2

p-adic numbers

Most of the familiar properties of the ordinary absolute value on the
real or complex fields are consequences of the following three:

(i) |r| > 0, with equality precisely for r = 0.
(i) [rs| = Irlls|-
(iii) |r+s] < || +1s].
A real-valued function |.| on a field k is said to be a valuation if it satisfies
(i), (ii) (iii). Since (—1)? = 1, properties (i)-(iii) imply that | — 1} = 1,
= rl = Ir] (all 7).
The rational field Q has other valuations than the absolute value. Let
p be a fixed prime. Any rational r # 0 can be put in the shape
r=pfulv, p€Z, u,v€EL pfu,pfo.
We define
Irlp =p~*°
and
0], = 0.
This definition clearly satisfies (i), (ii) above. Let

so
|S|P = p—a,
where without loss of generality

o2 p, e |s|, < |rlp.
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2: p-adic numbers 7

Then
r + s = pf(un + p” “Pmv)/vn.
Here p f vn. The numerator un + p° ~?mv is an integer, but, at least for
for p = o, it may be divisible by p. Hence
|1‘ + sly < P_p’
that is
(%) Ir + sly < max{lrly, Isly).

Clearly (iii*) implies (iii), so | |, is a valuation. We call it the p-adic
valuation. The inequality (iii*) is called the ultrametric inequality, since
(iii), the triangle inequality, expresses the fact that |r — s| is a metric.
A valuation which satisfies the ultrametric inequality is said to be non-
archimedean.

We can transfer familiar terminology from the ordinary absolute value
to the p-adic case. For example, we say that a sequence {a,},n =1,2,...
is a fundemental sequence if for any ¢ > 0 there is an ng (&) such that

lam — anlp <€ whenever m,n > ny (€).

The sequence {a,} converges to b if

lan — blp <€ (all n > ng (€)).

For example let
p=35
and consider the sequence
{an}: 3, 33, 333, 3333,

Then

am = Gy mod 5" (m>n)
le.

|@m — anls < 57" (m > n).

Hence {a,} is a fundamental sequence. Indeed it is a convergent se-

quence, since

3a, =99...99 = —1(5"),

ie.
|3an +1]5 £57°
and so
ap — —1/3
5-adically.
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8 Lectures on Elliptic Curves

As the above example shows, the main difficulties with the p-adic val-
uation are psychological: something is p-adically small if it is divisible
by a high power of p. Not every p-adic fundamental sequence is conver-
gent. Let us take p = 5 again. Then we construct a sequence of a,, € Z
such that

and

QAn41 = Gy (5").
We start with a; = 2. Suppose that we already have a,, for some n and
put ap41 = a, + 65", where b € Z is to be determined. We require

(an + 65" +1=0(5"1),

that is

2an,b+ c =0 (5), (*)
where we already have

c=(a +1)/5" €Z.

Clearly 5 / a, and so we can solve the congruence (*) for the unknown
b.

The sequence {a,} just constructed is a 5-adic fundamental sequence

since
lam — anls <577 (m 2>n).
Suppose, if possible, that a, tends 5-adically to some e € Q. Then
af, +1 e 41,
On the other hand, by our construction,
a2 +1-0.
Hence e? + 1 = 0; a contradiction.

Just as the real numbers are constructed by completing the rationals
with respect to the ordinary absolute value, so the rationals can be
completed with respect to | |, to give the field Q, of p-adic numbers. In
fact the process can be simplified because | |, is non-archimedean. For
the reader who is unfamiliar with this way of constructing the reals, we
sketch a construction of Q, at the end of this section.

We say that a field K is complete with respect to a valuation |.| if
every fundamental sequence is convergent. A field K with valuation ||.|
is said to be the completion of the field k with valuation |.| if there is an
injection

A:k- K

Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 25 Sep 2018 at 11:14:30, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB0O9781139172530.003


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139172530.003
https://www.cambridge.org/core

2: p-adic numbers 9

which preserves the valuation:
lRall =la|  (a€k)
and such that

(i) K is complete with respect to ||.||
(i1) K is the closure of Ak with respect to the topology induced by ||.||
(K is not “too large”).

The completion always exists and is unique (up to a unique isomor-
phism). We henceforth identify k with Ak and |.| with ||.||, so regard k
as a subfield of K. '

We now discuss the structure of the p-adic field Q, with its valuation
Hp-

We note that

latblp=lap i [bly < lalp-

For by (iii*) |a + b}, < |a|, and, since a = (a + b) + (—b), we have a -
contradiction if |a + b|, < |a],. It follows that the set of values taken
by | |, on Q, is precisely the same as the set for Q. Indeed if @ € Q,,
a # 0 then by (ii) of the definition of the completion, there is an a € Q@
with |a — a|, < |alp, so |af, =|al,.

The set of & € Q, with |a| < 1 is called the set of p-adic integers Z,,.
Because | |, is non-archimedean, Z,, is a ring:

Ialpa Iﬂlp <l= laﬂ'p <1, e+ ﬂlp <L

A rational number b is in Z, precisely when it has the form b = u/v,
where v, v €Z,p fv.

