
Chapter 5

Models of Countable Theories

As in the previous chapter, we require that all formulae are written in Polish notation
and that the variables are among v0, v1, v2, . . . Furthermore, let L be a countable
signature, let T be a consistent L -theory, and let σ0 be an L -sentence which is not
provable from T. Finally, let T be the maximally consistent extension of T `  σ0
as above.

We shall now construct a model of T. For this, we first extend the signature L

by adding some new constant symbols, then we extend the theoryT, and finally we
construct the model.

Extending the Language

A string of symbols is a term-constant, if it results from applying F I N I T E L Y

many times the following rules:

(C0) Each closed (i.e., variable-free) L -term is a term-constant.
(C1) If τ0, . . . , τn´1 are any term-constants which we have already built and F is

an n-ary function symbol, then Fτ0 ¨ ¨ ¨ τn´1 is a term-constant.
(C2) For any natural numbers i, n, if τ0, . . . , τn´1 are any term-constants which

we have already built, then pi, τ0, . . . , τn´1, nq is a term-constant.

The strings pi, τ0, . . . , τn´1, nq which are built with rule (C2) are called special

constants. Notice that for n “ 0, pi, τ0, . . . , τn´1, nq becomes pi, 0q.
Let Lc be the signature L extended with the countably many special constants.

In order to write the special constants in a list, we first encode them and then define
an ordering on the codes.

First we encode closed L -terms as above with strings of 0’s and 2’s. Now, let
cτ̄i,n ” pi, τ0, . . . , τn´1, nq be a special constant, where the codes of τ0, . . . , τn´1

are already defined. Then we encode cτ̄i,n as follows:
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50 5 Models of Countable Theories

cτ̄i,n ” p i , τ0 , . . . , τn´1 , n q

Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó

#cτ̄i,n ” 6 1 . . . 1loomoon
i-times 1

8 #τ0 8 . . . 8 #τn´1 8 1 . . . 1loomoon
n-times 1

9

The codes of special constants are ordered by their length and lexicographically,
where 0 ă 1 ă . . . ă 8 ă 9.

Finally, let Λc “ rc0, c1, . . .s be the potentially infinite list of all special con-
stants, ordered with respect to the ordering of their codes.

Extending the Theory

In this section we shall add witnesses for certain existential Lc-sentences σi in the
list T “ rσ0, σ1, . . . , σi, . . .s, where an Lc-sentence is existential if it is of the form
Dνϕ. The witnesses we choose from the list Λc of special constants. In order to
make sure that we have a witness for each existential Lc-sentence (and not just for
L -sentences), and also to make sure that the choice of witnesses do not lead to
a contradiction, we have to choose the witnesses carefully. For this we introducte
the following notion: An L -sentence σi P T is in special prenex normal form,
denoted sPNF, if σi is in PNF and

σi ” E0v0 E1v1 . . . Envnσi,n

where each Em (for 0 ď m ď n) stands for either “D” or “@”, σi,n is quantifier free,
and each variable v0, . . . , vn appears free in σi,n. Notice that by the PRENEX NOR-
MAL FORM THEOREM 1.12 and the VARIABLE SUBSTITUTION THEOREM 1.13,
for every L -sentence σ there is an equivalent L -sentence σ1 which is in sPNF.

Let σi P T and let ct̄i,n ” pi, t0, . . . , tn´1, nq be a special constant. Then we say

that ct̄
i,n

witnesses σi if:

• σi is in sPNF,
• “Dvn” appears in σi, and
• for all m ă n: if “Dvm” appears in σi, then tm ” pi, t0, . . . , tm´1,mq.

If an L -sentence σi P T is in sPNF and “Dvn” or “@vn” appear in σi, then

σi ” E0v0 E1v1 ¨ ¨ ¨ Envnσi,npv0, . . . , vnq

where σi,npv0, . . . , vnq is an L -formula in which each variable v0, . . . , vn appears
free.

