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Semantics for GL and other modal logics

The semantical treatment of modal logic that we now present mm.aca
to Kripke and was inspired by a well-known fantasy often ascribed
to Leibniz, according to which we inhabit a place called the actual
world, which is one of a number of possible worlds. (It is a ?n.:an
part of the fantasy, which we can ignore, that because of 8:8.5 of
its excellences God selected the possible world that we inhabit to
be the one that he would make actual. Lucky us)) Each of our
statements is true or false in — we shall say at — various possible
worlds. A statement is true at a world if it correctly describes that
world and false if it does not. We sometimes call a particular state-
ment true or false, tout court, but when we do, we are to be
understood as speaking about the actual world and saying that the
statement is true or false at it. Some of the statements we make are
true at all possible worlds, including of course the actual world;
these are the so-called necessary statements. A statement to the o@.o&
that another is necessary will thus be true if the other statement 13
true at all possible worlds. It follows that if a statement is necessary,
then it is true. Some statements are true at at least one possible
world; these are the possible statements. Since what is true at the
actual world is true at at least one possible world, whatever is true
is possible. A statement is necessary if and only if its negation is
not possible, for the negation of a statement will be true me?.mo._mo_w
those worlds at which the statement is false. And if a conditional
and its antecedent are both necessary, then the consequent of the
conditional is necessary too. : o

" There is a question, raised by Kripke, to which this description
of Leibniz’s system of possible worlds does not supply the answer.
We are said to inhabit the actual world. Are the othér possible
worlds of whose existence we have been apprised absolutely all of
the other worlds that there really are, or are they oi.w ﬁromn Emﬁ
are possible relative to the actual world? The description leaves it
open whether or not, if we had inhabited some other world than
the actual world, there might have been worlds other than those we
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now acknowledge that were possible relative to that other possible
world; in brief, our description does not answer the question
whether or not exactly the same worlds are possible relative to each
possible world as are possible relative to the actual world.

A possible world is called accessible from another if it is possible
relative to that other. If we do not assume that the worlds accessible
from the actual world are precisely the worlds accessible from each
world — even though it may appear self-evident that they are — then
questions arise about the nature of the accessibility relation. For
example, is the relation transitive? If so, then all worlds accessible
from worlds that are accessible from the actual world will themselves
be worlds that are accessible from the actual world. It follows that
if a statement A is necessary, then 4 will be true at all worlds x
accessible from the actual world; and therefore 4 will be true at
every world y that is accessible from some world x accessible from
the actual world (for all such worlds y are accessible from the actual
world if accessibility is transitive); and therefore the statement that

- A is necessary will be true at every world x accessible from the actual

world; and therefore the statement that A is necessary will itself be
necessary. Thus, on the assumption that the accessibility relation
is transitive, if a statement A is necessary, then the statement that
A is necessary will also be necessary. In like manner other determina-
tions of the character of the accessibility relation can guarantee
the correctness of other modal principles. (The system of seman-
tics for GL that we shall give in this chapter will differ from
Leibniz’s system in that no world will ever be accessible from
itself!) ‘

Set-theoretical analogues of these metaphysical notions were
defined by Kripke in providing what has become the standard sort
of model-theoretical semantics for the most common systems of
propositional modal logic.*

Definitions, most of them familiar:

R is a'relation on W if for all w,x, if wRx, then w, xeW.

A relation R on W is reflexive on W if for all w in W, wRw.

R is irreflexive if for no w, wRw.

R is antisymmetric if for all w,x, if wRx and xRw, then w = x.

R is transitive if for all w,x, y, if wRx and xRy, then wRy.

R is symmetric if for all w, x, if wRx, then xRw.

R is euclidean if for all w,x,y, if wRx and wRy, then xRy. (Thus
also, if wRx and wRy, then yRx.)
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R is an equivalence relation on W if R is reflexive on W, symmetric,
and transitive.

A symmetric relation is transitive if and only if it is euclidean,
and a reflexive relation on W that is euclidean is symmetric. Thus
arelation is an equivalence relation on W if and only if it is euclidean
and reflexive on W,

A frame is an ordered pair { W, R) consisting of a nonempty set
W and a binary relation R on. W. {(W,R) is finite iff W is. The
elements of W are called “possible worlds” or sometimes just
“worlds”. W is called the domain of (W, R and R the accessibility
relation. (It is occasionally useful to read “R” as “sees”. Thus a
world sees those worlds accessible from it.)

