| a$, show that there is an $x \in \mathbb{Z}_p$ with $x^3 = a$.

The local-global principle for conics

We have seen that the theory of curves of genus 0 over Q turns on deciding whether a given conic has a rational point.

We use homogeneous co-ordinates. A conic C defined over Q is given by an equation

$$F(\mathbf{X}) = \sum f_{ij} X_i X_j = 0$$

where $\mathbf{X} = (X_1, X_2, X_3)$,

$$f_{ij} = f_{ji} \in \mathbf{Q}$$

and the quadratic form F (recall a *form* is a homogeneous polynomial) is nonsingular, i.e.

$$\det(f_{ij}) \neq 0.$$

In our initial discussion we noted that, apart from reality considerations, we could disprove the existence of rational points by congruence considerations. These we now replace by reference to p-adic numbers.

A criterion for the existence of a rational point on a conic was given by Legendre. It was left to Hasse to give it the following succinct formulation.

Theorem 1. A necessary and sufficient condition for the existence of a rational point on a conic C defined over \mathbf{Q} is that there is a point defined over the real field \mathbf{R} and over \mathbf{Q}_p for every prime p.

Necessity is trivial. We shall prove sufficiency, but it will require some time and preparation. First we introduce some conventional terminology. The real field **R** is somewhat analogous to the \mathbf{Q}_p and is conventionally denoted by \mathbf{Q}_{∞} . When we write \mathbf{Q}_p we will not include $p = \infty$ unless we explicitly say so. The fields \mathbf{Q}_p (including $p = \infty$) are called the localizations of **Q**. In contrast, **Q** is called the global field. We say that something is true "everywhere locally" if it is true for all \mathbf{Q}_p (including ∞). In this lingo the theorem becomes "A necessary and sufficient condition for the existence of a global point on a conic is that there should be a point everywhere locally".

The local-global theorem for conics implies a local-global theorem for curves of genus 0 but some care must be taken in the formulation ["point" must be interpreted as "place"]. We do not pursue this further.

In the rest of this section we transform the theorem into a shape better suited for $attack^{1}$.

A transformation

$$T: X_i = \sum_i t_{ij} Y_j$$

with

$$t_{ij} \in \mathbf{Q}, \quad \det(t_{ij}) \neq 0$$

takes the quadratic form $F(\mathbf{X})$ into a quadratic form $G(\mathbf{Y})$, say. Then T takes points defined over \mathbf{Q} on $F(\mathbf{X}) = 0$ into points defined over \mathbf{Q} on $G(\mathbf{Y}) = 0$ and, similarly, the inverse T^{-1} takes points on $G(\mathbf{Y}) = 0$ to points on $F(\mathbf{X}) = 0$. Likewise for points defined over \mathbf{Q}_p for each p(including ∞). Hence the theorem holds for $F(\mathbf{X}) = 0$ if and only if it holds for $G(\mathbf{Y}) = 0$.

By suitable choice of transformation T we thus need consider only "diagonal" forms

$$F(\mathbf{X}) = f_1 X_1^2 + f_2 X_2^2 + f_3 X_3^2.$$

By substitutions $X_j \to t_j X_j$ $(t_j \in \mathbf{Q})$ we may suppose without loss of generality that the

 $f_j \in \mathbf{Z}$

are square free.

If f_1 , f_2 , f_3 have a prime factor p in common, we replace $F(\mathbf{X})$ by $p^{-1}F(\mathbf{X})$. If two of the f_j , say f_1 , f_2 have a prime p in common but $p \not| f_3$, we replace X_3 by pX_3 and then divide F by p. Both of these

¹ The details of the proof of Theorem 1 will not be required for the treatment of elliptic curves. The reader who is interested only in the latter should omit the rest of this § and also omit §§4,5.

transformations reduce the absolute value of the integer $f_1f_2f_3$. After a finite number of steps we are reduced to the case when $f_1f_2f_3$ is square free. We have thus proved the

Metalemma 1. To prove the Theorem, it is enough to prove it for conics

$$F(\mathbf{X}) = f_1 X_1^2 + f_2 X_2^2 + f_3 X_3^2 = 0,$$

where $f_j \in \mathbb{Z}$ and $f_1 f_2 f_3$ is square free.

