Chapter 5 Models of Countable Theories

As in the previous chapter, we require that all formulae are written in Polish notation and that the variables are among v_0, v_1, v_2, \ldots Furthermore, let \mathscr{L} be a countable signature, let T be a consistent \mathscr{L} -theory, and let σ_0 be an \mathscr{L} -sentence which is not provable from T. Finally, let $\overline{\mathsf{T}}$ be the maximally consistent extension of $\mathsf{T} + \neg \sigma_0$ as above.

We shall now construct a model of \overline{T} . For this, we first extend the signature \mathscr{L} by adding some new constant symbols, then we extend the theory \overline{T} , and finally we construct the model.

Extending the Language

A string of symbols is a **term-constant**, if it results from applying FINITELY many times the following rules:

- (C0) Each closed (*i.e.*, variable-free) \mathscr{L} -term is a term-constant.
- (C1) If $\tau_0, \ldots, \tau_{n-1}$ are any term-constants which we have already built and F is an *n*-ary function symbol, then $F\tau_0\cdots\tau_{n-1}$ is a term-constant.
- (C2) For any natural numbers i, n, if $\tau_0, \ldots, \tau_{n-1}$ are any term-constants which we have already built, then $(i, \tau_0, \ldots, \tau_{n-1}, n)$ is a term-constant.

The strings $(i, \tau_0, \ldots, \tau_{n-1}, n)$ which are built with rule (C2) are called **special** constants. Notice that for $n = 0, (i, \tau_0, \ldots, \tau_{n-1}, n)$ becomes (i, 0).

Let \mathcal{L}_c be the signature \mathcal{L} extended with the countably many special constants. In order to write the special constants in a list, we first encode them and then define an ordering on the codes.

First we encode closed \mathscr{L} -terms as above with strings of 0's and 2's. Now, let $c_{i,n}^{\bar{\tau}} \equiv (i, \tau_0, \ldots, \tau_{n-1}, n)$ be a special constant, where the codes of $\tau_0, \ldots, \tau_{n-1}$ are already defined. Then we encode $c_{i,n}^{\bar{\tau}}$ as follows:

5 Models of Countable Theories

The codes of special constants are ordered by their length and lexicographically, where $0 < 1 < \ldots < 8 < 9$.

Finally, let $\Lambda_c = [c_0, c_1, ...]$ be the potentially infinite list of all special constants, ordered with respect to the ordering of their codes.

Extending the Theory

In this section we shall add witnesses for certain existential \mathscr{L}_c -sentences σ_i in the list $\overline{\mathsf{T}} = [\sigma_0, \sigma_1, \ldots, \sigma_i, \ldots]$, where an \mathscr{L}_c -sentence is existential if it is of the form $\exists \nu \varphi$. The witnesses we choose from the list Λ_c of special constants. In order to make sure that we have a witness for each existential \mathscr{L}_c -sentence (and not just for \mathscr{L} -sentences), and also to make sure that the choice of witnesses do not lead to a contradiction, we have to choose the witnesses carefully. For this we introducte the following notion: An \mathscr{L} -sentence $\sigma_i \in \overline{\mathsf{T}}$ is in **special prenex normal form**, denoted sPNF, if σ_i is in PNF and

$$\sigma_i \equiv \mathscr{Y}_0 v_0 \mathscr{Y}_1 v_1 \dots \mathscr{Y}_n v_n \sigma_{i,n}$$

where each \mathbb{F}_m (for $0 \le m \le n$) stands for either " \exists " or " \forall ", $\sigma_{i,n}$ is quantifier free, and each variable v_0, \ldots, v_n appears free in $\sigma_{i,n}$. Notice that by the PRENEX NOR-MAL FORM THEOREM 1.12 and the VARIABLE SUBSTITUTION THEOREM 1.13, for every \mathscr{L} -sentence σ there is an equivalent \mathscr{L} -sentence σ' which is in sPNF.

Let $\sigma_i \in \overline{T}$ and let $c_{i,n}^{\overline{t}} \equiv (i, t_0, \dots, t_{n-1}, n)$ be a special constant. Then we say that $c_{i,n}^{\overline{t}}$ witnesses σ_i if:

- σ_i is in sPNF,
- " $\exists v_n$ " appears in σ_i , and
- for all m < n: if " $\exists v_m$ " appears in σ_i , then $t_m \equiv (i, t_0, \dots, t_{m-1}, m)$.

