Geometry of numbers

At this stage we require a tool from the Geometry of Numbers, which we shall develop from scratch.

A generalization of the pigeon-hole principle (Schubfachprinzip) says that if we have N things to file in H holes and N > mH for an integer m, then at least one of the holes will contain $\geq (m+1)$ things. We start with a continuous analogue.

Let \mathbb{R}^n denote the vector space of real *n*-tuples $\mathbf{r} = (r_1, \ldots, r_n)$. It contains the group \mathbb{Z}^n of \mathbf{r} for which $r_j \in \mathbb{Z}$ (all j). By the volume V(S) of a set $S \subset \mathbb{R}^n$ we shall mean its Lebesgue measure, but in the applications we will be concerned only with very simple-minded S.

Lemma 1. Let m > 0 be an integer and let $S \subset \mathbb{R}^n$ with

 $V(\mathcal{S}) > m.$

Then there are m + 1 distinct points s_0, \ldots, s_m of S such that

$$\mathbf{s}_i - \mathbf{s}_j \in \mathbf{Z}^n \qquad (0 \leq i, \ j \leq m).$$

Proof. Let $\mathcal{W} \subset \mathbb{R}^n$ be the "unit cube" of points w with

 $0 \leq w_j < 1 \qquad (1 \leq j \leq n).$

Then every $\mathbf{x} \in \mathbf{R}^n$ is uniquely of the shape

$$\mathbf{x} = \mathbf{w} + \mathbf{z},$$

where $\mathbf{z} \in \mathbf{Z}^n$. Let $\psi(\mathbf{x})$ be the characteristic function of \mathcal{S} (= 1 if $\mathbf{x} \in \mathcal{S}$,

= 0 otherwise). Then

$$m < V(S) = \int_{\mathbb{R}^n} \psi(\mathbf{x}) d\mathbf{x}$$
$$= \int_{\mathcal{W}} \left(\sum_{\mathbf{s} \in \mathbb{Z}^n} \psi(\mathbf{w} + \mathbf{z}) \right) d\mathbf{w}$$

Since $V(\mathcal{W}) = 1$, there must be some $\mathbf{w}_0 \in \mathcal{W}$ such that

$$\sum_{\mathbf{x}\in\mathbb{Z}^n}\psi(\mathbf{w}_0+\mathbf{z})>m,$$

so $>m+1.$

We may now take for the \mathbf{s}_i the $\mathbf{w}_0 + \mathbf{z}$ for which $\psi(\mathbf{w}_0 + \mathbf{z}) > 0$.

The set S is said to be symmetric (about the origin) if $-\mathbf{x} \in S$ whenever $\mathbf{x} \in S$. It is convex if whenever $\mathbf{x}, \mathbf{y} \in S$, then the whole line-segment

$$\lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in S$$
 $(0 \le \lambda \le 1)$

joining them is in S. In particular, the mid-point $\frac{1}{2}(\mathbf{x} + \mathbf{y})$ is in S.

Theorem 1. Let Λ be a subgroup of \mathbb{Z}^n of index m. Let $\mathcal{C} \subset \mathbb{R}^n$ be a symmetric convex set of volume

$$V(\mathcal{C})>2^nm.$$

Then C and A have a common point other than $\mathbf{0} = (0, \dots, 0)$.

Proof. Let $S = \frac{1}{2}C$ be the set of points $\frac{1}{2}c$, $c \in C$. Then

$$V(\frac{1}{2}\mathcal{C}) = 2^{-n}V(\mathcal{C}) > m.$$

By Lemma 1, there are m + 1 distinct points $c_0, \ldots, c_m \in C$ such that

$$\frac{1}{2}\mathbf{c}_i - \frac{1}{2}\mathbf{c}_j \in \mathbb{Z}^n \quad (0 \le i, \ j \le m).$$

There are m + 1 points

$$\frac{1}{2}\mathbf{c}_i - \frac{1}{2}\mathbf{c}_0 \qquad (0 \le i \le m)$$

and m cosets of \mathbb{Z}^n modulo Λ . By the pigeon hole principle, two must be in the same coset, that is there are i, j with $i \neq j$ such that

$$\frac{1}{2}\mathbf{c}_i - \frac{1}{2}\mathbf{c}_j \in \Lambda.$$

Now $-\mathbf{c}_i \in \mathcal{C}$ by symmetry; and so

$$\frac{1}{2}\mathbf{c}_i - \frac{1}{2}\mathbf{c}_j = \frac{1}{2}\mathbf{c}_i + \frac{1}{2}(-\mathbf{c}_j) \in \mathcal{C}$$

by convexity.

Note. Lemma 1 and Theorem 1 with m = 1 are due to Blichfeldt and Minkowski respectively. The generalizations to m > 1 are by van der Corput.

As a foretaste of the flavour of the application in the next section, we give

Lemma 2. Let N be a positive integer. Suppose that there is an $l \in \mathbb{Z}$ such that

$$l^2 \equiv -1 \ (N).$$

Then $N = u^2 + v^2$ for some $u, v \in \mathbb{Z}$.

Proof. We take n = 2 and denote the co-ordinates by x, y. For C we take the open disc

$$x^2 + y^2 < 2m$$

of volume (= area)

$$V(\mathcal{C}) = 2\pi m > 2^2 m.$$

The subgroup Λ of \mathbb{Z}^2 is given by

$$x, y \in \mathbb{Z}, \qquad y \equiv lx (m).$$

It is clearly of index m. Hence by the Theorem there is

 $(0,0) \neq (u,v) \in \Lambda \cap \mathcal{C}.$

Then

$$0 < u^2 + v^2 < 2m$$

and

$$u^{2} + v^{2} \equiv u^{2}(1 + l^{2}) \equiv 0$$
 (m).

Hence $u^2 + v^2 = m$, as required.

We note, in passing, that the condition of the lemma is certainly satisfied for primes p with $p \equiv 1$ (4).

§4. Exercises

1. Let $m \in \mathbb{Z}$, m > 1 and suppose that there is some $f \in \mathbb{Z}$ such that $f^2 + f + 1 \equiv 0$ (m). Show that $m = u^2 + uv + v^2$ for some $u, v \in \mathbb{Z}$.

2. Find a prime p > 0 for which there is an $f \in \mathbb{Z}$ such that

 $1 + 5f^2 \equiv 0 \ (p)$ but p is not of the shape $u^2 + 5v^2 \ (u, v \in \mathbb{Z})$.