The next stage is to draw conclusions from the hypothesis that a conic as described in the Metalemma has points everwhere locally. There is a point defined over \mathbf{Q}_p when there is a vector $\mathbf{a} = (a_1, a_2, a_3) \neq (0, 0, 0)$ with $a_j \in \mathbf{Q}_p$ such that $F(\mathbf{a}) = 0$. By multiplying the a_j by an element of \mathbf{Q}_p we may suppose without loss of generality that

$$\max|a_j|_p = 1. \tag{(*)}$$

For our later purposes we have to consider several cases.

First case. $p \neq 2$, $p \mid f_1 f_2 f_3$. Without loss of generality $p \mid f_1$, so $p \nmid f_2$, $p \nmid f_3$. Then $|f_1 a_1^2|_p < 1$. Suppose, if possible that $|a_2|_p < 1$. Then

$$|f_3a_3^2|_p = |f_1a_1^2 + f_2a_2^2|_p < 1$$

and $|a_3|_p < 1$. Now

$$|f_1a_1^2|_p = |f_2a_2^2 + f_3a_3^2|_p \le p^{-2}$$

and so $|a_1|_p < 1$ since f_1 is square free. This contradicts the normalization (*), and so $|a_2|_p = |a_3|_p = 1$. But now

$$|f_2a_2^2 + f_3a_3^2|_p < 1.$$

On dividing by the unit a_2 , we deduce that there is some $r_p \in \mathbb{Z}$ such that

$$f_2 + r_p^2 f_3 \equiv 0 \ (p).$$

Second case. p = 2, $2 \not| f_1 f_2 f_3$. It is easy to see that precisely two of the a_j are units, say a_2 and a_3 . Now $a^2 \equiv 1$ or 0 (4) for $a \in \mathbb{Z}$; and so

$$f_2+f_3\equiv 0\ (4).$$

Third case. $p = 2, 2 | f_1 f_2 f_3$, say $2 | f_1$. Now $|a_2|_2 = |a_3|_3 = 1$. Now $a^2 \equiv 1$ (8) for $a \in \mathbb{Z}, 2 \not | a$; and so

$$f_2+f_3\equiv 0\ (8)$$

or

$$f_1 + f_2 + f_3 \equiv 0 \ (8)$$

Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 25 Sep 2018 at 11:15:48, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139172530.004

according as $|a_1|_2 < 1$ or $|a_1|_2 = 1$.

In the next two sections, we show that the conditions just derived are sufficient to ensure the existence of a global point on $F(\mathbf{X}) = 0$.

§3. Exercises

1. (i) Let p > 2 be prime and let $b, c \in \mathbb{Z}, p \not| b$. Show that $bx^2 + c$ takes precisely $\frac{1}{2}(p+1)$ distinct values p for $x \in \mathbb{Z}$. (ii) Suppose that, further, $a \in \mathbb{Z}, p \not| a$. Show that there are $x, y \in \mathbb{Z}$ such that $bx^2 + c \equiv ay^2$ (p).

2. Let a, b, $c \in \mathbb{Z}_p$, $|a|_p = |b|_p = |c|_p = 1$ where p is prime, p > 2. Show that there are $x, y \in \mathbb{Z}_p$ such that $bx^2 + c = ay^2$.

3. Let p > 2 be prime, $a_{ij} \in \mathbb{Z}$ $(1 \le i, j \le 3)$, $a_{ji} = a_{ij}$ and let $d = \det(a_{ij})$. Suppose that $p \not| d$. Show that there are $x_1, x_2, x_3 \in \mathbb{Z}$, not all divisible by p, such that $\sum_{i,j} a_{ij} x_i x_j \equiv 0$ (p).

4. Let $a, b, c \in \mathbb{Z}$, $2 \not | abc$. Show that a necessary and sufficient condition that the only solution in \mathbb{Q}_2 of $ax^2 + by^2 + cz^2 = 0$ is the trivial one is that $a \equiv b \equiv c$ (4).