If an \mathscr{L} -sentence $\sigma_i \in \overline{\mathsf{T}}$ is in sPNF and " $\exists v_n$ " or " $\forall v_n$ " appear in σ_i , then

$$\sigma_i \equiv \mathscr{Y}_0 v_0 \mathscr{Y}_1 v_1 \cdots \mathscr{Y}_n v_n \sigma_{i,n}(v_0, \dots, v_n)$$

where $\sigma_{i,n}(v_0, \ldots, v_n)$ is an \mathscr{L} -formula in which each variable v_0, \ldots, v_n appears free.

Now, we go through the list $\Lambda_c = [c_0, c_1, \ldots]$ of special constants and extend step by step the list $\overline{T} = [\sigma_0, \sigma_1, \ldots]$: For this, we first stipulate $T_0 := \overline{T}$. If T_j is already defined and that $c_j \equiv (i, t_0, \ldots, t_{n-1}, n)$. We have the following two cases: Extending the Theory

Case 1. The special constant c_j does not witness the \mathscr{L} -sentence $\sigma_i \in \overline{\mathsf{T}}$. In this case we set $T_{j+1} := T_j$.

Case 2. The special constant c_j witnesses $\sigma_i \in \overline{\mathsf{T}}$. In this case we insert the \mathscr{L}_c -sentence

$$\sigma_{i,n}[c_j] \equiv \sigma_{i,n}(v_0/t_0,\ldots,v_{n-1}/t_{n-1},v_n/c_j)$$

into the list T_j on the place which corresponds to the code $\#\sigma_{i,n}[c_j]$. The extended list is then T_{j+1} .

Finally, let $\overline{\mathsf{T}}_c$ be the resulting list, *i.e.*, $\overline{\mathsf{T}}_c$ is the union of all the T_i 's.

LEMMA 5.0. $\overline{\mathsf{T}}_c$ is consistent.

Proof. By construction of $\overline{\mathsf{T}}$ we have $\operatorname{Con}(\overline{\mathsf{T}})$. Now, assume towards a contradiction that $\operatorname{Con}(\overline{\mathsf{T}}_c)$ is inconsistent. Then, by the COMPACTNESS THEOREM 1.15, we find finitely many \mathscr{L}_c -sentences $\sigma_{i,n}[c_j]$ in $\overline{\mathsf{T}}_c$ such that

$$\neg \operatorname{Con}\left(\overline{\mathsf{T}} + \left\{\sigma_{i_1,n_1}[c_{j_1}],\ldots,\sigma_{i_k,n_k}[c_{j_k}]\right\}\right).$$

Without loss of generality we may assume that $\sigma_{i_1,n_1}[c_{j_1}], \ldots, \sigma_{i_k,n_k}[c_{j_k}]$ are such that the sum $n_1 + \ldots + n_k + k$ is minimal.

Now, for term-constants τ we define the height $h(\tau)$ as follows: If τ is a closed \mathscr{L} -term, then $h(\tau) := 0$. If $\tau_0, \ldots, \tau_{n-1}$ are term-constants und $F \in \mathscr{L}$ is an *n*-ary function symbol, then

$$h(F\tau_0\cdots\tau_{n-1}) := \max\{h(\tau_0),\ldots,h(\tau_{n-1})\}.$$

Finally, if $\tau \equiv (i, \tau_0, \dots, \tau_{n-1}, n)$ is a special constant, then

$$h(\tau) := 1 + \max \{h(\tau_0), \dots, h(\tau_{n-1})\}$$

Without loss of generality we may assume that $h(c_{j_k}) = \max \{h(c_{j_1}, \ldots, h(c_{j_k})\}\}$. To simplify the notation, let $\Sigma := \{\sigma_{i_1,n_1}[c_{j_1}], \ldots, \sigma_{i_k,n_{k-1}}[c_{j_{k-1}}]\}$; furthermore we write i, n, j instead of i_k, n_k, j_k respectively.