A frame ( W, R) is said to have some property of binary relations,
e.g., :m:mESQ. iff R has that property. (( W, R is called reflexive
if R is reflexive on W.)

A valuation® V on a set W is a relation between BoBcanm of S\
and sentence letters, i.e., a set of ordered pairs of members of W
and sentence letters. (It is sometimes convenient to read “V” as
“verifies”.) .

A model is a triple (W, R,V ), where (W,R) is a frame and V
is a valuation on W. A model (W, R, V) is said to be based on the
frame { W,R). .

A model is finite, reflexive, transitive, etc., iff the frame on which
it is based is finite, reflexive, transitive, etc.

For each modal sentence 4, each model M,=(W,R, V), and
each world w in W, we define the relation

M,wEA

as follows:

if A= p (a sentence letter), then M,wF A iff wVp;

if A= 1, then not: M,wk A4;

if A=(B— C), then M,wE A iff either - M, wk B or M,wk C; and
if A= OB, then M,wE A iff for all x such that wRx, M, xF B.

Some evident consequences of this definition: if 4 =— B, then
M,wk A iff it is not the case that M,wkB; if A=(B A C), then
M,wEA iff M,wEB and M,wkC; if A=(Bv C), then M,wk A4 iff
M,wE B or M, wk C, etc. Moreover, if A = B, then M, wk A iff for
some x such that wRx, M, xEB.
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It is worth mentioning that M, wk [ 4 iff for all x mzor that either

wx orw=x, M,xFA.

" A sentence A is said to be true at a world w in a model M iff
M,wE A. A sentence A is said to be valid in a model M, = { W,R,V >,
iff for all win W, A is true at w in M. And A4 is said to be valid in
a frame {W,R iff A is valid in all models based on { W,R>.

Similarly, a sentence is satisfiable in a model M, = {W,R, V), iff
for some win W, A is true at win M. And A4 is said to be satisfiable
in a frame (W,R) iff A is satisfiable in some model based on
{W,R>.

Important notational conventions. Unless there is some clear indica-
tion to the contrary, when ‘M’ is used to denote a model, it will
denote the model also denoted: {( W, R, V). Moreover, where context
makes it clear which model is in question, we shall feel free to write,
eg, ‘wkA, instead of ‘M,wk A’ or ‘CW,R,P),wkA’. When we do
so, ‘w’ is of course understood to denote a member of the set W of
worlds of the model M in question.

Suppose that M is a model and we W. Then every tautology is true at
w. And if 4 and (4 — B) are true at w, so is B. Moreover, every distri-
bution axiom (A4 — B)— (0 A — [OB) is true at w as well: for sup-
pose that wk [(0(A — B)and wk (] A. Then if wRx, both x k(4 — B) and
xF A, whence xF B. Thus if wRx, xk B;wk O B. So if wk [](4 — B)and
wk [ A, then wk O B; it follows that wk [0(4 - B)— ([0 4 - ] B).

Thus all tautologies and all distribution axioms are true at every
‘world in every model and the set of sentences true at a world in a
model is closed under modus ponens.

. Furthermore, if 4 is valid in M, so is (J 4: for assume A valid
In M, i.e., true at every world in M. Let w be an arbitrary member of
W. Then for all x such that wRx, xF A4; therefore, wk _U A. Since w
was arbitrary, (JA is valid in M.

Thus all tautologies and all distribution axioms are valid in every
model and the set of sentences valid in a model is closed under
both modus ponens and necessitation.

Thus all theorems of K are valid in all models and hence in all
frames. .

It is not in general true that if a sentence is valid in a model, then
€very substitution instance is valid in that model: let (W,R, V) be
a model in which wVp and not: wVq for every w in W. Then p is
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valid in { W, R, V), but g, which is a substitution instance of p, is
not. What is true is that if a sentence is valid in a frame, then every
substitution instance of it is also true in that frame.

Theorem 1. Suppose F is valid in the frame {W,R). Then
every substitution instance F (A) of F is also validin{ W,R>.

