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GL and other systems of
propositional modal logic

We are going to investigate a system of propositional modal logic,
which we call ‘GL’, for Godel and Léb.! GL is also sometimes
called provability logic, but the term is also used to mean modal
logic, as applied to the study of provability. By studying GL, we
can learn new and interesting facts about provability and consistency,
concepts studied by Gddel in “On formally undecidable propositions
of Principia Mathematica and related systems I”, and about the
phenomenon of self-reference.

Like the systems T (sometimes called ‘M’), S4, B, and S5, which
are four of the best-known systems of modal logic, GL is a normal
system of propositional modal logic. That is to say, the theorems
of GL contain all tautologies of the propositional calculus (includ-
ing, of course, those that contain the special symbols of modal
logic); contain all distribution axioms, i.e., all sentences of the form
0(A - B)— (0 A — OB), and are closed under the rules of modus
ponens, substitution, and necessitation, according to which (04 is
a theorem provided that A is. Nor does GL differ from those other
systems in the syntax of its sentences: exactly the same sequences
of symbols count as well-formed sentences in all five systems.

GL differs greatly from T, S4, B, and S5, however, with respect

to basic questions of theoremhood. All sentences (0 A — A)—
UJA are axioms of GL. In particular, then, (0 p— p)— Op and
LU(O(p A=p)>(p A—p))— O(p A—p) are axioms of GL. The
.2:2 axioms of GL are the tautologies and distribution axioms;
its rules of inference are, like those of the other systems, just modus
ponens and necessitation,
. It follows that either GL is inconsistent or some sentence (.4 — A
1s not a theorem of GL or some sentence (J((JA— 4) is not a
theorem of GL. Forif 1(0 4 » A)— 0 4, (0 A > A),and 04— A4
are always theorems of G, then for any sentence A whatsoever, e.g.
(p A —1p), two applications of modus ponens show A to be a theorem
of GL, and GL is inconsistent.
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It will turn out that GL is perfectly consistent; we shall see quite
soon that neither [ p — p nor its substitution instance Cl(p A ~p)—
(p A —p) is a theorem of GL and, later, that O(C p — p) is also not
a theorem.

In order to contrast GL with its better-known relatives, we shall
take a general look at systems of propositional modal logic. Much
of the material in this chapter may be quite familiar, but it will be
important to reverify certain elementary facts in order to establish

- that they hold in the absence of [Jp— p, which we shall be living
without in most of the rest of this book. The material of this chapter
will be of a purely syntactic or “proof-theoretical” character. We
take up the semantics of modal logic in Chapter 4.

We begin our general look at modal logic by defining the notion
of a sentence of propositional modal logic, or “modal sentence” or
“sentence” for short.

Modal sentences. Fix a countably infinite sequence of distinct
objects, of which the first five are 1, —, 3, (, and ) and the others
are the sentence letters; ‘p’, ‘¢’, ... will be used as variables over
sentence letters. Modal sentences will be certain finite sequences of
these objects. We shall use ‘A’, ‘B’,... as variables over modal
sentences. Here is the inductive definition of modal sentence:

(1) 1 is a modal sentence;

(2) each sentence letter is a modal sentence;

(3) if A and B are modal sentences, so is (4 — B); and
(4) if A is a modal sentence, so is [J(A).

[We shall very often write: (4 - B) and: [J(A4) as: A— B and: (JA.]

Sentences that do not contain sentence letters are letterless. For
example, L, (01, and O1 — L are letterless sentences.

Since a handy, perfectly general, and non-arbitrary way to say
that a system is consistent is simply to say that L is not one of its
theorems, taking the 0-ary propositional connective L to be one
of our primitive symbols provides a direct way to represent in the
notation of modal logic many interesting propositions expressible
in the language of arithmetic concerning consistency and provability.
Thus, e.g., the letterless sentence — [J L will turn out to represent
the proposition that arithmetic is consistent; 0— O L, the proposi-
tion that the consistency of arithmetic is provable in arithmetic;
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and "0 L->-0-01, the second incompleteness theorem of
Godel.

Of course, with the aid of 1 and —, all connectives of ordinary
propositional logic are definable: —p may be defined as (p— 1),
and as is well known, all propositional connectives are definable
from = and —.