Now, we consider the \mathscr{L}_c -sentence $\sigma_{i,n}[c_j]$. For this, let $c_j \equiv (i, t_0, \ldots, t_{n-1}, n)$, *i.e.*,

$$\sigma_{i,n}[c_j] \equiv \sigma_{i,n}(v_0/t_0,\ldots,v_{n-1}/t_{n-1},v_n/c_j).$$

Since c_j witnesses σ_i , " $\exists v_n$ " appears in σ_i , *i.e.*,

$$\sigma_{i,n-1}(v_0,\ldots,v_{n-1}) \equiv \exists v_n \sigma_{i,n}(v_0,\ldots,v_{n-1},v_n).$$

To simplify the notation again we set

$$\tilde{\sigma}(v_n) :\equiv \sigma_{i,n}(v_0/t_0,\ldots,v_{n-1}/t_{n-1},v_n).$$

CLAIM.
$$\neg \operatorname{Con}\left(\overline{\mathsf{T}} + \Sigma + \sigma_{i,n}[c_j]\right) \implies \neg \operatorname{Con}\left(\overline{\mathsf{T}} + \Sigma + \exists v_n \tilde{\sigma}(v_n)\right)$$

Proof of Claim. If $\overline{T} + \Sigma + \sigma_{i,n}[c_j]$ is inconsistent, then $\overline{T} + \Sigma + \sigma_{i,n}[c_j] \vdash \square$ and with the DEDUCTION THEOREM we get

$$\overline{\mathsf{T}} + \Sigma \vdash \sigma_{i,n}[c_j] \to \mathbb{D}.$$

In the latter proof we replace the special constant c_j throughout the proof with a variable ν which does not occur, neither in the proof nor in $\sigma_{i,n}$. Notice that every logical axiom becomes a logical axiom of the same type and that \mathscr{L} -sentences of $\overline{\mathsf{T}}$ are not affected (which do not contain any of the special constants). Furthermore, also \mathscr{L}_c -sentences of Σ are not affected since they do not contain the special constant c_j (otherwise, the height $h(c_j)$ would not be maximal). Finally, each application of MODUS PONENS or GENERALISATION becomes a new application of the same inference rule (notice that we do not apply GENERALISATION to ν , since otherwise, we would have applied GENERALISATION to c_i , but c_i is a constant). It follows that we obtain a proof of $\tilde{\sigma}(\nu) \rightarrow \mathbb{D}$ from $\overline{T} + \Sigma$:

$$\begin{split} \overline{\mathsf{T}} + \Sigma &\vdash \tilde{\sigma}(\nu) \to \mathfrak{P} & \text{by construction} \\ \overline{\mathsf{T}} + \Sigma &\vdash \forall \nu \big(\tilde{\sigma}(\nu) \to \mathfrak{P} \big) & \text{by GENERALISATION} \\ \overline{\mathsf{T}} + \Sigma &\vdash \forall \nu \big(\tilde{\sigma}(\nu) \to \mathfrak{P} \big) \to \big(\exists \nu \tilde{\sigma}(\nu) \to \mathfrak{P} \big) & \mathsf{L}_{14} \\ \overline{\mathsf{T}} + \Sigma &\vdash \exists \nu \tilde{\sigma}(\nu) \to \mathfrak{P} & \text{by MODUS PONENS} \\ \overline{\mathsf{T}} + \Sigma &\vdash \exists v_n \tilde{\sigma}(v_n) \to \mathfrak{P} & \text{TAUTOLOGY (Q.2)} \\ \text{erefore, we finally have } \neg \operatorname{Con}\big(\overline{\mathsf{T}} + \Sigma + \exists v_n \tilde{\sigma}(v_n) \big). & \dashv_{\operatorname{Claim}} \end{split}$$

Therefore, we finally have $\neg \operatorname{Con} (\mathsf{T} + \Sigma + \exists v_n \tilde{\sigma}(v_n)).$

We now write again i_k, n_k, j_k instead of i, n, j respectively and consider the following three cases:

Case 1. If $n_k = 0$, then $\sigma_{i_k} \equiv \exists v_0 \tilde{\sigma}$, *i.e.*, $\neg \operatorname{Con} (\overline{\mathsf{T}} + \Sigma)$. So,

$$\neg \operatorname{Con}\left(\overline{\mathsf{T}} + \{\sigma_{i_1,n_1}[c_{j_1}],\ldots,\sigma_{i_{k-1},n_{k-1}}[c_{j_{k-1}}]\}\right)$$

which is a contradiction to the minimality of $n_1 + \ldots + n_k + k$ (i.e., the choice of $\sigma_{i_1,n_1}[c_{j_1}],\ldots,\sigma_{i_k,n_k}[c_{j_k}]$), since

$$n_1 + \ldots + n_{k-1} + (k-1) < n_1 + \ldots + n_k + k.$$

Case 2. If $n_k > 0$ and " $\exists v_m$ " appears in σ_{i_k} for some $m < n_k$, then

$$\operatorname{Con}\left(\overline{\mathsf{T}} + \Sigma + \sigma_{i_k,m}(v_0/t_0,\ldots,v_m/t_m)\right).$$