5. For each of the following sets of a, b, c find the set of primes p (including ∞) for which the only solution of $ax^2 + by^2 + cz^2 = 0$ in \mathbf{Q}_p is the trivial one:

(i) (a, b, c) = (1, 1, -2)(ii) (a, b, c) = (1, 1, -3)(iii) (a, b, c) = (1, 1, 1)(iv) (a, b, c) = (14, -15, 33)

6. Do you observe anything about the parity of the number N of primes (including ∞) for which there is insolubility? If not, construct similar exercises and solve them until the penny drops.

7.(i) Prove your observation in (6) in the special case a = 1, b = -r, c = -s, where r, s are distinct primes > 2. [Hint. Quadratic reciprocity]

(ii) [Difficult]. Prove your observation for all $a, b, c \in \mathbb{Z}$.

Geometry of numbers

At this stage we require a tool from the Geometry of Numbers, which we shall develop from scratch.

A generalization of the pigeon-hole principle (Schubfachprinzip) says that if we have N things to file in H holes and N > mH for an integer m, then at least one of the holes will contain $\geq (m+1)$ things. We start with a continuous analogue.

Let \mathbb{R}^n denote the vector space of real *n*-tuples $\mathbf{r} = (r_1, \ldots, r_n)$. It contains the group \mathbb{Z}^n of \mathbf{r} for which $r_j \in \mathbb{Z}$ (all j). By the volume V(S) of a set $S \subset \mathbb{R}^n$ we shall mean its Lebesgue measure, but in the applications we will be concerned only with very simple-minded S.

Lemma 1. Let m > 0 be an integer and let $S \subset \mathbb{R}^n$ with

 $V(\mathcal{S}) > m.$

Then there are m + 1 distinct points s_0, \ldots, s_m of S such that

$$\mathbf{s}_i - \mathbf{s}_j \in \mathbf{Z}^n$$
 $(0 \le i, j \le m).$

Proof. Let $\mathcal{W} \subset \mathbb{R}^n$ be the "unit cube" of points w with

 $0 \leq w_j < 1 \qquad (1 \leq j \leq n).$

Then every $\mathbf{x} \in \mathbf{R}^n$ is uniquely of the shape

$$\mathbf{x} = \mathbf{w} + \mathbf{z},$$

where $\mathbf{z} \in \mathbf{Z}^n$. Let $\psi(\mathbf{x})$ be the characteristic function of \mathcal{S} (= 1 if $\mathbf{x} \in \mathcal{S}$,

= 0 otherwise). Then

$$m < V(S) = \int_{\mathbb{R}^n} \psi(\mathbf{x}) d\mathbf{x}$$
$$= \int_{\mathcal{W}} \left(\sum_{\mathbf{s} \in \mathbb{Z}^n} \psi(\mathbf{w} + \mathbf{z}) \right) d\mathbf{w}$$

Since $V(\mathcal{W}) = 1$, there must be some $\mathbf{w}_0 \in \mathcal{W}$ such that

$$\sum_{\mathbf{x}\in\mathbb{Z}^n}\psi(\mathbf{w}_0+\mathbf{z})>m,$$

so $>m+1.$

We may now take for the \mathbf{s}_i the $\mathbf{w}_0 + \mathbf{z}$ for which $\psi(\mathbf{w}_0 + \mathbf{z}) > 0$.

The set S is said to be symmetric (about the origin) if $-\mathbf{x} \in S$ whenever $\mathbf{x} \in S$. It is convex if whenever $\mathbf{x}, \mathbf{y} \in S$, then the whole line-segment

$$\lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in S$$
 $(0 \le \lambda \le 1)$

joining them is in S. In particular, the mid-point $\frac{1}{2}(\mathbf{x} + \mathbf{y})$ is in S.

Theorem 1. Let Λ be a subgroup of \mathbb{Z}^n of index m. Let $\mathcal{C} \subset \mathbb{R}^n$ be a symmetric convex set of volume

$$V(\mathcal{C})>2^nm.$$

Then C and A have a common point other than $\mathbf{0} = (0, \dots, 0)$.