A (and), v (or), and « (iff) are defined in any one of the usual
ways. The O-ary propositional connective T has the definition
L —1. OAis defined as ~ [0 A4, ie., as 04— L)—- 1.

The inductive definition of subsentence of A runs: A4 is a subsentence
of A; if B— C is a subsentence of A4, so is B and so is C; and if OB
is a subsentence of A, so is B. A sentence letter p occurs, or is
contained, in a sentence A if it is a subsentence of A.

We shall take a system of propositional modal logic to be a set of
sentences, the axioms of the system, together with a set of relations
on the set of sentences, called the rules of inference of the system.
As usual, a proof in a system is a finite sequence of sentences, each
of which is either an axiom of the system or deducible from earlier
sentences in the sequence by one of the rules of inference of the
system. (B is said to be deducible from A,,..., A4, by the rule of
inference Rif (A4,,...,A4,,B)isin R.) A proof A, B,...,Z is a proof
of Z, and a sentence is called a theorem of, or provable in, the
system if there is a proof of it in the system. We write: LF A4 to
mean that 4 is a theorem of the system L.

A set of sentences is said to be closed under a rule of inference
if it contains all sentences deducible by the rule from members of
the set.

Modus ponens is the relation containing all triples {((4 — B), 4, B).

Necessitation is the relation containing all pairs <4, 0 A4).

Let F be a sentence. The result (F,(4)) - F,(4) for short, or even
F(A), if the identity of p is clear from context — of substituting 4
for p in F may be inductively defined as follows:

IIF = p, then F,(A) is 4;

if F is a sentence letter g # p, then F,(4) is g;
if F= 1, then F,(A) is .L;

(F - G),(4) = (F (4) = G (A)); and

DI(F)(4) = O(F (A)).
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Thus F,(A) is the result of substituting an occurrence of A for
each occurrence of p in F.

A sentence F,(A) is called a substitution instance of F.

Substitution is the relation containing all pairs (F, F,(4)).

Simultaneous substitution. Letp,,...,p, be a list of distinct sentence
letters, F, A,,..., A, a list of sentences. We define the simultaneous
substitution F,, ., (4,,...,4,) analogously:

If F=p;(1<i<n),then F, ., (A4,...,4,)is A;

if Fis a sentence letter g # py,...,p, then F . (Ay,...,A,)isg;
the other cases are as in the previous definition.

Note that F,(A4),(B) need not be identical with F, (4, B). For
example, let F=(pAgq), A=(pvgq), B=(p—q). Then F,(4)=
((pv q) A q),and F (A)y(B)=((p v (p—q)) A(p—q)). But F, (4, B)=
((p v g) A (p— 9))- However, a set of sentences that is closed under
(ordinary) substitution is closed under simultaneous substitution.
Forletq,,...,q, bealist of distinct new sentence letters, i.e., sentence
letters none of which is identical with any of p,,...,p, and that
occur nowherein F, 4,,...,A,. Then F (A4,...,A,)is identical
with

yeeesDn

ﬁt—A&mvaAQNv...haAﬁavf A\& ~vﬁ~A\ANv:.n=A~A:v

any so any set containing F and closed under substitution will
contain WEAvau %JV_AQ;N»AQNV“ (RN and mu_.....H:A\AT seey \m:v

A distribution axiom is a sentence of the form

(O0(4 - B)—(OA4 - 0IB)), ie, a sentence that is
(O(A - B)—> (O A - JB)), for some sentences A, B.

A system is called normal if the set of its theorems contains all
tautologies and all distribution axioms and is closed under modus
ponens, necessitation, and substitution. (According to Kripke’s
original definition,? the axioms of a normal system had also to
include all sentences (J A — A. The definition we have given, which
does not impose this further requirement, is now the standard one,
however.)

We now present seven systems of modal logic. In each system, all
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tautologies and all distribution axioms are axioms and the rules of
inference are just modus ponens and necessitation.

The system K, which is named after Kripke, has no other axioms.

The other axioms of the system K4 are the sentences (0 4 — [ 3 A4.

The other axioms of the system T are the sentences {14 — A.

The other axioms of the system S4 are the sentences (J 4 - 4 and
OA-0O0A.