Otherwise, we would have

$$n_1 + \ldots + n_{k-1} + m + k < n_1 + \ldots + n_k + k$$

which is again a contradiction to the minimality of $n_1 + \ldots + n_k + k$.

Case 3. If, for some $m + 1 < n_k$, we have

Completeness Theorem for Countable Signatures

$$\operatorname{Con}\left(\mathsf{T} + \Sigma + \sigma_{i_k,m}(v_0/t_0, \dots v_m/t_m)\right)$$

and " $\forall v_{m+1}$ " appears in σ_{i_k} , then, by L_{11} , we get

$$\operatorname{Con}\left(\overline{\mathsf{T}} + \Sigma + \sigma_{i_k,m}(v_0/t_0, \dots, v_m/t_m, v_{m+1}/t_{m+1})\right).$$

Combining the Cases 1–3 we get that $\overline{T} + \Sigma + \sigma_{i_k}[c_{j_k}]$ is consistent, which contradicts our primary assumption. Hence, the \mathscr{L}_c -theory \overline{T}_c is consistent. \dashv

Completeness Theorem for Countable Signatures

In this section we shall construct a model of the \mathscr{L}_c -theory $\overline{\mathsf{T}}_c$, which is of course also a model of the \mathscr{L} -theory $\mathsf{T} + \neg \sigma_0$. However, since we extended the signature \mathscr{L} , we first have to extend the binary relation "=" as well as relation symbols in \mathscr{L} to the new closed \mathscr{L}_c -terms.

LEMMA 5.1. The list $\overline{\mathsf{T}}_c$ can be extended to a consistent list $\widetilde{\mathsf{T}}$ of \mathscr{L}_c -sentence, such that the new \mathscr{L}_c -sentences are variable-free and for each variable-free \mathscr{L}_c -sencence σ we have

either
$$\sigma \in \widetilde{\mathsf{T}}$$
 or $\neg \sigma \in \widetilde{\mathsf{T}}$.

Proof. Like in the proof of LINDENBAUM'S LEMMA 4.5, we go through the list of all variable-free \mathscr{L}_c -sentences and successively extend the list $\overline{\mathsf{T}}_c$ to a maximally consistent list $\widetilde{\mathsf{T}}$.

Now we are ready to construct the domain of a model of \widetilde{T} , which shall be a list of lists: For this, let

$$A_{\tau} = [t_0, t_1, \dots, t_n, \dots]$$

be the list of all term-constants (ordered with respect to the encoding above). We go through the list Λ_{τ} and construct step by step a list of lists: First, we set $A_0 := [[]]$. Now, assume that A_n is already defined. Then consider the \mathcal{L}_c -sentences

$$t_n = t_0, t_n = t_1, \dots, t_n = t_{n-1}$$

If $t_n = t_m$ is one of these sentences and $t_n = t_m$ belongs to \widetilde{T} , then we append t_n to the list in A_n which contains t_m ; the resulting list is A_{n+1} . If none of the sentences $t_n = t_m$ belongs to \widetilde{T} , then $A_{n+1} := A_n + \lfloor t_n \rfloor$.

Let $A = [[t_{n_0}, \ldots], [t_{n_1}, \ldots]]$ be the resulting list, *i.e.*, A is the union of all the A_n 's.

The lists in the list A is the domain of our model M of \overline{T} . In order to simplify the notation, for term-constants τ let $\tilde{\tau}$ be the unique list of A which contains τ .

