First-Order Logic in a Nutshell 27

numbers is empty, and hence cannot be a member of itself (otherwise, it would not
be empty). Now, call a set x good if x is not a member of itself and let C be the col-
lection of all sets which are good. Is C, as a set, good or not? If C is good, then C is
not a member of itself, but since C contains all sets which are good, C is a member
of C, a contradiction. Otherwise, if C is a member of itself, then C must be good,
again a contradiction. In order to avoid this paradox we have to exclude the collec-
tion C from being a set, but then, we have to give reasons why certain collections
are sets and others are not. The axiomatic way to do this is described by Zermelo as
follows: Starting with the historically grown Set Theory, one has to search for the
principles required for the foundations of this mathematical discipline. In solving
the problem we must, on the one hand, restrict these principles sufficiently to ex-
clude all contradictions and, on the other hand, take them sufficiently wide to retain
all the features of this theory.

The principles, which are called axioms, will tell us how to get new sets from
already existing ones. In fact, most of the axioms of Set Theory are constructive to
some extent, i.e., they tell us how new sets are constructed from already existing
ones and what elements they contain.

However, before we state the axioms of Set Theory we would like to introduce
informally the formal language in which these axioms will be formulated.

First-Order Logic in a Nutshell

First-Order Logic is the system of Symbolic Logic concerned not only to represent
the logical relations between sentences or propositions as wholes (like Propositional
Logic), but also to consider their internal structure in terms of subject and predicate.
First-Order Logic can be consider as a kind of language which is distinguished
from higher-order languages in that it does not allow quantification over subsets of
the domain of discourse or other objects of higher type. Nevertheless, First-Order
Logic is strong enough to formalise all of Set Theory and thereby virtually all of
Mathematics. In other words, First-Order Logic is an abstract language that in one
particular case is the language of Group Theory, and in another case is the language
of Set Theory.

The goal of this brief introduction to First-Order Logic is to illustrate and sum-
marise some of the basic concepts of this language and to show how it is applied to
fields like Group Theory and Peano Arithmetic (two theories which will accompany
us for a while).

Syntax: Formulae, Formal Proofs, and Consistency

Like any other written language, First-Order Logic is based on an alphabet, which
consists of the following symbols:

(a) Variables such as vy, vy, x, y, ..., which are place holders for objects of the
domain under consideration (which can for example be the elements of a group,
natural numbers, or sets).

28 3 The Axioms of Zermelo—Fraenkel Set Theory

(b) Logical operators which are “—” (not), “A” (and), “Vv” (or), “—" (implies),
and “<” (if and only if, abbreviated iff).

(c) Logical quantifiers which are the existential quantifier “3” (there is or there
exists) and the universal quantifier “V” (for all or for each), where quantifica-
tion is restricted to objects only and not to formulae or sets of objects (but the
objects themselves may be sets).

)

(d) Equality symbol “=", which stands for the particular binary equality relation.
(e) Constant symbols like the number 0 in Peano Arithmetic, or the neutral ele-
ment e in Group Theory. Constant symbols stand for fixed individual objects in

the domain.

(f) Function symbols such as o (the operation in Group Theory), or +, -, s (the
operations in Peano Arithmetic). Function symbols stand for fixed functions
taking objects as arguments and returning objects as values. With each function

[Tt

symbol we associate a positive natural number, its co-called “arity” (e.g., “o” is
(3 k2

a 2-ary or binary function, and the successor operation “s” is a 1-ary or unary
function).

(g2) Relation symbols or predicate constants (such as € in Set Theory) stand for
fixed relations between (or properties of) objects in the domain. Again we asso-

[Pt}

ciate an “arity” with each relation symbol (e.g., “€” is a binary relation).

The symbols in (a)—(d) form the core of the alphabet and are called logical symbols.
The symbols in (e)—(g) depend on the specific topic we are investigating and are
called non-logical symbols. The set of non-logical symbols which are used in order
to formalise a certain mathematical theory is called the language of this theory,
denoted by .Z, and formulae which are formulated in a language .# are usually
called .Z-formulae. For example if we investigate groups, then the only non-logical
symbols we use are “e” and “o”, thus, .Z = {e, o} is the language of Group Theory.

A first step towards a proper language is to build words (i.e., ferms) with these

symbols.

Terms:

(T1) Each variable is a term.

