Elliptische Kurven und Kryptographie

Serie 6

das "elliptische" an elliptischen Kurven

Musterlösungen

Gegeben sei ein reelles, quartisches Polynom g(t) mit paarweise verschiedenen (komplexen) Nullstellen und sei $C_g:u^2=g(t)$ die assoziierte quartische Kurve. Ferner sei α eine reelle Nullstelle von g(t) und $\beta \neq 0$ sei irgend eine reelle Zahl.

21. Zeige, dass die Substitutionen

$$x = \frac{\beta}{t - \alpha}$$
, $y = x^2 u = \frac{\beta^2 u}{(t - \alpha)^2}$,

eine Transformation definieren welche die quartische Kurve C_q in die cubische Kurve

$$C_f$$
: $y^2 = f(x)$

transformiert, wobei

$$f(x) = g'(\alpha)\beta x^3 + \frac{1}{2}g''(\alpha)\beta^2 x^2 + \frac{1}{6}g'''(\alpha)\beta^3 x + \frac{1}{24}g''''(\alpha)\beta^4.$$

Bemerkung: Es lässt sich zeigen, dass f(x) ebenfalls paarweise verschiedene (komplexe) Nullstellen hat, d.h. $u^2 = q(t)$ definiert eine nicht-singuläre cubische Kurve in WNF.

Beweis:

Ersetzen wir β durch $(t - \alpha)x$, so erhalten wir

$$y^{2} = f(x) = x^{4} \sum_{i=1}^{4} \frac{1}{i!} g^{(i)}(\alpha)(t - \alpha)^{i} = x^{4}(g(t) - g(\alpha)) = x^{4}g(t),$$

wie gewünscht.

22. Seien α und β reelle Zahlen mit $0 < \beta < \alpha$ und sei E die Ellipse

$$E \colon \frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1.$$

(a) Zeige, dass der Umfang der Ellipse E gleich dem Integral

$$4\alpha \int_{0}^{\pi/2} \sqrt{1 - k^2 \sin^2(\theta)} \, d\theta$$

ist, für ein geeignetes k (abhängig von α und β).

(b) Zeige, dass gilt:

$$\int_{0}^{\pi/2} \sqrt{1 - k^2 \sin^2(\theta)} \, d\theta = \int_{0}^{1} \sqrt{\frac{1 - k^2 t^2}{1 - t^2}} \, dt = \int_{0}^{1} \frac{1 - k^2 t^2}{\sqrt{(1 - t^2)(1 - k^2 t^2)}} \, dt.$$

Bemerkung: Um Bogenlängen von Ellipsen (die keine Kreise sind) zu bestimmen, müssen also Integrale der Form $\int \frac{1-k^2t^2}{u}dt$ berechnet werden, wobei $C_g\colon u^2=g(t)$ eine quartische Kurve ist, welche für $0<\beta<\alpha$ in eine cubische Kurve $C_f\colon y^2=f(x)$ in WNF transformiert werden kann.

Beweis:

1. Wir parametrisieren die Ellipse

$$x(\theta) = \alpha \sin \theta, \quad y(\theta) = \beta \cos \theta,$$

erhalten also $\dot{x}(\theta) = \alpha \cos \theta$, $\dot{y}(\theta) = -\beta \sin \theta$ und

$$\dot{x}(\theta)^{2} + \dot{y}(\theta)^{2} = \alpha^{2} \cos^{2} \theta + \beta^{2} \sin^{2} \theta = \alpha^{2} - (\alpha^{2} - \beta^{2}) \sin^{2} \theta = \alpha^{2} (1 - k^{2} \sin^{2} \theta),$$

für $k = \sqrt{1 - \beta^2/\alpha^2}$. Das Integral für den Umfang ist also

$$\int_0^{2\pi} \sqrt{\dot{x}(\theta)^2 + \dot{y}(\theta)^2} \, d\theta = 4\alpha \int_0^{\pi/2} \sqrt{1 - k^2 \sin^2 \theta} \, d\theta,$$

da \sin^2 zum einen π -periodisch ist und da zum andern $\sin^2(\pi/2-x)=\sin^2(x)$ für alle x im Definitionsbereich gilt.

2. Substituieren wir $t = \sin \theta$ bzw. $\theta = \arcsin t$, so erhalten wir die erste Gleichheit, da $\arcsin' t = \frac{1}{\sqrt{1-t^2}}$. Für die zweite Gleichheit erweitern wir mit $\sqrt{1-k^2t^2}$. Da $k \neq 1$ gilt, sind auch – wie gewünscht – alle Nullstellen des Nenners paarweise.