In order to get an \mathscr{L}_c -structure **M** with domain A, we have to define a mapping which assigns to each constant symbol $c \in \mathscr{L}_c$ an element $c^{\mathbf{M}} \in A$, to each *n*-ary

function symbol $F \in \mathscr{L}$ a function $F^{\mathbf{M}} : A^n \to A$, and to each *n*-ary relation symbol $R \in \mathscr{L}$ a set $R^{\mathbf{M}} \subseteq A^n$:

• If $c \in \mathscr{L}_c$ is a constant symbol of \mathscr{L} or a special constant, then let

$$c^{\mathbf{M}} := \widetilde{c}$$

• If $F \in \mathscr{L}$ is an *n*-ary function symbol and $\tilde{t}_1, \ldots, \tilde{t}_n$ are elements of A, then let

$$F^{\mathbf{M}}\widetilde{t}_1\cdots\widetilde{t}_n:=\widetilde{Ft_1\cdots t_n}$$
.

If R ∈ L is an n-ary relation symbol and t
₁,..., t
_n are elements of A, then we define

$$\langle \tilde{t}_1, \dots, \tilde{t}_n \rangle \in \mathbb{R}^{\mathbf{M}} : \iff \mathbb{R} t_1 \cdots t_n \in \widetilde{\mathsf{T}}.$$

FACT 5.2. The definitions above, which rely on representatives of the lists in *A*, are well-defined.

Proof. This follows easily by $L_{15}-L_{17}$ and the construction of \widetilde{T} ; the details are left as an exercise to the reader. \dashv

THEOREM 5.3. The \mathscr{L}_c -structure **M** is a model of $\widetilde{\mathsf{T}}$, and consequently also of $\mathsf{T} + \neg \sigma_0$.

Proof. We have to show that for each \mathscr{L}_c -sentence $\sigma \in \widetilde{\mathsf{T}}$, $\mathbf{M} \models \sigma$, *i.e.*,

$$\forall \sigma (\sigma \in \widetilde{\mathsf{T}} \implies \mathbf{M} \vDash \sigma) .$$

First notice that for \mathscr{L}_c -sentences $\sigma \& \sigma'$ with $\sigma \Leftrightarrow \sigma'$ (*i.e.*, $\vdash \sigma \leftrightarrow \sigma'$), by the SOUNDNESS THEOREM **??** we get

$$\mathbf{M} \models \sigma \quad \iff \quad \mathbf{M} \models \sigma'$$
.

So, by the 3-SYMBOLS THEOREM 1.11 it is enough to prove the theorem only for \mathscr{L}_c -sentences σ which are either atomic or of the form $\neg \sigma'$, $\wedge \sigma_1 \sigma_2$, or $\exists \nu \sigma'$.

We first consider the case when σ is variable-free. By LEMMA 5.1 we know that for each variable-free \mathscr{L}_c -sentences σ we have either $\sigma \in \widetilde{\mathsf{T}}$ or $\neg \sigma \in \widetilde{\mathsf{T}}$. Thus, we must show that for these sentences we have

$$\sigma \in \widetilde{\mathsf{T}} \quad \Longleftrightarrow \quad \mathbf{M} \models \sigma \,.$$

If σ is atomic, then either $\sigma \equiv t_1 = t_2$ (for some term-constants $t_1 \& t_1$) or $\sigma \equiv Rt_1 \cdots t_n$ (for term-constants t_1, \ldots, t_n and an *n*-ary relation symbol $R \in \mathscr{L}$), and by construction of **M** we get $\sigma \in \widetilde{\mathsf{T}} \iff \mathsf{M} \models \sigma$.

Now, assume towards a contradiction that there exists a variable-free \mathscr{L}_c -sentence σ_0 such that either $\sigma_0 \in \widetilde{\mathsf{T}}$ and $\mathbf{M} \not\models \sigma_0$, or $\sigma_0 \notin \widetilde{\mathsf{T}}$ and $\mathbf{M} \models \sigma_0$. Without loss of

generality we may assume that σ_0 has as few logical symbols as possible. Notice that we already know that σ_0 is not atomic. We consider the following cases:

 $\sigma_0 \equiv \neg \sigma$: Since σ has less logical symbols than σ_0 , we have $\sigma \in \widetilde{\mathsf{T}}$ if and only if $\mathbf{M} \models \sigma$. This shows that

$$\neg \sigma \notin \widetilde{\mathsf{T}} \iff \mathbf{M} \nvDash \neg \sigma$$

which is a contradiction to the choice of σ_0 .

