p-adic numbers

Most of the familiar properties of the ordinary absolute value on the real or complex fields are consequences of the following three:

- (i) $|r| \ge 0$, with equality precisely for r = 0.
- (ii) |rs| = |r||s|.
- (iii) $|r+s| \le |r|+|s|$.

A real-valued function |.| on a field k is said to be a valuation if it satisfies (i), (ii) (iii). Since $(-1)^2 = 1$, properties (i)-(iii) imply that |-1| = 1, |-r| = |r| (all r).

The rational field Q has other valuations than the absolute value. Let p be a fixed prime. Any rational $r \neq 0$ can be put in the shape

$$r = p^{\rho}u/v, \ \rho \in \mathbb{Z}, \ u, \ v \in \mathbb{Z}, \ p \not\mid u, \ p \not\mid v$$

We define

$$|r|_{p} = p^{-\rho}$$

and

$$|0|_{p} = 0.$$

This definition clearly satisfies (i), (ii) above. Let

$$s = p^{\sigma} m/n$$
 $m, n \in \mathbb{Z}, p \not m, p \not n,$

so

$$|s|_p = p^{-\sigma},$$

where without loss of generality

$$\sigma \geq \rho$$
, i.e. $|s|_p \leq |r|_p$.

$$r+s=p^{\rho}(un+p^{\sigma-\rho}mv)/vn.$$

Here $p \not\mid vn$. The numerator $un + p^{\sigma-\rho}mv$ is an integer, but, at least for for $\rho = \sigma$, it may be divisible by p. Hence

$$|r+s|_p \le p^{-\rho},$$

that is

(iii*) $|r+s|_p \leq \max\{|r|_p, |s|_p\}.$

Clearly (iii*) implies (iii), so $||_p$ is a valuation. We call it the *p*-adic valuation. The inequality (iii*) is called the ultrametric inequality, since (iii), the triangle inequality, expresses the fact that |r - s| is a metric. A valuation which satisfies the ultrametric inequality is said to be non-archimedean.

We can transfer familiar terminology from the ordinary absolute value to the *p*-adic case. For example, we say that a sequence $\{a_n\}, n = 1, 2, ...$ is a fundamental sequence if for any $\varepsilon > 0$ there is an $n_0(\varepsilon)$ such that

 $|a_m - a_n|_p < \varepsilon$ whenever $m, n \ge n_0$ (ε) .

The sequence $\{a_n\}$ converges to b if

$$|a_n - b|_p < \varepsilon$$
 (all $n \ge n_0 (\varepsilon)$).

For example let

p = 5

and consider the sequence

 $\{a_n\}$: 3, 33, 333, 3333, ...

Then

$$a_m \equiv a_n \mod 5^n \qquad (m \ge n)$$

i.e.

$$|a_m - a_n|_5 \le 5^{-n} \qquad (m \ge n).$$

Hence $\{a_n\}$ is a fundamental sequence. Indeed it is a convergent sequence, since

$$3a_n = 99\dots 99 \equiv -1(5^n),$$

i.e.

 $|3a_n+1|_5 \leq 5^{-n}$

and so

$$a_n \rightarrow -1/3$$

5-adically.

8

As the above example shows, the main difficulties with the *p*-adic valuation are psychological: something is *p*-adically small if it is divisible by a high power of *p*. Not every *p*-adic fundamental sequence is convergent. Let us take p = 5 again. Then we construct a sequence of $a_n \in \mathbb{Z}$ such that

$$a_n^2 + 1 \equiv 0 \ (5^n)$$

and

$$a_{n+1} \equiv a_n \ (5^n).$$

We start with $a_1 = 2$. Suppose that we already have a_n for some n and put $a_{n+1} = a_n + b5^n$, where $b \in \mathbb{Z}$ is to be determined. We require

$$(a_n + b5^n)^2 + 1 \equiv 0 \ (5^{n+1}),$$

that is

$$2a_nb + c \equiv 0 \ (5), \tag{(*)}$$

where we already have

$$c = (a_n^2 + 1)/5^n \in \mathbb{Z}.$$

Clearly 5 $/ a_n$ and so we can solve the congruence (*) for the unknown b.

The sequence $\{a_n\}$ just constructed is a 5-adic fundamental sequence since

$$|a_m - a_n|_5 \le 5^{-n} \qquad (m \ge n).$$

Suppose, if possible, that a_n tends 5-adically to some $e \in \mathbf{Q}$. Then

$$a_n^2 + 1 \to e^2 + 1$$

On the other hand, by our construction,

$$a_n^2 + 1 \to 0.$$

Hence $e^2 + 1 = 0$; a contradiction.

Just as the real numbers are constructed by completing the rationals with respect to the ordinary absolute value, so the rationals can be completed with respect to $||_p$ to give the field \mathbf{Q}_p of *p*-adic numbers. In fact the process can be simplified because $||_p$ is non-archimedean. For the reader who is unfamiliar with this way of constructing the reals, we sketch a construction of \mathbf{Q}_p at the end of this section.