(T2) Each constant symbol is a term.

(T3) If 4, ...,t, are terms and F is an n-ary function symbol, then Ft{---¢, is a
term.

It is convenient to use auxiliary symbols like brackets in order to make terms,
relations, and other expressions easier to read. For example we usually write
F(t,...,t,) rather than Ft{---t,.

To some extent, terms correspond to words, since they denote objects of the do-
main under consideration. Like real words, they are not statements and cannot ex-
press or describe possible relations between objects. So, the next step is to build
sentences (i.e., formulae) with these terms.

First-Order Logic in a Nutshell 29

Formulae:

(F1) If #; and 1, are terms, then t; = 1, is a formula.

(F2) If t1,...,t, are terms and R is an n-ary relation symbol, then Rty ---#, is a
formula.

(F3) If ¢ is a formula, then —¢ is a formula.

(F4) If ¢ and ¢ are formulae, then (¢ A ¥r), (¢ V ¥r), (¢ — V), and (¢ <>) are
formulae. (To avoid the use of brackets one could write these formulae for
example in Polish notation, i.e., Ao\, Vo, et cetera.)

(F5) If ¢ is a formula and x a variable, then dx¢ and Vx¢ are formulae.

Formulae of the form (F1) or (F2) are the most basic expressions we have, and since
every formula is a logical connection or a quantification of these formulae, they are
called atomic formulae.

For binary relations R it is convenient to write x Ry instead of R(x, y). For ex-
ample we write x € y instead of €(x, y), and we write x ¢ y rather than —(x € y).

If a formula ¢ is of the form 3x or of the form Vx 1 (for some formula) and
x occurs in ¥, then we say that x is in the range of a logical quantifier. A variable
X occurring at a particular place in a formula ¢ is either in the range of a logical
quantifier or it is not in the range of any logical quantifier. In the former case this
particular instance of the variable x is bound in ¢, and in the latter case it is free
in @. Notice that it is possible that a certain variable occurs in a given formula bound
as well as free (e.g., in Iz(x = z) AVx(x = y), the variable x is both bound and free,
whereas z is just bound and y is just free). However, one can always rename the
bound variables occurring in a given formula ¢ such that each variable in ¢ is either
bound or free. For formulae ¢, the set of variables occurring free in ¢ is denoted by
free(¢). A formula ¢ is a sentence if it contains no free variables (i.e., free(¢) =).
For example Vx(x = x) is a sentence but (x = x) is not.

Sometimes it is useful to indicate explicitly which variables occur free in a given
formula ¢, and for this we usually write ¢(x1, ..., x,) to indicate that {x{, ..., x,} C
free(p).

If ¢(x) is a formula (i.e., x € free(¢)), and ¢ a term, then ¢(x/¢) is the formula
we get after replacing all free instances of x by 7. A so-called substitution ¢(x/¢) is
admissible iff no free occurrence of x in ¢ is in the range of a quantifier that binds
any variable contained in ¢ (i.e., for each variable v appearing in ¢, no place where
x occurs free in ¢ is in the range of “3Jv” or “Vv”).

So far we have letters, and we can build words and sentences. However, these
sentences are just strings of symbols without any inherent meaning. Later we shall
interpret formulae in the intuitively natural way by giving the symbols the intended
meaning (e.g., “A” meaning “and”, “Vx”’ meaning “for all x”, et cetera). But before
we shall do so, let us stay a little bit longer on the syntactical side—nevertheless,
one should consider the formulae also from a semantical point of view.

Below we shall label certain formulae or types of formula as axioms, which are
used in connection with inference rules in order to derive further formulae. From a
semantical point of view we can think of axioms as “true” statements from which
we deduce or prove further results. We distinguish two types of axiom, namely /ogi-
cal axioms and non-logical axioms (which will be discussed later). A logical axiom

30 3 The Axioms of Zermelo—Fraenkel Set Theory

is a sentence or formula ¢ which is universally valid (i.e., ¢ is true in any possible
universe, no matter how the variables, constants, et cetera, occurring in ¢ are inter-
preted). Usually one takes as logical axioms some minimal set of formulae that is
sufficient for deriving all universally valid formulae (such a set is given below).