The other axioms of the system B are the sentences [14 — A and
A-00A43

The other axioms of the system S5 are the sentences (J 4 — A4 and
CA-DOCA.

The other axioms of the system GL are the sentences (0 A4 — 4)—
OA.

A system L’ extends a system L if every theorem of L is a theorem
of L'. If we write ‘2’ and ‘<’ to mean “extends” and “is extended
by”, then it is evident that we E.ZQ

GL

U

K<=K4

n i
S52T<S4

In

B

By the end of the chapter we shall have shown that in fact:

KcK4<=GL
n 1IN
T<S4
n n
B<SS

But our first task will be to verify that these systems are normal.
To see that they are, it is necessary only to verify that any substitution
instance of a theorem is itself a theorem. Thus suppose that F!,..., F"
is a proof in one of the systems — call it L. We want to see that
F (A),..., F(A) is also a proof in L. But it is clear that it is a proof,
since if F is an axiom of L, so is its substitution instance Fi(A),
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and if F' is immediately deducible from F’ and F* by modus ponens
or from F/ by necessitation, then the same goes for Fi(A), F}(4),
and F%(A), by the definitions of (F — G),(4) and L(F )o(A). Thus if
F" has a proof in L, so does its substitution instance Fj(4).
Normal systems are also closed under truth-functional con-
sequence, for if B follows truth-functionally from the theorems
Ay,...,A, of a normal system, then the tautology
Ay - (- —(4,~ B)---)is also a theorem of the system, and therefore
so is B, which can be inferred from these theorems by n applications
of modus ponens.
Until further notice, assume that L is a normal system.

Theorem 1. Suppose LA — B. Then L-0A - [1B.

Proof. Applying necessitation gives us that L+ [1(4— B). Since
L+0(A4 - B)-»(0JA—- OB),L- 04— OB, by modus ponens. -

Theorem 2. Suppose LA« B. Then L0 A« OB,

Proof. By truth-functional logic, LA —B and L-B—A4. By
Theorem 1, LA —- OB and L+B— [JA. The conclusion
follows truth-functionally from these. —

Theorem 3. L+ 0(4 A By(OA A OB).

Proof. We have L(4 A B)> A and L+ (4 A B)— B, whence by
Theorem 1,
(1) LO(A A B)-» 04 and
(2) LFO(A A By—»0OB.
We also have L4 —(B— (4 A B)), whence by Theorem 1,
(3) LHFOA—-O(B—(A A B)), and
(4) LFO(B—(A4 A B))=(0OB— 0O(4 A B)) (distribution).
The theorem follows truth-functionally from (1),(2),(3),and (4). -

Theorem 4. L-1(A; A - A A,)(CA; A - ATA,).

Proof. The theorem holds if n=0, for the empty conjunction is
identified with T, and L0 T. The theorem is trivial if n=1 and
has just been proved if n=2. If n> 2, then

LEFOA, AA; A AA)eOA A (AyA A A4Y))

—oOA, AOAA - AAY
(04, A04,---A0A4,)
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The first of these equivalences holds by Theorem 2, the second by
Theorem 3, and the third by the induction hypothesis. —

We write: A< B, C, etc. to mean: (4~ B) A (B« (), etc.

Theorem S. Suppose LA, A --- A A,— B. Then
LFOA, A+ A0OA,—»OB.

Proof. By the supposition and Theorem 1, L [3(A4, A -+ A 4,)—
(O B. The conclusion then follows by Theorem 4.

Theorem 6. Suppose LA —B. Then L0 A4A— OB.

Proof. Truth-functionally, we have

L+—B——A4, whence

L+0O-B— -4 by Theorem 1, and then truth-functionally
LF-0-A4->-0-B,ie, LFCA-CB, -

Theorem 7. Suppose Li~-A<— B, Then LA« OB,

Proof. The theorem follows from Theorem 6 via truth-functional
logic and definitions. —

Theorem 8. LA A OB (A4 A B).

Proof. By the definition of <, it is enough to show that
LF0O-(4 A B) A O1B- O- 4. But this is clear, since
LFO-(AAB—-0OB-—-4). -

Henceforth we shall refer to the facts stated in Theorems 1-8,
together with obvious consequences of these, as normality.