Now, we go through the list Λc “ rc0, c1, . . .s of special constants and extend
step by step the list T “ rσ0, σ1, . . .s: For this, we first stipulate T0 :“ T. If Tj is
already defined and that cj ” pi, t0, . . . , tn´1, nq. We have the following two cases:
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Case 1. The special constant cj does not witness the L -sentence σi P T. In this
case we set Tj`1 :“ Tj .

Case 2. The special constant cj witnesses σi P T. In this case we insert the Lc-
sentence

σi,nrcjs ” σi,npv0{t0, . . . , vn´1{tn´1, vn{cjq

into the list Tj on the place which corresponds to the code #σi,nrcjs. The extended
list is then Tj`1.

Finally, let Tc be the resulting list, i.e., Tc is the union of all the Tj’s.

LEMMA 5.0. Tc is consistent.

Proof. By construction ofT we have ConpTq. Now, assume towards a contradiction
that ConpTcq is inconsistent. Then, by the COMPACTNESS THEOREM 1.15, we find
finitely many Lc-sentences σi,nrcjs in Tc such that

 Con
`
T`

 
σi1,n1

rcj1 s, . . . , σik,nk
rcjks

(˘
.

Without loss of generality we may assume that σi1,n1
rcj1 s, . . . , σik,nk

rcjk s are such
that the sum n1 ` . . .` nk ` k is minimal.

Now, for term-constants τ we define the height hpτq as follows: If τ is a closed
L -term, then hpτq :“ 0. If τ0, . . . , τn´1 are term-constants und F P L is an n-ary
function symbol, then

hpFτ0 ¨ ¨ ¨ τn´1q :“ max
 
hpτ0q, . . . , hpτn´1q

(
.

Finally, if τ ” pi, τ0, . . . , τn´1, nq is a special constant, then

hpτq :“ 1`max
 
hpτ0q, . . . , hpτn´1q

(
.

Without loss of generality we may assume that hpcjkq “ max
 
hpcj1 , . . . , hpcjkq

(
.

To simplify the notation, let Σ :“
 
σi1,n1

rcj1 s, . . . , σik,nk´1
rcjk´1

s
(

; furthermore
we write i, n, j instead of ik, nk, jk respectively.

Now, we consider the Lc-sentence σi,nrcjs. For this, let cj ” pi, t0, . . . , tn´1, nq,
i.e.,

σi,nrcjs ” σi,npv0{t0, . . . , vn´1{tn´1, vn{cjq .

Since cj witnesses σi, “Dvn” appears in σi, i.e.,

σi,n´1pv0, . . . , vn´1q ” Dvnσi,npv0, . . . , vn´1, vnq .

To simplify the notation again we set

σ̃pvnq :” σi,npv0{t0, . . . , vn´1{tn´1, vnq .

CLAIM.  Con
`
T` Σ` σi,nrcjs

˘
ùùùÏ  Con

`
T` Σ` Dvnσ̃pvnq

˘
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Proof of Claim. IfT`Σ`σi,nrcjs is inconsistent, thenT`Σ`σi,nrcjs $ � and
with the DEDUCTION THEOREM we get

T` Σ $ σi,nrcjs Ñ � .

In the latter proof we replace the special constant cj throughout the proof with a
variable ν which does not occur, neither in the proof nor in σi,n. Notice that every
logical axiom becomes a logical axiom of the same type and that L -sentences of
T are not affected (which do not contain any of the special constants). Furthermore,
also Lc-sentences ofΣ are not affected since they do not contain the special constant
cj (otherwise, the height hpcjq would not be maximal). Finally, each application
of MODUS PONENS or GENERALISATION becomes a new application of the same
inference rule (notice that we do not apply GENERALISATION to ν, since otherwise,
we would have applied GENERALISATION to cj , but cj is a constant). It follows that
we obtain a proof of σ̃pνq Ñ � fromT` Σ:

T` Σ $ σ̃pνq Ñ � by construction

T` Σ $ @ν
`
σ̃pνq Ñ �

˘
by GENERALISATION

T` Σ $ @ν
`
σ̃pνq Ñ �

˘
Ñ

`
Dνσ̃pνq Ñ �

˘
L14

T` Σ $ Dνσ̃pνq Ñ � by MODUS PONENS

T` Σ $ Dvnσ̃pvnq Ñ � TAUTOLOGY (Q.2)

Therefore, we finally have  Con
`
T` Σ` Dvnσ̃pvnq

˘
. % Claim

We now write again ik, nk, jk instead of i, n, j respectively and consider the follow-
ing three cases:

Case 1. If nk “ 0, then σik ” Dv0σ̃, i.e.,  Con
`
T` Σ

˘
. So,

 Con
`
T`

 
σi1,n1

rcj1 s, . . . , σik´1,nk´1
rcjk´1

s
(˘

which is a contradiction to the minimality of n1 ` . . .` nk ` k (i.e., the choice of
σi1,n1

rcj1s, . . . , σik ,nk
rcjks), since

n1 ` . . .` nk´1 ` pk ´ 1q ă n1 ` . . .` nk ` k .

Case 2. If nk ą 0 and “Dvm” appears in σik for some m ă nk, then

Con
`
T` Σ` σik,mpv0{t0, . . . vm{tmq

˘
.

Otherwise, we would have

n1 ` . . .` nk´1 `m` k ă n1 ` . . .` nk ` k

which is again a contradiction to the minimality of n1 ` . . .` nk ` k.

Case 3. If, for some m` 1 ă nk, we have
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Con
`
T` Σ` σik,mpv0{t0, . . . vm{tmq

˘

and “@vm`1” appears in σik , then, by L11, we get

Con
`
T` Σ` σik,mpv0{t0, . . . vm{tm, vm`1{tm`1q

˘
.

Combining the Cases 1–3 we get that T`Σ` σik rcjk s is consistent, which contra-
dicts our primary assumption. Hence, the Lc-theoryTc is consistent. %

Completeness Theorem for Countable Signatures

In this section we shall construct a model of the Lc-theory Tc, which is of course
also a model of the L -theory T `  σ0. However, since we extended the signature
L , we first have to extend the binary relation ““” as well as relation symbols in L

to the new closed Lc-terms.

LEMMA 5.1. The list Tc can be extended to a consistent list rT of Lc-sentence, such
that the new Lc-sentences are variable-free and for each variable-free Lc-senctence
σ we have

either σ P rT or  σ P rT .

Proof. Like in the proof of LINDENBAUM’S LEMMA 4.5, we go through the list of
all variable-free Lc-sentences and successively extend the list Tc to a maximally
consistent list rT. %

Now we are ready to construct the domain of a model of rT, which shall be a list
of lists: For this, let

Λτ “ rt0, t1, . . . , tn, . . .s

be the list of all term-constants (ordered with respect to the encoding above). We go
through the list Λτ and construct step by step a list of lists: First, we set A0 :“

“
r s
‰
.

Now, assume that An is already defined. Then consider the Lc-sentences

tn “ t0, tn “ t1, . . . , tn “ tn´1 .

If tn “ tm is one of these sentences and tn “ tm belongs to rT, then we append tn to
the list in An which contains tm; the resulting list is An`1. If none of the sentences
tn “ tm belongs to rT, then An`1 :“ An `

“
rtns

‰
.

Let A “
“
rtn0

, . . .s, rtn1
, . . .s . . .

‰
be the resulting list, i.e., A is the union of all

the An’s.
The lists in the list A is the domain of our model M of rT. In order to simplify

the notation, for term-constants τ let rτ be the unique list of A which contains τ .
In order to get an Lc-structure M with domain A, we have to define a mapping

which assigns to each constant symbol c P Lc an element cM P A, to each n-ary



54 5 Models of Countable Theories

function symbol F P L a function FM : An Ñ A, and to each n-ary relation
symbol R P L a set RM Ď An:

• If c P Lc is a constant symbol of L or a special constant, then let

cM :“ rc .