If a symbol is involved in an axiom which stands for an arbitrary relation, func-
tion, or even for a first-order formula, then we usually consider the statement as an
axiom schema rather than a single axiom, since each instance of the symbol rep-
resents a single axiom. The following list of axiom schemata is a system of logical
axioms.

Let ¢, ¢1, 2, and ¥, be arbitrary first-order formulae:

Li: o= (¥ —9),

L: (¥ = (91 = @) = (¥ = @) = (¥ — ¢2)),
Ls: (9 AY) — o,

Lat (0 AY) = Y,

Ls: ¢ —> (¥ —> (¥ A o)),

Le: ¢ — (V)

Ly: v —>(pVy),

Lg: (o1 = ¢3) = (02 = ¢3) = (01 V 92) = ©3)),
Lo: (@ —> ¥) = (¢ = —¢) — —¢),

Lio: ~¢ — (¢ —> V),

Li1: ¢V —o.

If ¢ is a term and the substitution ¢ (x/¢) is admissible, then:

Li2: Vxo(x) — ¢(1),
Liz: () — dxe(x).

If o is a formula such that x ¢ free(y), then:

Lig: Vx(¥ = ¢(x)) = (¥ = Vxo(x)),
Lis: Vx(e(x) = ¥) = (Qxe(x) =).

What is not covered yet is the symbol “=", so, let us have a closer look at the
binary equality relation. The defining properties of equality can already be found
in Book VII, Chapter 1 of Aristotle’s Topics [2], where one of the rules to decide
whether two things are the same is as follows: ... you should look at every possible
predicate of each of the two terms and at the things of which they are predicated and
see whether there is any discrepancy anywhere. For anything which is predicated of
the one ought also to be predicated of the other, and of anything of which the one is
a predicate the other also ought to be a predicate.

In our formal system, the binary equality relation is defined by the following
three axioms.

s

Ift,11,...,ty, 1], ..., 1, are any terms, R an n-ary relation symbol (e.g., the bi-
nary relation symbol “=""), and F an n-ary function symbol, then:
Lig: t=t,
Liz: (=t A...Aty=1;) = (R(t1,.... 1) > R(t],.... 1)),

Lig: (i=t{A...Aty=1;)—= (F(t1,....t,) = F(t],....1})).

First-Order Logic in a Nutshell 31

Finally, we define the logical operator “<«” by stipulating

gy = (e=>VIAG = 9),
i.e., ¢ <> Y is just an abbreviation for (¢ — ¥) A (Y — @).

This completes the list of our logical axioms. In addition to these axioms, we are
allowed to state arbitrarily many theory-specific assumptions, so-called non-logical
axioms. Such axioms are for example the three axioms of Group Theory, denoted
GT, or the axioms of Peano Arithmetic, denoted PA.

GT: The language of Group Theory is ZgT = {e, o}, where “e” is a constant symbol
and “o” is a binary function symbol.

@ 9

GTo: YxVyVz(xo(yoz) = (x0y)oz) (i.e., o is associative),
GTi: Vx(eox =x) (i.e., “e” is a left-neutral element),
GT,: Vx3y(yox = e) (i.e., every element has a left-inverse).

PA: The language of Peano Arithmetic is £pa = {0, s, +, -}, where “0” is a con-
stant symbol, “s” is a unary function symbol, and “+” and “-” are binary function
symbols.

PA1: Vx(s(x) # 0),
PAy: VxVy(s(x) =s(y) = x =Yy),
PA3: Vx(x + 0 =1x),
PA4: VxVy(x +s(y) =sx +y)),
PAs: Yx(x-0=0),
PAg: VxVy(x-s(y)=(x-y)+x).

If ¢ is any Zpa-formula with x € free(p), then:
PA7: (9(0) AVx(p(x) = ¢(s(x)))) = Vxe(x).

It is often convenient to add certain defined symbols to a given language so that
the expressions get shorter or at least are easier to read. For example in Peano
Arithmetic—which is an axiomatic system for the natural numbers—we usually
replace the expression s(0) with 1 and consequently s(x) by x 4+ 1. Probably, we
would like to introduce an ordering “<” on the natural numbers. We can do this by
stipulating

1:=s(0), x<y <<= Fzx+20+1=y).

We usually use “:=" to define constants or functions, and “<=" to define rela-
tions. Obviously, all that can be expressed in the language .Zpa U {1, <} can also be
expressed in Zpa.