The first substitution theorem. Suppose L A« B. Then
L+ F,(4)-F ,(B).

Progf. Hz.aco:o: on the complexity of F. If F=p, the sentence
mmmozoa in the conclusion to be a theorem of L is just 4« B; if
MMF Itisgesg,and if F= 1, it is 1L« 1, both theorems of L. If
Eu Amlmv and the conclusion of the theorem holds for G and H,
mcﬂsﬂ.ﬂ :.oEm for F by propositional logic and the definition of
stitution. Finally, if F= 0(G) and L+G (4

Theorem 2, ’ () an o4y Gy(B), then by
H (G () O(G,(B)) e,

L D(G),(A) O(G),(B), ie.,

HF (4)-F,B). -
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Definition. For any modal sentence A, 1A is the sentence
(O A A A).

The definition has a point since (JA— A is not, in general, a
theorem of K, K4, or GL. The notation [ is most useful when one
is considering K4 or one of its extensions, e.g., GL.

Theorem 9. K4 O A UOA, oL A4,
Ki- DA LEBRA

Proof. K40 A - ODA4, and so by normality we have
K4(OOA A OA4)e>OA4, - O(04 A A). That
K4+ A« DA is proved similarly. —

Theorem 10. Suppose L extends K4 and L+ A — B. Then
L-OA—-UOBand LA - 4B.

Proof. We have Li-0 (J 4— OB, whence by Theorem 9, L0 4 —
OB, and then by the definition of [, L-[]4A- [B.

The second substitution theorem. K4+ (A< B)—
(F (A)«F (B)).

Proof. The proof is a formalization in K4 of the first substitution

theorem and proceeds by induction on the complexity of F. If F is

p,q (#p), or L, then the sentence asserted to be a theorem of K4

is the tautology [J(4« B)— (A« B), the tautology [1(A<>B)—

(g q), or the tautology [1(4« B)— (L« 1), respectively. If F =

(G — H) and the theorem holds for G and H, then, truth-functionally

it holds for F. Finally suppose that F = (3(G) and

K4+ (A4 < B)—(G,(A)~G,(B)). Then

K4+ [0 E(A4« B) - [0(G,(4)+> G,(B)), whence

K4+ 0 E(4 < B)—~(0(G,(4))< 0(G,(B))), and then by the defini-
tion of substitution,

K4+ O E(A4 < B)—-(0(G),,(4)«> 0(G),(B)), i.e.,

K4+ 0O (A < B) > (F ,(A)«> F (B)). By Theorem 9,

K4+ (A~ B)—- O (A< B), and we are done. —

Corollary. K4+ [J(A < B) - L(F ,(A)— F ,(B));
K4+ ((A4 e B)— E(F,(A)—F,(B)).

Proof. By the theorem and Theorem 10.

The next theorem is a somewhat surprising result about K4.*
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Theorem 11. K4FOOC O C A« O A.

Proof. We begin by observing that K-O(OGB A OC- OD)
whenever
K+ O(B A C— D), for then K- LO(C A =D ——1B),
KFDOO(C A—D—=B),
K+DO(BC A O=D— 0O~ B), whence
KFO(OBATOC—->OD). Similarlyy, KFO(OBA OC—-»OD)
whenever
K+O(B A C— D).
Since, evidently,
KEO(A A OA— O A), we have
KFOCAAOOGA- O OCA),
KFO@OCAACOOCA- O OO A), and
KFOC0OCAAOCOOCA-O OO O M) But
K4 O OO O A4— O A4, whence
K4 DO(C © OO A—- O A4), and so
KaFOoOoAaAaOoO0G 4> 4)and
KO0 O0AA OO0 OCA- 0O A. But
K4-O0oOCA-0D0C 0O A Thus
KaFOOOCA- OO A
Conversely,
KFOCAAOOOCA— O(AAODA), and so
KFOCAADOQOOA- OO A, whence
KFO(KAAOOCA)-»-OOCDOOCA. But
K4-OOCA-O0OOCA4,
K4FOCA-0O00AAOOOCOA4, and so
K400 A-0O(C A A OO 4). Thus
K4iFOoA-00004. 4

We emphasize that no use of Op—»p has been made thus far;
the two substitution theorems and their corollary are results about
K4 and hence about all extensions of K4.