 $\sigma_0 \equiv \wedge \sigma_1 \sigma_2$: Since σ_1 as well as σ_2 has less logical symbols than σ_0 , we have $\sigma_1 \in \widetilde{\mathsf{T}}$ if and only if $\mathbf{M} \models \sigma_1$, as well as $\sigma_2 \in \widetilde{\mathsf{T}}$ if and only if $\mathbf{M} \models \sigma_2$. This shows that

$$\wedge \sigma_1 \sigma_2 \in \mathsf{T} \iff \mathbf{M} \models \wedge \sigma_1 \sigma_2$$

which is a contradiction to the choice of σ_0 .

Now, we consider the case when σ contains variables and show that for every $\sigma \in \widetilde{\mathsf{T}}$ we have $\mathbf{M} \models \sigma$; If σ is an \mathscr{L}_c -sentence which belongs to $\widetilde{\mathsf{T}}$, then there exists a $\sigma' \in \overline{\mathsf{T}}_c$ in sPNF such that $\sigma \Leftrightarrow \sigma'$. In particular we get $\mathbf{M} \models \sigma$ if and only if $\mathbf{M} \models \sigma'$.

Assume towards a contradiction that there is an \mathscr{L}_c -sentence $\sigma' \in \overline{\mathsf{T}}_c$ in sPNF for which we have $\mathbf{M} \neq \sigma'$. Notice that since $\sigma' \in \overline{\mathsf{T}}_c$, we have $\sigma' \in \widetilde{\mathsf{T}}$, in particular we get $\widetilde{\mathsf{T}} \vdash \sigma'$. For σ' there are natural numbers i, m, n with m < n and term-constants t_0, \ldots, t_{m-1} , such that

$$\sigma' \equiv \mathscr{Y}_m v_m \cdots \mathscr{Y}_n v_n \sigma_{i,m} (v_0/t_0, \ldots, v_{m-1}/t_{m-1}, v_m, \ldots, v_n),$$

where each \mathbb{Y}_k (for $m \leq k \leq n$) stands for either " \exists " or " \forall " and $\sigma_{i,n}$ is quantifier free.

Because $\mathbf{M} \neq \sigma'$, we get $\mathbf{M} \models \neg \sigma'$, and for $\neg \sigma'$ we have:

$$\neg \sigma' \equiv \overline{\mathcal{Y}}_m v_m \cdots \overline{\mathcal{Y}}_n v_n \neg \sigma_{i,n} (v_0/t_0, \dots, v_{m-1}/t_{m-1}, v_m, \dots, v_n)$$

where for $m \leq k \leq n$, the quantifier $\overline{\mathcal{Y}}_k$ is " \exists " if \mathcal{Y}_k is " \forall ", and vice versa.

For each k with $m \leq k \leq n$, we replace in $\sigma_{i,n}$ step by step the variable v_k with a term-constant t_k as follows:

• If \mathbb{Y}_k is the quantifier " \forall ", then

$$\mathbf{M} \models \exists v_k \cdots \neg \sigma_{i,n}(v_0/t_0, \dots, v_k, \dots)$$
 .

Hence, there exists a $\tilde{t}_k \in A$ such that

$$\mathbf{M} \models \overline{\mathcal{Y}}_{k+1} v_{k+1} \cdots \neg \sigma_{i,n} (v_0/t_0, \ldots, v_k/t_k, \ldots).$$

On the other hand, if \mathbb{Y}_k is the quantifier " \forall ", then

 \sim

$$\mathsf{T} \vdash \forall v_k \cdots \sigma_{i,n} (v_0/t_0, \ldots, v_k, \ldots),$$

5 Models of Countable Theories

which implies, by L_{11} ,

$$\widetilde{\mathsf{T}} \vdash \mathcal{Y}_{k+1} v_{k+1} \cdots \sigma_{i,n} (v_0/t_0, \dots, v_k/t_k, \dots)$$

• If \mathbb{Y}_k is the quantifier " \exists ", then, for $t_k \equiv (i, t_0, \dots, t_{k-1}, k)$,

$$\mathcal{Y}_{k+1}v_{k+1}\cdots\sigma_{i,n}(v_0/t_0,\ldots,v_k/t_k,\ldots)\in\overline{\mathsf{T}}_c\,,$$

which implies

$$\widetilde{\mathsf{T}} \vdash \mathscr{Y}_{k+1} v_{k+1} \cdots \sigma_{i,n} (v_0/t_0, \dots, v_k/t_k, \dots)$$