So far we have a set of logical and non-logical axioms in a certain language and
can define, if we wish, as many new constants, functions, and relations as we like.
However, we are still not able to deduce anything from the given axioms, since we
have neither inference rules nor the notion of formal proof.

Surprisingly, just two inference rules are sufficient, namely:

32 3 The Axioms of Zermelo—Fraenkel Set Theory

Modus Ponens: w and Generalisation: L.
Vxo
In the former case we say that v is obtained from ¢ — ¥ and ¢ by Modus Ponens,
and in the latter case we say that Vx¢ (where x can be any variable) is obtained from
¢ by Generalisation.

Using these two inference rules, we are able to define the notion of formal proof:
Let T be a possibly empty set of non-logical axioms (usually sentences), formulated
in a certain language .. An .Z-formula i is provable from T (or provable in T),
denoted T F v, if there is a finite sequence ¢y, ..., ¢, of Z-formulae such that ¢,
is equal to ¥ (i.e., the formulae ¢, and ¥ are identical), and for all i with 1 <i <n
we have:

e ¢; is a logical axiom, or

e g, T, or

e there are j, k < i such that ¢; is equal to the formula ¢ — ¢;, or
o thereisa j < i such that ¢; is equal to the formula Vx ¢;.

If a formula v is not provable in T, i.e., if there is no formal proof for ¥ which
uses just formulae from T, then we write T ¥ .

Formal proofs, even of very simple statements, can get quite long and tricky. So,
before we give an example of a formal proof, let us state a theorem which allows us
to simplify formal proofs:

THEOREM 3.1 (DEDUCTION THEOREM). If {¢r1,..., ¥} U {e1,..., 01} F o,
where Generalisation is not applied to the free variables of the formulae ¢1, ..., ¢k
(e.g., if these formulae are sentences), then

Wil (@i A A @) = .

Now, as an example of a formal proof let us show the equality relation is sym-
metric. We first work with T,—,, consisting only of the formula x =y, and show
that T,—y - y = x, in other words we show that {x =y} -y = x:

Q18 x=yAx=x)>(x=x—>y=x) instance of L7

@ (x=yAx=x)—>x=x instance of Ly

@3: 91— (pp > (x=yAx=x)—>y=x)) instance of L,

@4 p—=>(x=yAx=x)—>y=x) from @3 and ¢; by Modus Ponens
@5t (x=yAx=x)—>y=x from ¢4 and ¢> by Modus Ponens
®6: xX=x instance of L¢

972 x=y (x=y) €Trzy

@3: x=x—>x=y—> (x=yAx=x)) instance of Ls

©9: X=y—>xX=yAx=x) from @g and ¢¢ by Modus Ponens
@100 X=YAX=x from @9 and ¢7 by Modus Ponens

P11 y=x from @5 and @9 by Modus Ponens

First-Order Logic in a Nutshell 33

Thus, we have {x = y} - y = x, and by the Deduction Theorem 3.1 we see that
Fx =y — y = x, and finally, by Generalisation we get

FVYxVy(x =y — y=x).

We leave it as an exercise to the reader to show that the equality relation is also
transitive. Therefore, since the equality relation is by definition reflexive, it is an
equivalence relation.

Furthermore, we say that two formulae ¢ and v are equivalent, denoted ¢ = 1,
if - ¢ < . In other words, if ¢ = i, then—from a logical point of view—g and
state exactly the same, and therefore we could call ¢ <> i a tautology, which means
saying the same thing twice. However, in Logic, a formula ¢ is a tautology if - ¢.
Thus, the formulae ¢ and ¥ are equivalent if and only if ¢ <> i is a tautology.

A few examples:

e VY =9y Ve, ¢ Ay =1y A, which shows that “v” and “A” are commu-
tative (up to equivalence). Moreover, “Vv” and “A” are (up to equivalence) also
associative—a fact which we tacitly used already.

e m—p =g, (¢VY)=—-(—¢ A—Y), which shows for example how “V”’ can be
replaced by “—" and “A”.

e (¢ = V) = (—¢ V ¥), which shows how the logical operator “—” can be re-
placed by “—" and “Vv”.

e Vx¢ = —3Ix—¢, which shows how “V” can be replaced by “—" and “3”.