Proof. Let $S = \frac{1}{2}C$ be the set of points $\frac{1}{2}c$, $c \in C$. Then

$$V(\frac{1}{2}\mathcal{C}) = 2^{-n}V(\mathcal{C}) > m.$$

By Lemma 1, there are m + 1 distinct points $c_0, \ldots, c_m \in C$ such that

$$\frac{1}{2}\mathbf{c}_i - \frac{1}{2}\mathbf{c}_j \in \mathbb{Z}^n \quad (0 \le i, \ j \le m).$$

There are m + 1 points

$$\frac{1}{2}\mathbf{c}_i - \frac{1}{2}\mathbf{c}_0 \qquad (0 \le i \le m)$$

and m cosets of \mathbb{Z}^n modulo Λ . By the pigeon hole principle, two must be in the same coset, that is there are i, j with $i \neq j$ such that

$$\frac{1}{2}\mathbf{c}_i - \frac{1}{2}\mathbf{c}_j \in \Lambda.$$

Now $-\mathbf{c}_i \in \mathcal{C}$ by symmetry; and so

$$\frac{1}{2}\mathbf{c}_i - \frac{1}{2}\mathbf{c}_j = \frac{1}{2}\mathbf{c}_i + \frac{1}{2}(-\mathbf{c}_j) \in \mathcal{C}$$

by convexity.

Note. Lemma 1 and Theorem 1 with m = 1 are due to Blichfeldt and Minkowski respectively. The generalizations to m > 1 are by van der Corput.

As a foretaste of the flavour of the application in the next section, we give

Lemma 2. Let N be a positive integer. Suppose that there is an $l \in \mathbb{Z}$ such that

$$l^2 \equiv -1 \ (N).$$

Then $N = u^2 + v^2$ for some $u, v \in \mathbb{Z}$.

Proof. We take n = 2 and denote the co-ordinates by x, y. For C we take the open disc

$$x^2 + y^2 < 2m$$

of volume (= area)

$$V(\mathcal{C}) = 2\pi m > 2^2 m.$$

The subgroup Λ of \mathbb{Z}^2 is given by

$$x, y \in \mathbb{Z}, \qquad y \equiv lx (m).$$

It is clearly of index m. Hence by the Theorem there is

 $(0,0) \neq (u,v) \in \Lambda \cap \mathcal{C}.$

Then

$$0 < u^2 + v^2 < 2m$$

and

$$u^2 + v^2 \equiv u^2(1 + l^2) \equiv 0$$
 (m).

Hence $u^2 + v^2 = m$, as required.

We note, in passing, that the condition of the lemma is certainly satisfied for primes p with $p \equiv 1$ (4).

§4. Exercises

1. Let $m \in \mathbb{Z}$, m > 1 and suppose that there is some $f \in \mathbb{Z}$ such that $f^2 + f + 1 \equiv 0$ (m). Show that $m = u^2 + uv + v^2$ for some $u, v \in \mathbb{Z}$.

2. Find a prime p > 0 for which there is an $f \in \mathbb{Z}$ such that

 $1 + 5f^2 \equiv 0 \ (p)$ but p is not of the shape $u^2 + 5v^2 \ (u, v \in \mathbb{Z})$.

Local-global principle. Conclusion of proof

We now complete the proof of the local-global principle for conics using the theorem of the last section. We recall that we had reduced the proof to that for

$$f_1 X_1^2 + f_2 X_2^2 + f_3 X_3^2 = 0$$

where $f_1, f_2, f_3 \in \mathbb{Z}$ and $f_1 f_2 f_3$ is square free. We assume that there are points everywhere locally and we showed that this implied certain congruences to primes p dividing $2f_1f_2f_3$.

We first define a subgroup Λ of \mathbb{Z}^3 by imposing congruence conditions on the components of $\mathbf{x} = (x_1, x_2, x_3)$.