Proof. Let V be an arbitrary valuation on W. Let M = {W,R,V>.
Define the valuation V* on W by: wV*p iff M,wE 4, and wV*q iff
wV g for every sentence letter g other than p. Let M *=(W,R,V*).
It follows by an easy induction on the complexity of subsentences
G of F that M*,wkG iff M,wEG,(A). So M*,wEF iff M,wEF ,(A).
Since F is valid in (W,R)>, M*,wkF. Thus M, wk F (A). Since w
and V were arbitrary, F,(4) is valid in {W,R). -

Let R be a binary relation on a set W. For each natural number i,
define R’ as follows: R? is the identity relation on W; R** ! = {{w, y )
Ix(wRix A xRy)}. Thus R! = R and wR"y iff 3x,---3x,(w = XoR...
Rx,=)). |

Let 4 be a modal sentence. Define 0’4 as follows: [1°4 = 4;
Oitt4 = 0O0O'A. Define ©‘A similarly.

Theorem 2. wk (1A iff for all y, if wR'y, yE A, wk O'A iff for
some y, wR'y and yEA.

Proof . Induction on i. The basis step is trivial. As for the induction
step, wk Ot 1A iff wk O O'4; iff for some x, wRx and xF Oi4; iff
by the induction hypothesis, for some x, wRx and for some y, xR’y
and yF A; iff for some y,wR'*'y and yk A. The result for U holds

by de Morgan. -

Here is a theorem about what the truth-value of a sentence at
a world depends upon. Let A4 be a modal sentence, M a model, and
weW. :
Define d(A) as follows: d(p) = d(L)=0; d(A—» B) = max(d(A), d(B))
and d(0 A) = d(A) + 1. Thus d(4) is the maximum number of nested
occurrences of [ in A. d(A) is called the (modal) degree of A.

Theorem 3 (the “continuity” theorem). Let M and N =
{(X,S,U) be models, weW. Let P be a set of sentence letters.
Suppose that d(A)=n, all sentence letters that occur in A
are in P,X 2 {x:3i<n wRx}, §={<{x,p>1x,yeX A xRy},
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and xUp iff xVp for all xeX and all sentence letters in P,
Then M,wE A iff N,wk A.

36.0\ . We show that for all subsentences B of A, if for some i,
wR'x and d(B)+i<n (so that i<n and xeX), then M, xEB iff
N, xF B. Since wR%w and d(A) = n, the theorem follows.

The cases in which B= 1. and B is a sentence letter are trivial.
If B=(C— D), then d(C), d(D) < d(B), and the result holds for B if
it holds for C and D.

. Suppose B = JC, wR'x, and d(B) + i < n. Then xeX and d(B) =
d(C) + 1. If xRy, then wR'*'y, d(C) + i+ 1 <n, yeX, and so xSy
and by the induction hypothesis, M, yEC iff N, ykC; since S < x“
xRy iff xSy. But then M, xE B iff for all y such that xRy, M, ykC;
iff for all y such that xSy, M, yEC; iff, by the i.h., for all y such Em:. ,
xSy, N,yeC; iff N,xEB. -

Theorem 4 (the generated submodel theorem). Let M be a
model, weW, X = {x:3iwRx}, S = {{x,y>:x,yeX A xRy},
and xUp iff xVp for all xeX and all sentence letters p. Let
N={X,S5,U). Then M,wEA if N,wkA. (N is called the
submodel of M generated from w.)

Proof. rwﬁ P be Ea set of all sentence letters, and n = d(4). Then
X 2 {x:3i <nwR'x}, and the generated submodel theorem follows
from the continuity theorem. - ’

.E.S following corollary is a useful immediate consequence of the
continuity theorem.

Corollary. Let A be a sentence. Let M and N, = (W,R, U
.@« models, and wV p iff wUp for all w in W and all p contained
in A. Then M,wk A iff N,wk A,

We now want to investigate the conditions under which each of
the modal sentences Op-p,Op-00p,p->0Cp, Op->0Cp,
and O(Op- p)— Op is valid in a frame (W, R).

Theorem 5. (I p— pisvalidin{ W, xv\&1 Risreflexiveon W.