Thus, some of the logical operators are redundant and we could work for example

9
-

with just , “A”, and “3”. However, it is more convenient to use all of them.

Let T be a set of .Z-formulae. We say that T is consistent, denoted Con(T), if
there is no .Z-formula ¢ such that T+ (¢ A —¢), otherwise T is called inconsistent,
denoted — Con(T).

PROPOSITION 3.2. LetT be a set of £ -formulae.

(a) If =Con(T), then for all £ -formulae v we have T+ .
(b) If Con(T) and T+ ¢ for some .Z-formula ¢, then T ¥ —¢.

Proof. (a) Let ¥ be any .Z-formula and assume that T (¢ A —¢) for some .£-
formula ¢. Then TH :

01 QAT provable from T by assumption
v (P A—@)— @ instance of L3
03 @ from ¢, and ¢; by Modus Ponens

¢4: (@ A—@p) — —¢ instance of Ly

©5: @ from ¢4 and ¢; by Modus Ponens
ve: —@— (p—) instance of Ljg

01 9> Y from ¢g and ¢5 by Modus Ponens
7 H) from ¢7 and ¢3 by Modus Ponens

34 3 The Axioms of Zermelo—Fraenkel Set Theory

(b) Assume that TH ¢ and TF —¢. Then TF (¢ A =), i.e., = Con(T):

Q1: @ provable from T by assumption
¢ e provable from T by assumption
@3 ¢ — (—p—> (p A—p)) instance of Ls
@1: @ — (@ A @) from @3 and ¢; by Modus Ponens
@51 @ ATQ from ¢4 and ¢, by Modus Ponens
_|

Notice that PROPOSITION 3.2(a) implies that from an inconsistent set of axioms
T one can prove everything and T would be completely useless. So, if we design a
set of axioms T, we have to make sure that T is consistent. However, as we shall see
later, in many cases this task is impossible.

Semantics: Models, Completeness, and Independence

Let T be any set of .Z-formulae (for some language .Z’). There are two different
ways to approach T, namely the syntactical and the semantical way. The above
presented syntactical approach considers the set T just as a set of well-formed
formulae—regardless of their intended sense or meaning—from which we can prove
some other formulae.

On the other hand, we can consider T also from a semantical point of view by
interpreting the symbols of the language .Z in a reasonable way, and then seeking
for a model in which all formulae of T are true. To be more precise, we first have to
define how models are built and what “true” means:

Let .Z be an arbitrary but fixed language. An .Z-structure 2l consists of a (non-
empty) set or collection A, called the domain of 2, together with a mapping which
assigns to each constant symbol ¢ € .Z an element c* of A, to each n-ary relation
symbol R € & a set of n-tuples R¥ of elements of A, and to each n-ary function
symbol F € . a function F* from n-tuples of A to A. Further, the interpretation
of variables is given by a so-called assignment: An assignment in an .Z’-structure
2l is a mapping j which assigns to each variable an element of the domain A. Fi-
nally, an .Z-interpretation I is a pair (2, j) consisting of an .Z-structure 2 and an
assignment j in 2(. For a variable x, an element a € A, and an assignment j in
we define the assignment j ¢ by stipulating

a a if y=x,
Ji0= {j(y) otherwise.
Further, for an interpretation I = (2, j) let I% =, %).

We associate with every interpretation I = (2, j) and every term ¢ an element

I(¢) from the domain A as follows:

e For a variable x let I(x) := j(x).
e For a constant symbol ¢ € .Z let I(c) := Pl

First-Order Logic in a Nutshell 35

e For an n-ary function symbol F € . and terms 71, ..., t, let
L(F(t1,....tn) = FA(I(t), ..., L(ty)).

Now, we are able to define precisely the notion of a formula ¢ being true under
an interpretation I = (2, j), in which case we write I F ¢ and say that ¢ holds
in I. The definition is by induction on the complexity of the formula ¢ (where it
is enough to consider formulae containing—besides terms and relations—just the
logical operators “—" and “A”, and the logical quantifier “3”):

o If ¢ is of the form #; = 1, then
IFHH=1n <<= I(11) is the same element as 1(zp).
o If ¢ is of the form R(¢q,...,1t,), then
IER@,....t) <= (I(t1),....X(1,)) belongs to R%.
If ¢ is of the form —, then

IF—=Y <<= itisnotthe case that IF .
o If ¢ is of the form Ix v, then
IF3xy <= thereisanelementa € A such that IT F .
o If ¢ is of the form | A 12, then
IEYy1AYr < IFYandIF ¥,

Notice that since the domain of I is non-empty we always have I F 3x(x = x).