Theorem 12. THFA - OA; THFOA- OA.

Proof. T [0~ A—— A; contraposing, we obtain TH A4 — < A. Since
THOA-4, TFOA- OA4also.

Theorem 13. S4F- O O 4 - O A.
Proof. By contraposition, from S40-4— O 0-4. —
Theorem 14. S4- DA TO04; CA-=O O A.
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Theorem 15. S4+-0p->0<C Op—-<CUp
l !
O0p -<00p

!

p————p

A modality is a sequence of (s and —s. It follows from Theorems 11,
14, and 15 that there are at most 14 inequivalent modalities ¢ in
S4, ie., at most 14 inequivalent sentences of the form op, namely
the 7 mentioned in Theorem 15 and their negations. The complete-
ness theorem for S4 given in Chapter 5 will enable us to see that
these 14 modalities are in fact inequivalent. The completeness
theorems for B and GL also found there can be used to show that
no two of the modalities [empty], O, 00,... are equivalent in
either of those logics.

We now examine S5. We first show that S5 has an alternative
axiomatization. Let S5* be the system of modal logic whose axioms
are all the sentences that are either axioms of S4 or B and whose
rules of inference are modus ponens and necessitation.

Theorem 16. SS* A iff S5FA.

Proof. It is enough to show that for every 4, S5HFOA-0O0OA,

S5-A—- 004, and S5*FCA-0OCA.

S5+ A — OO A: Since S5 extends T,

SSHOA - O OA4; also

S5+ & A — OO 04 (because S5+ O B— 0 <O B), and therefore

S50A4— 0O < OA. But also

S5O A— A (because S5HO1A—-OOA), whence by
normality

S5O0 04— O0OA. Thus

Ss5FOA-DODOA.

S5+ A — O < A: This is immediate from

S5A4— © A4 and S5 O A— OO A. Finally,

S5*% & A — [0 <O A: For since

S5% O O A — O A (S5* extends S4), by normality,

S5% <O & A— O A. But also

S5% O A—- 0O O A4 (S5* extends B), and so we have what we
want. —

Theorem 17. S5H(CC A CAHA(OCAOA)A
(O0A=OA) A (COA=DOA)
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According to Theorem 17, if ¢ is a string containing a positive
number of Os and ©s ending in O or in ¢ but not -, then op
is omc?m_.oi to Op or to Op, respectively. Thus there are at most
six inequivalent modalities in S5: O, [empty], <, and their nega-
tions. The completeness theorem for S5 given in Chapter 5 will
enable us to see that no two of these six modalities are in fact
equivalent in S5.

We shall now show that [p— p is not a theorem of GL and that
GL is consistent: Define 4* by L*= L, p*=p (for all sentence
letters p), (4 — B)* =(A* - B*), and (J(A4)*= T. (Then A* is the
result of taking OJ to be a verum operator in A.) If 4 is a tautology
so is A*; if A is a distribution axiom, then A*is T —»(T - T); mza,
if A is a sentence J(OOB—B)—» B, then A*=T > T, Zoﬁmoén
if A* and (4 — B)* are tautologies, so is B*, and if 4* is a tautology
then so is O(A)*= T. Thus if A is a theorem of GL, A* is m,
Sﬁo_om.w. But (p— p)* = (T — p), which is not a tautology. Thus
d p—pis not a theorem of GL, hence not one of K4 or K.

Similarly, (J(Op—p)— Op is not a theorem of S5, hence not
one of B, S4, T, K4, or K. Define L*, p*, and (4 — B)* as before
but now let [J(A4)* = A*. (A* is now the result of taking [J to cm
decoration in A.)) Again if A is a theorem of S5, A* is a tautology.
But (O(Cp— p)— O p)* is now ((p— p) - p), which is not a tautology.
Therefore (C(C p— p)— O p) is not a theorem of S5.

GL and T are thus consistent normal systems of modal logic
but there is no consistent normal system that extends both of them. ,

>. remarkable fact about GL, the proof of which was independently
@_mooﬁnoa by de Jongh, Kripke, and Sambin, is that Op— O Op
Is a theorem of GL and thus that for all sentences A, 04— 004
1s a theorem of GL. (“Had” Op-— O p not been a theorem of
GL, we should have been interested in the smallest normal extension
of GL in which it was one!) In practice, sentences (14— (10 4 are
treated rather as if they were axioms of GL.