We say that a field K is complete with respect to a valuation |.| if every fundamental sequence is convergent. A field K with valuation ||.||is said to be the completion of the field k with valuation |.| if there is an injection

$$\lambda: k \to K$$

which preserves the valuation:

$$||\lambda a|| = |a| \qquad (a \in k)$$

and such that

- (i) K is complete with respect to $\|.\|$
- (ii) K is the closure of λk with respect to the topology induced by ||.|| (K is not "too large").

The completion always exists and is unique (up to a unique isomorphism). We henceforth identify k with λk and |.| with ||.||, so regard k as a subfield of K.

We now discuss the structure of the *p*-adic field \mathbf{Q}_p with its valuation $||_p$.

We note that

 $|a+b|_p = |a|_p$ if $|b|_p < |a|_p$.

For by (iii*) $|a + b|_p \leq |a|_p$ and, since a = (a + b) + (-b), we have a contradiction if $|a + b|_p < |a|_p$. It follows that the set of values taken by $||_p$ on \mathbb{Q}_p is precisely the same as the set for \mathbb{Q} . Indeed if $\alpha \in \mathbb{Q}_p$, $\alpha \neq 0$ then by (ii) of the definition of the completion, there is an $a \in \mathbb{Q}$ with $|a - \alpha|_p < |\alpha|_p$, so $|\alpha|_p = |a|_p$.

The set of $\alpha \in \mathbb{Q}_p$ with $|\alpha| \leq 1$ is called the set of *p*-adic integers \mathbb{Z}_p . Because $||_p$ is non-archimedean, \mathbb{Z}_p is a ring:

 $|\alpha|_p, \ |\beta|_p \leq 1 \Rightarrow |\alpha\beta|_p \leq 1, \ |\alpha+\beta|_p \leq 1.$

A rational number b is in \mathbb{Z}_p precisely when it has the form b = u/v, where $u, v \in \mathbb{Z}$, $p \not\mid v$.

The numbers $\varepsilon \in \mathbf{Q}_p$ with $|\varepsilon| = 1$ are the *p*-adic units. From what was said about the values taken by $|.|_p$ on \mathbf{Q}_p , every $\beta \neq 0$ in \mathbf{Q}_p is of the shape $\beta = p^n \varepsilon$, where $n \in \mathbb{Z}$ and ε is a unit. The units are just the elements ε of \mathbf{Q}_p such that $\varepsilon \in \mathbb{Z}_p$, $\varepsilon^{-1} \in \mathbb{Z}_p$.

As we have already noted, elementary analysis continues to hold in Q_p , but can be simpler; as the following lemma shows.

Lemma 1. In \mathbf{Q}_p the series $\sum_{n=0}^{\infty} \beta_n$ converges if and only if $\beta_n \to 0$.

Proof. By saying that the sum converges, we mean, of course, that the partial sums \sum_{0}^{N} tend to a limit.

That convergence implies $\beta_n \to 0$ is true even in real analysis. To

prove the opposite implication, we note that

$$\sum_{0}^{N} - \sum_{0}^{M} |_{p} = |\sum_{M+1}^{N} \beta_{n}|_{p}$$
$$\leq \max_{M < n \leq N} |\beta_{n}|_{p}$$

by an obvious extension of the ultrametric inequality (iii*) to several summands. Hence $\left\{\sum_{0}^{N} \beta_{n}\right\}$ is a fundamental sequence, so tending to a limit by the completeness of \mathbf{Q}_{p} .

We are now in a position to give an explicit description of Z_p . We write

$$\mathcal{A} = \{0, 1, \ldots, p-1\}.$$

Lemma 2. The elements of Z_p are precisely the sums

$$\alpha=\sum_{0}^{\infty}a_{n}p^{n},$$

where

$$a_n \in \mathcal{A}$$
 (all n).

Proof. By the preceeding lemma, the infinite sum converges, and its value is clearly in \mathbb{Z}_p .

Now let $\alpha \in \mathbb{Z}_p$ be given. There is a $b \in \mathbb{Q}$ such that $|b - \alpha|_p < 1$, and it is easy to prove that there is precisely one $a_0 \in \mathcal{A}$ such that $|a_0 - b|_p < 1$. Then

$$\alpha = a_0 + p\alpha_1$$

where $|\alpha_1| \leq 1$, i.e. $\alpha_1 \in \mathbb{Z}_p$. Proceeding inductively, we get

$$\alpha = a_0 + a_1 p + \ldots + a_N p^N + \alpha_N p^{N+1}$$

with $\alpha_N \in \mathbb{Z}_p$.

For the final result we must distinguish between p = 2 and $p \neq 2$.