• If F P L is an n-ary function symbol and rt1, . . . ,rtn are elements of A, then let

FMrt1 ¨ ¨ ¨rtn :“ ČFt1 ¨ ¨ ¨ tn .

• If R P L is an n-ary relation symbol and rt1, . . . ,rtn are elements of A, then we
define

xrt1, . . . ,rtny P RM :ÎùùùÏ Rt1 ¨ ¨ ¨ tn P rT .

FACT 5.2. The definitions above, which rely on representatives of the lists in A, are
well-defined.

Proof. This follows easily by L15–L17 and the construction of rT; the details are left
as an exercise to the reader. %

THEOREM 5.3. The Lc-structure M is a model of rT, and consequently also of
T` σ0.

Proof. We have to show that for each Lc-sentence σ P rT, M ( σ, i.e.,

A σ
`
σ P rT ùùùÏ M ( σ

˘
.

First notice that for Lc-sentences σ& σ1 with σ ô σ1 (i.e., $ σ Ø σ1), by the
SOUNDNESS THEOREM ?? we get

M ( σ ÎùùùÏ M ( σ1 .

So, by the 3-SYMBOLS THEOREM 1.11 it is enough to prove the theorem only for
Lc-sentences σ which are either atomic or of the form  σ1, ^σ1σ2, or Dνσ1.

We first consider the case when σ is variable-free. By LEMMA 5.1 we know that
for each variable-free Lc-sentences σ we have either σ P rT or  σ P rT. Thus, we
must show that for these sentences we have

σ P rT ÎùùùÏ M ( σ .

If σ is atomic, then either σ ” t1 “ t2 (for some term-constants t1 & t1) or
σ ” Rt1 ¨ ¨ ¨ tn (for term-constants t1, . . . , tn and an n-ary relation symbolR P L ),
and by construction of M we get σ P rT ÎùùùÏ M ( σ.

Now, assume towards a contradiction that there exists a variable-free Lc-sentence
σ0 such that either σ0 P rT and M * σ0, or σ0 R rT and M ( σ0. Without loss of



Completeness Theorem for Countable Signatures 55

generality we may assume that σ0 has as few logical symbols as possible. Notice
that we already know that σ0 is not atomic. We consider the following cases:

σ0 ”  σ: Since σ has less logical symbols than σ0, we have σ P rT if and only if
M ( σ. This shows that

 σ R rT ÎùùùÏ M *  σ

which is a contradiction to the choice of σ0.

σ0 ” ^σ1σ2: Since σ1 as well as σ2 has less logical symbols than σ0, we have
σ1 P rT if and only if M ( σ1, as well as σ2 P rT if and only if M ( σ2. This shows
that

^σ1σ2 P rT ÎùùùÏ M ( ^σ1σ2

which is a contradiction to the choice of σ0.

Now, we consider the case when σ contains variables and show that for every
σ P rT we have M ( σ; If σ is an Lc-sentence which belongs to rT, then there exists
a σ1 P Tc in sPNF such that σ ô σ1. In particular we get M ( σ if and only if
M ( σ1.

Assume towards a contradiction that there is an Lc-sentence σ1 P Tc in sPNF for
which we have M * σ1. Notice that since σ1 P Tc, we have σ1 P rT, in particular we
get rT $ σ1. For σ1 there are natural numbers i,m, nwithm ă n and term-constants
t0, . . . , tm´1, such that

σ1 ” Emvm ¨ ¨ ¨ Envnσi,mpv0{t0, . . . , vm´1{tm´1, vm, . . . , vnq ,

where each Ek (for m ď k ď n) stands for either “D” or “@” and σi,n is quantifier
free.

Because M * σ1, we get M (  σ1, and for  σ1 we have:

 σ1 ” s
Emvm ¨ ¨ ¨sEnvn σi,npv0{t0, . . . , vm´1{tm´1, vm, . . . , vnq

where for m ď k ď n, the quantifier sEk is “D” if Ek is “@”, and vice versa.
For each k with m ď k ď n, we replace in σi,n step by step the variable vk with

a term-constant tk as follows:

• If Ek is the quantifier “@”, then

M ( Dvk ¨ ¨ ¨ σi,npv0{t0, . . . , vk, . . .q .

