
p-adic numbers

Most of the familiar properties of the ordinary absolute value on the
real or complex fields are consequences of the following three:

(i) \r\ > 0, with equality precisely for r = 0.
(ii) M = |HI4
(iii) |r + a|<|r| + M.
A real-valued function |.| on afield k is said to be a valuation if it satisfies
(i), (ii) (iii). Since ( —I)2 = 1, properties (i)-(iii) imply that | — 1| = 1,
| - r | = |r |(allr).

The rational field Q has other valuations than the absolute value. Let
p be a fixed prime. Any rational r ^ 0 can be put in the shape

r = ppu/v, pel, u, v G Z, pj[u, pj(v.

We define

\r\P=p-p

and

|0|, = 0.

This definition clearly satisfies (i), (ii) above. Let

s=p°m/n m, n £ Z, p / m , p / n ,

so

where without loss of generality

<J>p, i.e. |s|, < |r|,.
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2: p-adic numbers 7

Then

r + s = pp{un + p"~pmv)/vn.

Here p / vn. The numerator un -\-p"~l>mv is an integer, but, at least for
for p = a, it may be divisible by p. Hence

\r + s\p<p-",

that is

(iii*) \r + s\p < max{|r|p, |s | p}.
Clearly (iii*) implies (iii), so | |p is a valuation. We call it the p-adic

valuation. The inequality (iii*) is called the ultrametric inequality, since
(iii), the triangle inequality, expresses the fact that |r — s\ is a metric.
A valuation which satisfies the ultrametric inequality is said to be non-
archimedean.

We can transfer familiar terminology from the ordinary absolute value
to the p-adic case. For example, we say that a sequence {on}, n = 1,2,...
is a fundamental sequence if for any e > 0 there is an no (e) such that

\am — an\p < e whenever m,n > no (e).

The sequence {an} converges to b if

\an — b\p < e (all n>n0 (e)).

For example let

p = b

and consider the sequence

{an} : 3, 33, 333, 3333, . . . .

Then

am = an mod 5" (m > n)

i.e.

| a m - a n | s < 5 - n (m>n).

Hence {on} is a fundamental sequence. Indeed it is a convergent se-
quence, since

3an = 99...99 = - l (5 n ) ,

i.e.

|3an + l|5 < 5 ~ n

and so

on -+ - 1 / 3

5-adically.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139172530.003
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 25 Sep 2018 at 11:14:30, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139172530.003
https://www.cambridge.org/core


8 Lectures on Elliptic Curves

As the above example shows, the main difficulties with the p-adic val-
uation are psychological: something is p-adically small if it is divisible
by a high power of p. Not every p-adic fundamental sequence is conver-
gent. Let us take p = 5 again. Then we construct a sequence of an € Z
such that

< + 1 = 0 (5n)
and

an+1 = an (5n).

We start with at = 2. Suppose that we already have an for some n and
put an+i = an + 65", where 6 6 Z is to be determined. We require

( a n + 6 5 n ) 2 + l = 0 ( 5 n + 1 ) ,

that is

2anb + c = 0(5), (*)

where we already have

c = (a2
n + l ) / 5 " G Z.

Clearly 5 / an and so we can solve the congruence (*) for the unknown
b.

The sequence {an} just constructed is a 5-adic fundamental sequence
since

\am-an\s<5~n {m>n).

Suppose, if possible, that an tends 5-adically to some e £ Q. Then

a2
n + 1 - e2 + 1.

On the other hand, by our construction,

4 + 1-0.
Hence e2 + 1 = 0; a contradiction.

Just as the real numbers are constructed by completing the rationals
with respect to the ordinary absolute value, so the rationals can be
completed with respect to | \p to give the field Qp of p-adic numbers. In
fact the process can be simplified because | \p is non-archimedean. For
the reader who is unfamiliar with this way of constructing the reals, we
sketch a construction of Qp at the end of this section.

We say that a field K is complete with respect to a valuation |.| if
every fundamental sequence is convergent. A field K with valuation ||.||
is said to be the completion of the field k with valuation |.| if there is an
injection

A: k-> K
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2: p-adic numbers 9

which preserves the valuation:

||Aa|| = \a\ (a € *)

and such that

(i) K is complete with respect to ||.||
(ii) K is the closure of Xk with respect to the topology induced by ||.||

(K is not "too large").

The completion always exists and is unique (up to a unique isomor-
phism). We henceforth identify k with Xk and |.| with ||.||, so regard k
as a subfield of K.

We now discuss the structure of the p-adic field Qp with its valuation

UP-
We note that

|a + 6|, = |o| , if \b\P<\a\p.

For by (iii*) \a + b\p < \a\p and, since a = (a -f b) + (—&), we have a
contradiction if \a + b\p < \a\p. It follows that the set of values taken
by | \p on Qp is precisely the same as the set for Q. Indeed if a 6 Qp,
a ^ O then by (ii) of the definition of the completion, there is an a 6 Q
with \a — a\p < \a\p, so \a\p = \a\p.

The set of a G Qp with |a | < 1 is called the set of p-adic integers 2p.
Because | \p is non-archimedean, Zp is a ring:

|«1,, \P\, < 1 =*> \<*P\, < 1, \* + 0\,<l.
A rational number b is in Zp precisely when it has the form 6 = u/v,

where u, v € Z, p / v.
The numbers £ € Qp with |e| = 1 are the p-adic units. From what

was said about the values taken by |.|p on Qp, every /? ^ 0 in Qp is of
the shape j3 = pne, where n G Z and e is a unit. The units are just the
elements e of Qp such that e G Zp, e"1 € Zp.