Now, let T be an arbitrary set of . -formulae. Then an .#-structure 2 is a model
of T if for every assignment j in 2 and for each formula ¢ € T we have (2, j) F ¢,
i.e., ¢ holds in the Z-interpretation I = (2, j). We usually denote models by bold
letters like M, N, V, et cetera. Instead of saying “M is a model of T” we just write
MET. If ¢ fails in M, then we write M ¥ ¢, which is equivalent to M F —¢ (this is
because for any .Z-formula ¢ we have either M E ¢ or M E —¢).

For example S7 (i.e., the set of all permutations of seven different items) is a
model of GT, where the interpretation of the binary operation is composition and
the neutral element is interpreted as the identity permutation. In this case, the el-
ements of the domain of §7 can be real and can even be heard, namely when the
seven items are seven bells and a peal of for example Stedman Triples consisting
of all 5040 permutations of the seven bells is rung—which happens quite often,
since Stedman Triples are very popular with change-ringers. However, the objects
of models of mathematical theories usually do not belong to our physical world and
are not more real than for example the number zero or the empty set.

The following two theorems, which we state without proofs, are the main con-
nections between the syntactical and the semantical approach to first-order theories.
On the one hand, the SOUNDNESS THEOREM 3.3 just tells us that our deduction
system is sound, i.e., if a sentence ¢ is provable from T then ¢ is true in each model

36 3 The Axioms of Zermelo—Fraenkel Set Theory

of T. On the other hand, GODEL’S COMPLETENESS THEOREM 3.4 tells us that our
deduction system is even complete, i.e., every sentence which is true in all models
of T is provable from T. As a consequence we find that T - ¢ if and only if ¢ is true
in each model of T. In particular, if T is empty, this implies that every tautology (i.e.,
universally valid formula) is provable.

THEOREM 3.3 (SOUNDNESS THEOREM). Let T be a set of £ -sentences and let ¢
be any £ -sentence. If T\~ ¢, then in any model M such that M F T we have M E ¢.

THEOREM 3.4 (GODEL’S COMPLETENESS THEOREM). Let T be a set of £~
sentences and let ¢ be any .Z-sentence. Then T & ¢ or there is a model M such
that M E T U {—¢}. In other words, if for every model M F T we have M F ¢, then
T ¢. (Notice that this does not imply the existence of a model of T.)

One of the main consequences of GODEL’S COMPLETENESS THEOREM 3.4 is
that formal proofs—which are usually quite long and involved—can be replaced by
informal ones: Let T be a consistent set of .Z’-formulae and let ¢ be any .Z’-sentence.
Then, by GODEL’S COMPLETENESS THEOREM 3.4, in order to show that TF ¢ it
is enough to show that M F ¢ whenever M F T. In fact, we would take an arbitrary
model M of T and show that M F ¢.

As an example let us show that GT - (yox = e) — (xoy = e): Firstly, let G be
a model of GT, with domain G, and let x and y be any elements of G. By GT, we
know that every element of G has a left-inverse. In particular, y has a left-inverse,
say y, and we have yoy = e. By GT; we have xoy = (yoy)o(x0y), and by GTy
we get (Yoy)o(xoy) = yo((yox)oy). Now, if yox = e, then we have xoy = yoy and
consequently we get xoy = e. Notice that we tacitly used that the equality relation
is symmetric and transitive.

We leave it as an exercise to the reader to find the corresponding formal proof
of this basic result in Group Theory. In a similar way one can show that every left-
neutral element is also a right-neutral element (called neutral element) and that there
is just one neutral element in a group.

The following result, which is a consequence of GODEL’S COMPLETENESS
THEOREM 3.4, shows that every consistent set of formulae has a model.

PROPOSITION 3.5. Let T be any set of .£-formulae. Then Con(T) if and only if T
has a model.

Proof. (=) If T has no model, then, by GODEL’S COMPLETENESS THEOREM 3.4,
for every £-formula v we have T F ¢ (otherwise, there would be a model of T U
{—=v}, and in particular for T). So, for ¥ being ¢ A —¢p we get T+ (¢ A =), hence
T is inconsistent.