Theorem 18. GL+ A - O 0OA.

mu.oo\. Truth-functionally, we have
OWW; —((D0OA4 A OA4)—(0A4 A A)), whence by normality,
oL A—-(O(OA A A)—> (0O A4 A A)). By normality again,
FOA- O(O(0OA4 A A)>(0A A A)). But where B= (014 A A),
O(0OB— B)— [1B is an axiom of GL, i.e.,
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GLFDO([J(OA A A)—(0OA4 A A))— O(0 A A A). Truth-functionally,
GL+OA-C(OA A A). But by normality,

GLFO(0OA A A)» OO0 A. From these last two, we have
GLFOA-0O0OA4. -+

It follows that GL extends K4 it is worth mentioning that the
substitution theorems therefore hold when ‘K4’ is replaced by ‘GL’.

Theorem 19. GL+ (04— A)« 04, «0O(0OA A A4).
Proof. Immediate by normality and Theorem 18.

Theorem 20. If GLH(OA; AA A---ADOA,AA,ATIB)>B,
then GLH(OA; A .- A 0OA4,)-»0B.

Proof. Suppose that

GLH(OA, A A A AOA, A A, A0~ B. Then

GLF0OA4,; A A, A -+ A T A, A 4,~(0B - B). By normality,

GLFO(O A4, AA) A - A D(OA4, A A,)— O(0B - B). By both
equivalences of Theorem 19,

GLH(OA, A A04,)-»0B. A

Theorem 21. GLFO 1L <O O p.

Proof. GLI L — < p. Thus by normality,
GLF O L - 0O ©p. Conversely,

GL+ Op- ¢ T, and by the definition of O,
GLFO T -»(0OL- 1) Thus

GL+ Op—(0O.L - 1), and by normality,
GL+-OOp-»0O(0OL— 1) Since
GL+3(OL - 1)-» 01, we also have that
GL-O¢p-01L. H

Theorem 22, GLFO & L -0 L.
Proof. Substitute L for p in Theorem 21 and weaken. —

In Chapter 3 we shall see how Theorem 21 can be regarded as
telling us that (PA) asserts of each sentence S that PA is inconsistent
if and only if it is provable (in PA) that S is consistent (with PA).
Theorem 22, we shall also see there, will similarly tell us that the
second incompleteness theorem is a theorem of PA.

Our proof that Op— p is not a theorem of GL cannot be used
to show that p— 1 Op and O p— 0O O p are not theorems of GL.
In Chapter 3 we shall see that 0L is not a theorem of GL. It
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follows from Theorem 21 that T OO T and ¢ T—-OO T are
both equivalent to 1< T. Thus neither is provable in GL, and
therefore p— (0 O p and O p— 0O O p are also unprovable in GL.
The proof of the next theorem formalizes the argument used in
the proof of Lob’s theorem. As we shall see in Chapter 3, the theorem
may be used in a variant proof of a basic fact about GL: every
theorem of GL is provable in PA under every translation.

Theorem 23. K4+ O(g—(Og—p))—(C(dp—-p)y— Op).

Proof.

(1) K4-O(ge(Hg—p))—»(0Og— 0O(Og— p)), since K4 is
normal.

(2) K4 0O(Og—p)—(0O00g—~ Op) - a distribution axiom.

(3) K4-DOg—-0O0Og.

(4) K4+ 0O(ge~(Cgq-p))—(Dg- Op) -~ (4) follows truth-
functionally from (1), (2), and (3).

(5) K4-OO(@ge(Og—-p)—»O0(0Oqg-0Op)—(5) follows
from (4) by normality.

(6) K4 O(ge—(0q- p)—» OO(@—(0g—p)) - (6)is of the
form OA-COOA.

(7) K4+ O(0p—p)»(O(@g-0p)—» O(g-p), by
normality.

8) .HAAT (ge(Ogq - p))—(O(Cg— p)— Og), by normal-
ity.

Theorem 23 then follows truth-functionally from (6), (5), (7), (8),
and (4).