N roof . Suppose (p—p is valid in (W, R). Let w be an arbitrary
ember of W. We want to show that wRw.

| Let V be a valuation on W such that for all x in W, xVp iff wRx.
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If wRx, then xVp and M, xk p; thus M, wk O p. Since M,wE1p—p,
‘M,wEp,wVp, and wRw. o

Conversely, suppose R is reflexive on W. Let V be a valuation
on W, and suppose weW. Then if M,wk O p, for all x such that
wRx, M, xF p; since wRw by reflexivity, M, wk p. Thus if M,wk U p,
then M,wEkp; so M,wEOp—->p. - ,

Theorem 6.- O p— 0O O p is valid in (W,R) iff R is transi-
tive. .
Proof. Suppose Op—O0p is valid in {W,R), wRx and xRy.
Let V be a valuation on W such that for all z in W, zVp iff wRz.
Then wk O p, for if wRz, zVp. So wk {1 O p, whence xF U p, yED,
and wRy. Conversely, suppose R is transitive. Let V' be an arbitrary

valuation. Suppose wk Ol p and wRx. If xRy, then by transitivity,
wRy and yFp. Thus xEOp. SowkOUp. A

Theorem 7. p— O Opisvalidin (W, R) iff Ris symmetric.
Hint for proof. Suppose wRx. Let V besuchthatzVpiffz=w. -

Theorem 8. © p— (3 © pisvalidin (W, R iff Ris euclidean.

Hint for proof. Suppose wRy, wRx. Let V be such that zVp iff

z=y -

Theorem 9 (six soundness theorems)

(a) if K- A, then A is valid in all frames.

(b) if K4 A, then A is valid in all transitive frames.

(c) if TH A, then A is valid in all reflexive frames.

(d) if S4+ A, then A is valid in all reflexive and transitive

frames.

(€) if B A, then A is valid in all reflexive and symmetric
frames.

(f) if S5+ A, then A is valid in all reflexive and euclidean
frames. :

Proof of (d). Suppose that S4A and (W,R) is reflexive and
transitive. We must show A validin ( W, R)>.But Op—pand Up—
O Op are valid in (W,R) by Theorems 5 and 6, and therefore
every sentence 04— A and 0A->004 s valid in (W, R), for
JA - A is a substitution instance of Op—p, asis DA-004
of O p— [ Op. Since all tautologies and all distribution axioms

4 SEMANTICS FOR GL AND OTHER MODAL LOGICS 75

are valid in all models, all axioms of S4 are valid in (W,R>. And
since the sentences valid in ( W, R) are closed under modus ponens
and necessitation, A4 is also valid in (W, R).

The proofs of (a), (b), (c), (¢), and (f) are similar. —

What about GL?

A relation R is called wellfounded if for every nonempty set X,
there is an R-least element of X, that is to say, an element w of X
such that xRw for no x in X.

And a relation R is called converse wellfounded if for every
nonempty set X, there is an R-greatest element of X, an element
w of X such that wRx for no x in X.

If R is converse wellfounded, then R is irreflexive, for if wRw,
then {w} is a nonempty set with no R-greatest element.

And if R is a converse wellfounded relation on W, then to prove
that every member of W has a certain property ¥, it suffices to
deduce that an arbitrary object w has y from the assumption that -
all x such that wRx have . (This technique of proof is called
induction on the converse of R.) To see that the technique works,
assume that for all w, w has ¢ if all x such that wRx have y, and
let X ={weW:w does not have y}. We show that X has no
R-greatest element: suppose weX. Then w does not have i, and
c« our assumption, for some x, wRx and x does not have y. xe W
(since R is a relation on W), and so xeX. Thus X indeed has no
R-greatest element. Since R is converse wellfounded, X' must be
empty, and every w in W has .

Theorem 10. O(O p—p)— Op is valid in {W,R) iff R is
transitive and converse wellfounded.

Proof . Suppose that (3(Tp—p)— Op is valid in (W,R>. Then
all sentences 0(0 4 — A)—- O A are also valid in {W,R), and as
above, all theorems of GL are valid in { W, R ). By Theorem 18 of
Chapter 1, Op-» O Op is valid in (W, R), and so by Theorem 6
{W,R) is transitive. ,

And R is converse wellfounded: for suppose that there is a
Nonempty set X with no R-greatest element. Let weX, and let V
be a valuation on W such that for every aeW, aVp iff a¢ X. We
ﬂ.ﬂm__.mroi that wk O (0 p— p) and w§ O p, contradicting the vali-
dity in (W,R) of O(Op—p)— Op.