(<) If T is inconsistent, then, by PROPOSITION 3.2(a), for every .Z-formula v
we have T i, in particular, T ¢ A —¢. Now, the SOUNDNESS THEOREM 3.3
implies that in all models M F T we have M F ¢ A —g; thus, there are no models
of T. —

First-Order Logic in a Nutshell 37

A set of sentences T is usually called a theory. A consistent theory T (in a certain
language .Z) is said to be complete if for every .Z-sentence ¢, either T ¢ or
TF —¢. If T is not complete, we say that T is incomplete.

The following result is an immediate consequence of PROPOSITION 3.5.

COROLLARY 3.6. Every consistent theory is contained in a complete theory.

Proof. Let T be a theory in the language .. If T is consistent, then it has a model,
say M. Now let T be the set of all .Z’-sentences ¢ such that M = ¢. Obviously, T is
a complete theory which contains T. —

Let T be a set of .Z-formulae and let ¢ be any .#-formula not contained in T. ¢ is
said to be consistent relative to T (or that ¢ is consistent with T) if Con(T) implies
Con(T U {¢}) (later we usually write T 4 ¢ instead of TU {¢}). If both ¢ and —¢ are
consistent with T, then ¢ is said to be independent of T. In other words, if Con(T),
then ¢ is independent of T if neither T+ ¢ nor T+ —¢. By GODEL’S COMPLETE-
NESS THEOREM 3.4 we see that if Con(T) and ¢ is independent of T, then there are
models M and M; of T such that M| F ¢ and M; F —¢. A typical example of a
statement which is independent of GT is VxVy(xoy = yox) (i.e., the binary operation
is commutative), and indeed, there are abelian as well as non-abelian groups.

In order to prove that a certain statement ¢ is independent of a given (consistent)
theory T, one could try to find two different models of T such that ¢ holds in one
model and fails in the other. However, this task is quite difficult, in particular if one
cannot prove that T has a model at all (as it happens for Set Theory).

Limits of First-Order Logic

We begin this section with a useful result, called COMPACTNESS THEOREM. On
the one hand, it is just a consequence of the fact that formal proofs are finite (i.e.,
finite sequences of formulae). On the other hand, the COMPACTNESS THEOREM is
the main tool to prove that a certain sentence (or a set of sentences) is consistent
with a given theory. In particular, the COMPACTNESS THEOREM is implicitly used
in every set-theoretic consistency proof which is obtained by forcing (for details see
Chapter 16).

THEOREM 3.7 (COMPACTNESS THEOREM). Let T be an arbitrary set of £ -for-
mulae. Then T is consistent if and only if every finite subset @ of T is consistent.

Proof. Obviously, if T is consistent, then every finite subset @ of T must be con-
sistent. On the other hand, if T is inconsistent, then there is a formula ¢ such that
TF ¢ A —@. In other words, there is a proof of ¢ A —¢ from T. Now, since every
proof is finite, there are only finitely many formulae of T involved in this proof, and
if @ is this finite set of formulae, then @ - ¢ A —¢, which shows that @, a finite
subset of T, is inconsistent. -

A simple application of the COMPACTNESS THEOREM 3.7 shows that if PA is
consistent, then there is more than one model of PA (i.e., beside the intended model

38 3 The Axioms of Zermelo—Fraenkel Set Theory

of natural numbers with domain IN, there are also so-called non-standard models of
PA with larger domains):

Firstly we extend the language 4pa = {0, s, +, -} by adding a new constant
symbol n. Secondly we extend PA by adding the formulae
n#0, n#s(0), n# s(s(O)), e
R/—_/ N, e’ N — ——
L0 1 1753
and let ¥ be the set of these formulae. Now, if PA has a model N with domain
say IN, and @ is any finite subset of ¥, then, by interpreting n in a suitable way, N
is also a model of PA U @, which implies that PA U @ is consistent. Thus, by the
COMPACTNESS THEOREM 3.7, PAU VY is also consistent and therefore has a model,
say N. Now, NE PAU ¥, but since n is different from every standard natural number
of the form s(s(...s(0)...)), the domain of N must be essentially different from IN
(since it contains a kind of infinite number, whereas all standard natural numbers are
finite).
This example shows that we cannot axiomatise Peano Arithmetic in First-Order
Logic in such a way that all the models we get have essentially the same domain IN.