The numbers ¢ € Q, with |¢| = 1 are the p-adic units. From what
was said about the values taken by |.|, on Q,, every 8 # 0 in Q, is of
the shape 8 = p"¢, where n € Z and ¢ is a unit. The units are just the
elements ¢ of Q, such that e € Z,, e™! € Z,.

As we have already noted, elementary analysis continues to hold in
Q,, but can be simpler; as the following lemma shows.

Lemma 1. In Q, the series 3 o~ Bn converges if and only if B, — 0.
Proof. By saying that the sum converges, we mean, of course, that the

partial sums }_, tend to a limit.
That convergence implies f, — 0 is true even in real analysis. To
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10 Lectures on Elliptic Curves

prove the opposite implication, we note that

N M N
1222 1= 3 Buls
o o

M+1

<
< e |Balp

by an obvious extension of the ultrametric inequality (iii*) to several
summands. Hence {E(I,V Bn} is a fundamental sequence, so tending to

a limit by the completeness of @,.
We are now in a position to give an explicit description of Z,. We
write

A=1{0,1,...,p—1}.

Lemma 2. The elements of Z, are precisely the sums

o0
n
a = E anp ,
0
where

an € .A (a.ll Tl).

Proof. By the preceeding lemma, the infinite sum converges, and its
value is clearly in Z,,.

Now let a € Z, be given. There is a b € Q such that |b —af, < 1,
and 1t is easy to prove that there is precisely one ay € A such that
lag — bl, < 1. Then

a = a9 + poy

where |a;| < 1, i.e. a; € Z,. Proceeding inductively, we get

a=a+aip+...+anp” +anp™t!

with ay € Z,.
For the final result we must distinguish between p = 2 and p # 2.

Lemma 3 (p # 2). Let a € Q, be a unit. A necessary and sufficient
condition that @ = (3% for some B € Q, in that there is some v € Q,
with

la — 4%y < 1.

Proof. Necessity is obvious. We have already in effect given a proof in
the special case p = 5, « = —1. That in the general case is similar: one
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§2: Ezercises 11

constructs inductively 8, = v, B2, B3, ... such that
187 —al <p7"

[Bn4r ~ Bnl < p7"
If we already have f3,, we take 8,4y = B, + 6, so

A1 =B 428648

and it is enough to take
6 =(a— B2)/2Bn.
This lemma ceases to hold for p = 2 (consider &« = 5, 8 = 1). We have

Lemma 4 (p = 2). Let a € Q; be a unit. A necessary and sufficient
condition that o = % for some B € Q, is that |a — 1| < 273,

Proof. Here again, the necessity is obvious. For sufficiency we construct
a sequence 3; = 1, B, B3, ... as in the previous proof. The details are
left to the reader.

We conclude this section by the promised sketch of the construction
of Q.

Denote by ¥ the set of fundamental sequences {a,} for | |5, where
a, € Q. Then § is a ring under componentwise addition and multipli-
cation.

{an} + {ba} = {an + ba} : {an}{bn} = {anbn}.
A sequence {a,} is a null sequence if a, — 0 (p-adically). The set 9N of
null-sequences is clearly an ideal in §.

Let {a,} € ¥ but {a,} ¢ . Then it is easy to see that there is at least
one N such that lay — an| < lan|, for all n > N. Then |a,|, = |an|,
for all n > N. We write |{an}|, = |an|p. If an # 0 for all n, it is now
easy to deduce that {a;'} € §.

We show that M is a maximal ideal in §. For, if not, let M be a
strictly bigger ideal than 9. It must contain an {a,} ¢ 91. Then only
finitely many of the a, can be 0, and replacing them by (say) 1 merely
adds an element of M. Hence we can suppose that a, # 0 for all n. Then
{a;'} € &, and so {a;'}{an} € M. Hence we should have M = §F, a
contradiction. We conclude that 9 is maximal, and thus F/M is a field.

The field Q is mapped into /9 by

r— {r} € 3.

The function |{a.}} on § induces a function on §F/9 which is easily seen
to be a valuation and to coipcide with | |, on the image of Q.
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12 Lectures on Elliptic Curves

Finally, it is not difficult to check that §/9% is itself complete by a
diagonal argument on a sequence of elements of §.

§2. Exercises

1. For each of the sets of p, m, r given, either find an z € Z such that
I‘f‘ - le S p—m’

or show that no such z exists.

(i) p=257,r=1/2, m=1;

(1) p=3,r=7/8, m=2

(i) p=3,r=7/8, m=T;

(iv) p=3,r=5/6,m=09;

(v) p=5r=1/4, m=4.

2. Construct further examples along the lines of Exercise 1 until the
whole business seems trivial.

3. For given p, m, r either find an z € Z such that

m

I"' -z |p <p~
or show that no such r exists.
(i) p=5r=-1,m=4
(i) p=5,r=10,m=3;
(i) p=13,r=—-4,m=3;
(iv) p=2,r=-7,m=6;
(v) p=T,r=-14, m=4¢4;
(vi) p=T,r=6,m=3,
(vii) p=T7,r=1/2, m =
4. As Exercise 2.

5. Let p > 0 be prime, p = 2 (3). For any integer a, p / a, show that
there is an ¢ € Z, with z° = a.
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