First case. $p \neq 2$, $p \not\mid f_1 f_2 f_3$, say $p \mid f_1$. We saw (end of §3) that then there is an $r_p \in \mathbb{Z}$ and that

$$f_2 + r_p^2 f_3 \equiv 0 \quad (p).$$

We impose the condition

$$x_3 \equiv r_p x_2 \quad (p).$$

Then

$$F(\mathbf{x}) = f_1 x_1^2 + f_2 x_2^2 + f_3 x_3^2$$

$$\equiv (f_2 + r_p^2 f_3) x_2^2$$

$$\equiv 0 \quad (p).$$

Second case. $p = 2, 2 \not\mid f_1 f_2 f_3$. Then without loss of generality $f_2 + f_3 \equiv 0$ (4). We impose the conditions

$$\left. \begin{array}{c} x_1 \equiv 0 \quad (2) \\ x_2 \equiv x_3 \quad (2) \end{array} \right\},$$

which imply

$$F(\mathbf{x}) \equiv 0$$
 (4).

Third case. $p = 2, 2 | f_1 f_2 f_3$, say $2 | f_1$. Then $s^2 f_1 + f_2 + f_3 \equiv 0$ (8),

where s = 0 or 1. We impose the conditions

$$\begin{array}{c} x_2 \equiv x_3 \quad (4) \\ x_1 \equiv sx_3 \quad (2) \end{array} \right\},$$

which imply

$$F(\mathbf{x}) \equiv 0$$
 (8).

To sum up. The group Λ is of index $m(say) = 4|f_1 f_2 f_3|$ in \mathbb{Z}^3 , where throughout this section || is the absolute value. Further,

$$F(\mathbf{x}) \equiv 0 \qquad (4 |f_1 f_2 f_3|)$$

for $\mathbf{x} \in \Lambda$.

We apply the theorem of the previous section to Λ and the convex symmetric set

$$\mathcal{C}: |f_1|x_1^2 + |f_2|x_2^2 + |f_3|x_3^2 < 4|f_1f_2f_3|.$$

School geometry shows that

$$V(\mathcal{C}) = (\pi/3) \cdot 2^3 \cdot |4f_1 f_2 f_3|$$

> 2³ |4f_1 f_2 f_3|
- m

Hence there is an $\mathbf{c} \neq \mathbf{0}$ in $\Lambda \cap \mathcal{C}$. For this \mathbf{x} we have

$$F(\mathbf{x}) \equiv 0 \ (4|f_1f_2f_3|)$$

and

$$|F(\mathbf{x})| \le |f_1|x_1^2 + |f_2|x_2^2 + |f_3|x_3^2$$

 $< 4|f_1f_2f_3|;$

so

 $F(\mathbf{x})=0,$

as required.

We conclude with some remarks.

Remark 1. We have not merely shown that there is a solution of $F(\mathbf{x}) = 0$, but we have found that there is one in a certain ellipsoid. This facilitates the search in explicitly given cases.

Remark 2. We have made no use of the condition of solubility in \mathbf{Q}_p for $p \not\mid 2f_1f_2f_3$. In fact this condition tells us nothing [cf. §3, Exercises 2, 3]. It is left to the reader to check that for any f_1 , f_2 , f_3 and p with $p \not\mid 2f_1f_2f_3$ there is always a point defined over \mathbf{Q}_p on

$$f_1 X_1^2 + f_2 X_2^2 + f_3 X_3^2 = 0.$$

Remark 3. We have also nowhere used that there is local solubility for $\mathbf{Q}_{\infty} = \mathbf{R}$.

Hence solubility at \mathbf{Q}_{∞} is implied by solubility at all the \mathbf{Q}_{p} $(p \neq \infty)$. This phenomenon is connected with quadratic reciprocity. In fact for any conic over \mathbf{Q} , the number of p (including ∞) for which there is not a point over \mathbf{Q}_{p} is always even [cf. §3, Exercises 6,7]. See a book on quadratic forms (such as the author's).

§5. Exercises

1. Let

$$F(X,Y,Z) = 5X^{2} + 3Y^{2} + 8Z^{2} + 6(YZ + ZX + XY).$$

Find rational integers x, y, z not all divisible by 13, such that

$$F(x, y, z) \equiv 0 \pmod{13^2}.$$

[Hint. cf. Hensel's Lemma 2 of §10.]

2. Let

$$F(X, Y, Z) = 7X^{2} + 3Y^{2} - 2Z^{2} + 4YZ + 6ZX + 2XY.$$

Find rational integers x, y, z not all divisible by 17 such that

$$F(x, y, z) \equiv 0 \pmod{17^3}.$$