Suppose wRx, whence xe W. Assume x} p. Then not: xVp, xeX,
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p. A frame is reflexive, transitive, symmetric, or euclidean if and
only if the first-order sentence Vwwpw, VWV xV y(wpx A xpy = wpz),
<€<«A§nx — xpw), or YwVxVy(wpx A wpy— xpy), respectively, is
true in the frame. For “converse wellfounded” it is otherwise: there
is no first-order sentence that is true in (W,R) iff (W,R) is
converse wellfounded.

and therefore for some ye X, xRy, ye W, not: yVp, y ¥ p, and therefore
x§ Op. Thus xkOp—p and wkO(Op—p).

And since we X, for some xeX, wRx, and xe W. Thus not: xVp,
x¥p, and so wf O p. :

Conversely, suppose that {( W, R is transitive and converse well-
founded and that (W, R, V>, wf O p. Let X = {xe W: wRx A x} p}.
Since w O p, for some z, wRz and z§ p. Thus ze X, X is nonempty,
and by converse wellfoundedness, for some xe X, xRy fornoyin X.
Since xeX, wRx, and x§ p. Suppose xRy. Then y¢ X and since wRy
by transitivity, yFp. Thus xkOp, xfOp—p, and wif O(Cp—p).
So O(Op—-p)—DOpisvalid in (W,R).

; 3.8.\ . Suppose that ¢ is a counterexample. Let agp,o,,... be an
infinite sequence of distinct new constants. Then every finite subset
of {6} U {a;pa; i < j} has a model, and by the compactness theorem,
the entire set has a model (W, R, ay, a,,...). But the binary relation
" R that interprets p is not converse wellfounded (because ayRa,R.. ),
and thus (W, R) is not converse wellfounded either, even though
o is true in (W, R,aq,4a,,...) and hence in (W,R>.

We will need an alternative characterization of the finite transitive
and converse wellfounded relations.

T r.o same argument also shows that there is no first-order sentence

that is true in just those frames that are transitive and converse
wellfounded. ‘

. <.<n know that D (Op-p)— Opis a modal sentence that is valid

in just the transitive converse wellfounded frames®; however, no

modal sentence is valid in exactly those framés that are converse

_wellfounded.

Theorem 11. Suppose that F, = (W,R) is finite and transi-
tive. Then F is irreflexive if and only if F is converse well-
founded.

Proof. We have already observed that if F is converse wellfounded,
. Fisirreflexive. Suppose that F isirreflexive. If x4, ..., x, s a sequence
of elements of W such that x;Rx;, , for all i <n, then x; # x; il i <.
otherwise x; = x, and by transitivity x;Rx;, contra irreflexivity. Now
assume that F is not converse wellfounded. Let X be a nonempty
subset of W such that YweX 3xeX wRx. Then it is clear by induc-
tion that for each positive n, there is a sequence x,,..., X, of elements
of X such that x;Rx;, , for all i < n. Therefore for each n, there are
at least nelements of X < W. Thus W is infinite, contradiction. |

Proof. Suppose that A is a counterexample. Let W be the set of
_ natural numbers and R the successor relation on W, i.c., A.A W, X w,

xeW Aw+1=x}. Then (W, R) is not converse wellfounded, and
so for some valuation ¥ on W, some win W, {W,R, V>, wf A. Let
n=d(A),and let X = {w,w+1,...,w+n}, S={{x,y):x,yeX and
XRy}, and xUp iff xVp for every p contained in 4. By the continuity
theorem, < X,S,U), w§A, But {(X,S) is converse wellfounded,
contradiction. —

Thus a frame is finite transitive and converse wellfounded if and
only if it is finite transitive and irreflexive.
We thus have established the following soundness theorem for GL.

Exercise. True or false: if A is satisfiable in some finite
transitive and irreflexive model and contains at most one
sentence letter, then A is satisfiable in some finite transitive
and irreflexive model in which for all wg, wy, ..., w,, in W,
not: woRw, R...Rwy 4. ’ ’

Theorem 12. If GL A, then A is valid in all transitive and
converse wellfounded frames, and A is also valid in ‘all finite
transitive and irreflexive frames.

We conclude with two remarks on the non-characterizability of
converse wellfounded frames. ‘
_Frames { W, R) are naturally thought of as models interpreting
formal languages that contain a single two-place predicate letter