As we have already noted, elementary analysis continues to hold in
Qp, but can be simpler; as the following lemma shows.

Lemma 1. In Qp the series ^ ^ ° /?„ converges if and only if /?„ —» 0.

Proof. By saying that the sum converges, we mean, of course, that the
partial sums ^ 0 tend to a limit.

That convergence implies /?„ —» 0 is true even in real analysis. To
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10 Lectures on Elliptic Curves

prove the opposite implication, we note that
N M N

0 0 M + \

< max |/?nL
~ M<n<N P

by an obvious extension of the ultrametric inequality (iii*) to several

summands. Hence < £20 /Jn > is a fundamental sequence, so tending to

a limit by the completeness of Qp.
We are now in a position to give an explicit description of J.p. We

write

Lemma 2. The elements of Zp are precisely the sums
oo

where

an£A (all n).

Proof. By the preceeding lemma, the infinite sum converges, and its
value is clearly in Zp.

Now let a 6 Zp be given. There is a b € Q such that |6 — a\p < 1,
and it is easy to prove that there is precisely one ao € A such that
|oo — b\p < 1. Then

a = a0 + pax

where | a j | < 1, i.e. at £ Zp. Proceeding inductively, we get

a = a0 + a-ip + ... + aNpN + aNpN+1

with a AT € Zp.
For the final result we must distinguish between p = 2 and p ^ 2.

Lemma 3 (p ^ 2). Let a € Qp be a unit. A necessary and sufficient
condition that a = fP for some /? 6 Qp in that there is some 7 G Qp
with

Proof. Necessity is obvious. We have already in effect given a proof in
the special case p = 5, a = — 1. That in the general case is similar: one
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§2: Exercises 11

constructs inductively /?i = 7, fc, /?3, • • • such that

\Pl ~ "I < P""
I&. + 1 - ^ n | < p - "

If we already have /?„, we take /?n+i = ^ + i , so

and it is enough to take

6 = (a - fi)/2(Jn.

This lemma ceases to hold for p = 2 (consider a = 5, /? = 1). We have

Lemma 4 (p = 2). Lei a € Q2 &e « U7ii<. A necessary and sufficient
condition that a = /?2 /or tome /? 6 Q2 w that \a - 1| < 2~3.

Proof. Here again, the necessity is obvious. For sufficiency we construct
a sequence /?] = 1, /?2, /?3, • • • as in the previous proof. The details are
left to the reader.

We conclude this section by the promised sketch of the construction
ofQP .

Denote by 5 the set of fundamental sequences {an} for | \p, where
an € Q. Then 5 is a ring under componentwise addition and multipli-
cation.

{an} + {bn} - {an + bn} : {an}{bn} = {anbn}.

A sequence {an} is a null sequence if an —* 0 (p-adically). The set 91 of
null-sequences is clearly an ideal in $.

Let {an} £ 5 but {an} (£ 91. Then it is easy to see that there is at least
one N such that \apj — an\ < |ajv|p for all n > N. Then |an |p = \ai^\p

for all n > N. We write |{an}|p = law|p- If <>„ ^ 0 for all n, it is now
easy to deduce that {a"1} € 5-

We show that 91 is a maximal ideal in 5- For, if not, let 9JI be a
strictly bigger ideal than 91. It must contain an {an} (£ 91. Then only
finitely many of the on can be 0, and replacing them by (say) 1 merely
adds an element of 91. Hence we can suppose that an ^ 0 for all n. Then
{a"1} € 5, and so {a~'}{an} € W. Hence we should have OT = 5, a
contradiction. We conclude that 91 is maximal, and thus 5/91 is a field.

The field Q is mapped into 5/91 by

r^{r}£ 5-

The function |{on}| on 5 induces a function on 5/91 which is easily seen
to be a valuation and to coincide with | |p on the image of Q.
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12 Lectures on Elliptic Curves

Finally, it is not difficult to check that 5/9t is itself complete by a
diagonal argument on a sequence of elements of J .

§2. Exercises

1. For each of the sets of p, m, r given, either find an x € Z such that

\r-x\p<p-m,

or show that no such x exists.

(i) p = 257, r = l /2 , m = l;
(ii) p = 3, r = 7/8, m = 2;
(iii) p = 3, r = 7/8, m = 7;
(iv) p = 3, r = 5/6, m = 9;
(v) p = 5 , r = 1/4, m = 4.

2. Construct further examples along the lines of Exercise 1 until the
whole business seems trivial.

3. For given p, m, r either find an x 6 Z such that

\r-x\<p-m

or show that no such x exists.

(i) p= 5, r = - 1 , m = 4;
(ii) p = 5, r = 10, m = 3;
(iii) p = 13, r = - 4 , m = 3;
(iv) p = 2 , r = - 7 , m = 6;
(v) p = 7, r = -14, m = 4;
(vi) p = 7, r = 6, m = 3;
(vii) p = 7, r = 1/2, m = 3.

4. As Exercise 2.

5. Let p > 0 be prime, p = 2 (3). For any integer a, p J( a, show that
there is an x € T-T with x3 = a.
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