Lemma 3 $(p \neq 2)$. Let $\alpha \in \mathbf{Q}_p$ be a unit. A necessary and sufficient condition that $\alpha = \beta^2$ for some $\beta \in \mathbf{Q}_p$ in that there is some $\gamma \in \mathbf{Q}_p$ with

$$|\alpha - \gamma^2|_p < 1.$$

Proof. Necessity is obvious. We have already in effect given a proof in the special case p = 5, $\alpha = -1$. That in the general case is similar: one

constructs inductively $\beta_1 = \gamma, \beta_2, \beta_3, \dots$ such that

$$|\beta_n - \alpha| \le p^{-n}$$
$$|\beta_{n+1} - \beta_n| \le p^{-n}$$

If we already have β_n , we take $\beta_{n+1} = \beta_n + \delta$, so

$$\beta_{n+1}^2 = \beta_n^2 + 2\beta_n\delta + \delta^2$$

and it is enough to take

$$\delta = (\alpha - \beta_n^2)/2\beta_n.$$

This lemma ceases to hold for p = 2 (consider $\alpha = 5, \beta = 1$). We have

Lemma 4 (p = 2). Let $\alpha \in \mathbf{Q}_2$ be a unit. A necessary and sufficient condition that $\alpha = \beta^2$ for some $\beta \in \mathbf{Q}_2$ is that $|\alpha - 1| \le 2^{-3}$.

Proof. Here again, the necessity is obvious. For sufficiency we construct a sequence $\beta_1 = 1, \beta_2, \beta_3, \ldots$ as in the previous proof. The details are left to the reader.

We conclude this section by the promised sketch of the construction of \mathbf{Q}_p .

Denote by \mathfrak{F} the set of fundamental sequences $\{a_n\}$ for $||_p$, where $a_n \in \mathbb{Q}$. Then \mathfrak{F} is a ring under componentwise addition and multiplication.

 $\{a_n\} + \{b_n\} = \{a_n + b_n\} : \{a_n\}\{b_n\} = \{a_n b_n\}.$

A sequence $\{a_n\}$ is a null sequence if $a_n \to 0$ (*p*-adically). The set \mathfrak{N} of null-sequences is clearly an ideal in \mathfrak{F} .

Let $\{a_n\} \in \mathfrak{F}$ but $\{a_n\} \notin \mathfrak{N}$. Then it is easy to see that there is at least one N such that $|a_N - a_n| < |a_N|_p$ for all n > N. Then $|a_n|_p = |a_N|_p$ for all $n \ge N$. We write $|\{a_n\}|_p = |a_N|_p$. If $a_n \ne 0$ for all n, it is now easy to deduce that $\{a_n^{-1}\} \in \mathfrak{F}$.

We show that \mathfrak{N} is a maximal ideal in \mathfrak{F} . For, if not, let \mathfrak{M} be a strictly bigger ideal than \mathfrak{N} . It must contain an $\{a_n\} \notin \mathfrak{N}$. Then only finitely many of the a_n can be 0, and replacing them by (say) 1 merely adds an element of \mathfrak{N} . Hence we can suppose that $a_n \neq 0$ for all n. Then $\{a_n^{-1}\} \in \mathfrak{F}$, and so $\{a_n^{-1}\}\{a_n\} \in \mathfrak{M}$. Hence we should have $\mathfrak{M} = \mathfrak{F}$, a contradiction. We conclude that \mathfrak{N} is maximal, and thus $\mathfrak{F}/\mathfrak{N}$ is a field.

The field Q is mapped into $\mathfrak{F}/\mathfrak{N}$ by

$$r \to \{r\} \in \mathfrak{F}.$$

The function $|\{a_n\}|$ on \mathfrak{F} induces a function on $\mathfrak{F}/\mathfrak{N}$ which is easily seen to be a valuation and to coincide with $||_p$ on the image of \mathbb{Q} .

Finally, it is not difficult to check that $\mathfrak{F}/\mathfrak{N}$ is itself complete by a diagonal argument on a sequence of elements of \mathfrak{F} .

§2. Exercises

1. For each of the sets of p, m, r given, either find an $x \in \mathbb{Z}$ such that $|r - x|_p \leq p^{-m}$,

or show that no such x exists.

(i) p = 257, r = 1/2, m = 1;(ii) p = 3, r = 7/8, m = 2;(iii) p = 3, r = 7/8, m = 7;(iv) p = 3, r = 5/6, m = 9;(v) p = 5, r = 1/4, m = 4.

2. Construct further examples along the lines of Exercise 1 until the whole business seems trivial.

3. For given p, m, r either find an $x \in \mathbb{Z}$ such that

$$|r-x^2|_p \leq p^{-1}$$

or show that no such x exists.

4. As Exercise 2.

5. Let p > 0 be prime, $p \equiv 2$ (3). For any integer $a, p \not\mid a$, show that there is an $x \in \mathbb{Z}_p$ with $x^3 = a$.