By PROPOSITION 3.5 we know that a set of first-order formulae T is consistent
if and only if it has a model, i.e., there is a model M such that M = T. So, in order
to prove for example that the axioms of Set Theory are consistent we only have to
find a single model in which all these axioms hold. However, as a consequence of
the following theorems—which we state again without proof—this turns out to be
impossible (at least if one restricts oneself to methods formalisable in Set Theory).

THEOREM 3.8 (GODEL’S INCOMPLETENESS THEOREM). Let T be a consistent
set of first-order £ -formulae which is sufficiently strong to define the concept of
natural numbers and to prove certain basic arithmetical facts (e.g., PA is such a
theory, but also slightly weaker theories would suffice). Then there is always an .£ -
sentence ¢ which is independent of T, i.e., neither T ¢ nor T+ —¢ (or in other
words, there are models M and M, of T such that M E ¢ and M E —¢).

In particular we find that there are number-theoretic statements which can neither
be proved nor disproved in PA (i.e., the theory PA is incomplete). Moreover, the
following consequence of GODEL’S INCOMPLETENESS THEOREM 3.4 shows that
not even the consistency of PA can be proved with number-theoretical methods.

THEOREM 3.9 (GODEL’S SECOND INCOMPLETENESS THEOREM). Let T be
a set of first-order £ -formulae. Then the statement Con(T), which says that
TF ¢ A ¢ for some £ -formula ¢, can be formulated as a number-theoretic sen-
tence Con'. Now, if T is consistent and is sufficiently strong to define the concept
of natural numbers and to prove certain basic arithmetical facts, then T ¥ Con', i.e.,
T cannot prove its own consistency. In particular, PA ¥ Con™.

On the one hand, GODEL’S INCOMPLETENESS THEOREM tells us that in any
theory T which is sufficiently strong, there are always statements which are inde-

The Axioms of Zermelo—Fraenkel Set Theory 39

pendent of T (i.e., which can neither be proved nor disproved in T). On the other
hand, statements which are independent of a given theory (e.g., of Set Theory or of
Peano Arithmetic) are often very interesting, since they say something unexpected,
but in a language we can understand. From this point of view it is good to have
Godel’s Incompleteness Theorem which guarantees the existence of such statements
in theories like Set Theory or Peano Arithmetic.

In Part IT we shall present a technique with which we can prove the indepen-
dence of certain set-theoretical statements from the axioms of Set Theory, which
are introduced and discussed below.

The Axioms of Zermelo—Fraenkel Set Theory

In 1905, Zermelo began to axiomatise Set Theory and in 1908 he published his first
axiomatic system consisting of seven axioms. In 1922, Fraenkel and Skolem in-
dependently improved and extended Zermelo’s original axiomatic system, and the
final version was presented again by Zermelo in 1930. In this chapter we give the
resulting axiomatic system called Zermelo—Fraenkel Set Theory, denoted ZF, which
contains all axioms of Set Theory except the Axiom of Choice, which will be intro-
duced and discussed in Chapter 5. Alongside the axioms of Set Theory we develop
the theory of ordinals and give various notations which will be used throughout this
book.

The language of Set Theory contains only one non-logical symbol, namely the
binary membership relation, denoted by €, and there exists just one type of object,
namely sets. In other words, every object in the domain is a set and there are no
other objects than sets. However, to make life easier, instead of €(a, b) we write
a € b (or on rare occasions also b > a) and say that “a is an element of b, or that
“a belongs to b”. Later we will extend the language of Set Theory by defining some
constants (like “¢” and “w”), relations (like “C”), and operations (like the power set
operation “4?”), but in fact, all that can be formulated in Set Theory, can be written
as a formula containing only the non-logical relation “&” (but for obvious reasons,
we will usually not do so).

0. The Axiom of Empty Set
xVz(z ¢ x).

This axiom not only postulates the existence of a set without any elements, i.e.,
an empty set, it also shows that the set-theoretic universe is non-empty, because it
contains at least an empty set (of course, the logical axioms Lj¢ and L3 already
incorporate this fact).

1. The Axiom of Extensionality
VxVy(Vz(z EX<©ZEY) > X= y).