Hence, there exists a rtk P A such that

M ( s
Ek ` 1vk`1 ¨ ¨ ¨  σi,npv0{t0, . . . , vk{tk, . . .q .

On the other hand, if Ek is the quantifier “@”, then

rT $ @vk ¨ ¨ ¨σi,npv0{t0, . . . , vk, . . .q ,
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which implies, by L11,

rT $ Ek ` 1vk`1 ¨ ¨ ¨σi,npv0{t0, . . . , vk{tk, . . .q .

• If Ek is the quantifier “D”, then, for tk ” pi, t0, . . . , tk´1, kq,

Ek ` 1vk`1 ¨ ¨ ¨σi,npv0{t0, . . . , vk{tk, . . .q P Tc ,

which implies

rT $ Ek ` 1vk`1 ¨ ¨ ¨σi,npv0{t0, . . . , vk{tk, . . .q .

On the other hand, if Ek is the quantifier “D”, then

M ( @vk ¨ ¨ ¨  σi,npv0{t0, . . . , vk, . . .q ,

which implies, by L11,

M ( s
Ek ` 1vk`1 ¨ ¨ ¨  σi,npv0{t0, . . . , vk{tk, . . .q .

Proceeding this way, we finally get

M (  σi,npv0{t0, . . . , vn{tnq and rT $ σi,npv0{t0, . . . , vn{tnq .

Since the latter implies σi,npv0{t0, . . . , vn{tnq R rT and since σi,n is variable-free,
this is a contradiction to what we have proved above. %

The following theorem just summarises what we have achieved so far:

COUNTABLE GÖDEL-HENKIN COMPLETENESS THEOREM 5.4. If L is a count-
able signature and T is a consistent set of L -sentences, then T has a model. More-
over, if T & σ0 (for some L -sentence σ0), then T` σ0 has a model.

In the next chapter, we shall prove the COMPLETENESS THEOREM for arbitrarily
large signatures, but before, we would like to present a few consequences which fol-
low directly from the COUNTABLE GÖDEL-HENKIN COMPLETENESS THEOREM

(or its proof), or in combination with the COMPACTNESS THEOREM.

Some Consequences

Let L be a countable signature, T a set of L -sentences, and σ0 an L -sentence.

• If T & σ0, then there is an L -structure M such that M ( T` σ0:

T & σ0 ùùùÏ EM
`
M ( T` σ0

˘
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• If T is consistent, then T has a model:

ConpTq ùùùÏ E M
`
M ( T

˘

• If each model of T is also a model of σ0, then T $ σ0:

AM
`
M ( T ùùùÏ M ( σ0

˘
ùùùÏ T $ σ0

• In combination with the COMPACTNESS THEOREM 1.15 we get

ConpTq ÎùùùÏ E M
`
M ( T

˘

and finally:

AM
`
M ( T ùùùÏ M ( σ0

˘
looooooooooooooooooomooooooooooooooooooon

T ( σ0

ÎùùùÏ T $ σ0

The last consequence allows us to replace formal proofs with mathematical proofs:
For example, instead of proving formally the uniqueness of the neutral element in
groups from the axioms of Group Theory GT, we just show that in every model of
GT (i.e., in every group), the neutral element is unique. So, instead of GT $ σ0, we
just show GT ( σ0.

As a last consequence we would like to mention the DOWNWARD LÖWENHEIM–
SKOLEM THEOREM, which is also known as SKOLEM’S PARADOX.

DOWNWARD LÖWENHEIM-SKOLEM THEOREM 5.5. If L is a countable signature
and T is a consistent set of L -sentences, then T has a countable model.

Proof. In the previous chapter, we began with a countable signature L and a con-
sistent set of L -sentences T; and at the end, the domain A of the model M of T
was a finite or potentially infinite list of lists. So, the model M we constructed is
countable. %