On the other hand, if \mathbb{Y}_k is the quantifier " \exists ", then

$$\mathbf{M} \models \forall v_k \cdots \neg \sigma_{i,n} (v_0/t_0, \ldots, v_k, \ldots),$$

which implies, by L_{11} ,

$$\mathbf{M} \models \mathcal{Y}_{k+1} v_{k+1} \cdots \neg \sigma_{i,n} (v_0/t_0, \dots, v_k/t_k, \dots).$$

Proceeding this way, we finally get

$$\mathbf{M} \models \neg \sigma_{i,n}(v_0/t_0, \dots, v_n/t_n)$$
 and $\mathbf{T} \vdash \sigma_{i,n}(v_0/t_0, \dots, v_n/t_n)$.

Since the latter implies $\neg \sigma_{i,n}(v_0/t_0, \ldots, v_n/t_n) \notin \widetilde{\mathsf{T}}$ and since $\sigma_{i,n}$ is variable-free, this is a contradiction to what we have proved above. \dashv

The following theorem just summarises what we have achieved so far:

COUNTABLE GÖDEL-HENKIN COMPLETENESS THEOREM 5.4. If \mathscr{L} is a countable signature and T is a consistent set of \mathscr{L} -sentences, then T has a model. Moreover, if $T \not\vdash \sigma_0$ (for some \mathscr{L} -sentence σ_0), then $T + \neg \sigma_0$ has a model.

In the next chapter, we shall prove the COMPLETENESS THEOREM for arbitrarily large signatures, but before, we would like to present a few consequences which follow directly from the COUNTABLE GÖDEL-HENKIN COMPLETENESS THEOREM (or its proof), or in combination with the COMPACTNESS THEOREM.

Some Consequences

Let \mathscr{L} be a countable signature, T a set of \mathscr{L} -sentences, and σ_0 an \mathscr{L} -sentence.

• If $T \not\vdash \sigma_0$, then there is an \mathscr{L} -structure M such that $M \models T + \neg \sigma_0$:

$$\mathsf{T} \not\vdash \sigma_0 \implies \exists \mathbf{M} (\mathbf{M} \models \mathsf{T} + \neg \sigma_0)$$

56

Some Consequences

• If T is consistent, then T has a model:

$$\operatorname{Con}(\mathsf{T}) \implies \exists \mathbf{M} (\mathbf{M} \models \mathsf{T})$$

• If each model of T is also a model of σ_0 , then $\mathsf{T} \vdash \sigma_0$:

$$\forall \mathbf{M} (\mathbf{M} \models \mathsf{T} \implies \mathbf{M} \models \sigma_0) \implies \mathsf{T} \vdash \sigma_0$$

• In combination with the COMPACTNESS THEOREM 1.15 we get

$$\operatorname{Con}(\mathsf{T}) \quad \Longleftrightarrow \quad \exists \mathbf{M} \left(\mathbf{M} \models \mathsf{T} \right)$$

and finally:

$$\underbrace{ \forall \mathbf{M} \left(\mathbf{M} \models \mathsf{T} \Longrightarrow \mathbf{M} \models \sigma_0 \right) }_{\mathsf{T} \models \sigma_0} \quad \Leftarrow \quad \mathsf{T} \vdash \sigma_0$$

The last consequence allows us to replace *formal proofs* with *mathematical proofs*: For example, instead of proving formally the uniqueness of the neutral element in groups from the axioms of Group Theory GT, we just show that in every model of GT (*i.e.*, in every group), the neutral element is unique. So, instead of $GT \vdash \sigma_0$, we just show $GT \models \sigma_0$.

As a last consequence we would like to mention the DOWNWARD LÖWENHEIM– SKOLEM THEOREM, which is also known as SKOLEM'S PARADOX.

DOWNWARD LÖWENHEIM-SKOLEM THEOREM 5.5. If \mathscr{L} is a countable signature and T is a consistent set of \mathscr{L} -sentences, then T has a countable model.

Proof. In the previous chapter, we began with a countable signature \mathscr{L} and a consistent set of \mathscr{L} -sentences T; and at the end, the domain A of the model M of T was a finite or potentially infinite list of lists. So, the model M we constructed is countable.