Theorem 24

(@) GLFO(pe—-0p)e0(pe=—01),
(b) GLFO(pe0Op)>O(pe T),

(¢) GLFO(peO~p)e>O(pe> I L), and
(d) GL-O(pe—~0O-p)eO(pe L),

Proof. (a) K4+ O(p«— [ p)— O(p—— Op). Since
K4-0Op-o— Up)-00(p—»—-0Op),
Ké4+O(pe—0Op)—» O(Qp - O~ O p) by normality. But
K4-0Op—-O0Op and

K4-0O0OpA O-Op-OL. Thus

K4-DO(pes Op)— (Op— 0O1). Since
WATDFI.VDP
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K4+ O(pes—0Op)—»O(0p—01), and so

K4+ DO(pe—-0Op)» O Ope-01) But

K4+ O(pe-0p) A O=0OpeoD0O1)-»O(pe—0L). Thus
K4+ O(pe—0Op)— O(pe— 0 L), whence

GLFO(pe—0Op)— O(pe— 0 L)

Conversely, by Theorem 21 (with L for p),
GL+O(pe—-01)-»0O0(pe—0p), and so

GLF O(p— 0 1)- O(Op+~ O~ Op). By Theorem 21 (with—p

for p)

GL+O-0Ope 0O L. Thus
GL+O(pe-0O1)-»0O(Op—~01)and
"GL+O(pe»—-0L)—» O(0Le0Op). Since

GLFO(p~»~ 0O L) A OOLen0Op)—- O(pesUp),
GL+O(pe—0O1)-»0O(pe>—-0Op).

(b) Since GL+T 0T,
GL+O(p~0Op)»O(Op-p),»Op,»O(peT), » Up,

~(0p A OOp),— O(p A Op), » O(pe>0p).

Substituting -1 p for p in (a) yields

GL+ O pe—0Ap)e O@FHpe—01). Simplifying, we obtain
GLFO(pes O-p)O(pe0T1), ie, (o).

We can obtain (d) by similarly substituting —p for p in (b). -

As we shall see, Theorem 24 will tell us that it is a theorem of
PA that a sentence S is equivalent (in PA) to the assertion that S
is unprovable/provable/disprovable/consistent if and only if S is
respectively equivalent to the assertion that PA is consistent/that
0=0/that PA is inconsistent/that 0 = 1. Many other interesting
facts about PA can be learned from a study of GL.

2

Peano arithmetic

Peano arithmetic (PA, or arithmetic, for short) is classical first-order
arithmetic with induction. The aim of this chapter is to define the
concepts mentioned in, and describe the proofs of, five important
theorems about Bew(x), the standard “provability” or “theorem-
hood” predicate of PA:

@) If - S, then -Bew("S7),
(ii)) FBew("(S— T))—>(Bew("S)—>Bew("TY),
(iii) FBew("S7) — Bew("Bew("ST)7),
(iv) Bew("S7) is a I sentence, and
(v) if S is a X sentence, then S — Bew("S7)

(for all sentences S, T of Peano arithmetic).

‘=’ is, as usual, the sign for theoremhood; in this chapter we write
‘8’ to mean that S is a theorem of PA. "S7 is the numeral in PA
for the Godel number of sentence S, that is, if n is the Godel number
of S, then "S™ is 0 preceded by n occurrences of the successor sign
s. .w@i (T"S7) is therefore the result of substituting ™S™ for the variable
x in Bew(x), and (iii) immediately follows from (iv) and (v). Bew("S7)
may be regarded as a sentence asserting that S is a theorem of PA.
Z sentences (often called X, sentences) are, roughly speaking, sentences
constructed from atomic formulas and negations of atomic formulas
by means of conjunction, disjunction, existential quantification, and
_uo::aoa universal quantification (“for all x less than y”), but not
”a_mm:oz or universal quantification. A precise definition is given

elow.
Notice the distinction between ‘Bew(x) and ‘+’. ‘Bew(x)’ denotes
a certain formula of the language of PA and thus Bew(x) is that
formula; it is a formula that is true of (the Gddel numbers of) those
formulas of PA that are provable in PA. ‘', on the other hand, is
a(pre-posed) predicate of our language (logicians’ English, a mixture
of English, mathematical terminology, and symbolism) and has the



