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Thus ([0, 1]—B) is a countable union of nowhere dense sets, a set of
‘the first category’ in the terminology introduced by Baire in Ais
doctoral thesis 1899a (see section 3.13). Baire proved that [0, 1] is
not of the first category; hence B cannot be of the first category.
Like [0, 1], it is of the second category. :

4.7. Conclusion

By stressing the largeness of the set B, Schonflies seemed to be suggesting
that B should not be regarded as negligible in measure, that a definition
which implied such a conclusion was -inappropriate. Others un-
doubtedly shared his sentiments. Indeed, we have seen that the idea
that a dense set could have zero measure was contrary to the approach
to the measure of sets adopted by Harnack, Cantor and many other
mathematicians, and championed by Schénflies. Lebesgue’s work really
settled the issue over the most appropriate definition of measure, for
he showed that a Borel-type measure is necessary—a necéssary evil,
perhaps, but nonetheless necessary. That is, the definition of the
integral which accompanies Lebesgue’s generalisation of Jordan’s theory
of measure (as explained at the beginning of section 4.5) is free from
most of the defects of the Riemann integral, including those discussed
in section 4.4. Thus if a uniformly bounded sequence of Lebesgue-
integrable functions, f,(x), converges to a function f(x) for each x in
[, b], then f is Lebesgue-integrable and

) ds=lim [ ) a @)

“And if a function f(x) has a bounded derivative f/(x) on [a, 4], then f’ is
always integrable in Lebesgue’s sense and 5

b
M f(x) dx=f(b)—f(a). (4.7.2)

Lebesgue’s signal achievement was the discovery that his generalisa-
tion of the integral possesses these and many other remarkable properties. !
By creating his theory of integration Lebesgue had in effect confirmed

Fourier’s naive belief that ‘arbitrary functions’ are not beyond the -

purview of mathematical analysis.

! For a more detailed historical analysis of Lebesgue’s contributions see Hawkins
1970a, chs. 5 and 6. An excellent exposition of Lebesgue’s theory is given in Royden
1968a, chs. 3-5.

Chapter 5

The Development of Cantorian
Set Theory

Joseph W. Dauben

5.1. Introduction

This chapter explores the early development of set theory, in particular
the contributions of the German mathematician Georg Cantor (1845
1918). Though he was joined by mathematicians in the 19th century
like Riemann, Hankel, Harnack and du Bois Reymond (among others)
in exploring the properties of point sets and their significance for mathe-
matical analysis, Cantor’s contributions were in many ways unique. His
creation of transfinite numbers was controversial from the beginning,
and his professional career was devoted to defending and to promoting
his revolutionary work. Perhaps more than most branches of modein
mathematics, set theory bears the special stamp of its originator’s interests
and personality. Thus the historical development of Cantorian set
theory demonstrates how the abstract objectivity so often ascribed- to

-scientific theory may be influenced by the character and interests of

those who contribute most to its development. This is particularly
true of so contentious a subject as the infinite in mathematics, for not

~only did Cantor have to face strong opposition from mathematicians, but

also theologians and philosophers clung to traditions that refused to
admit any ground to the actual infinite. In relentlessly supporting the
validity of transfinite set theory, he promoted his research until its
importance to virtually every branch of mathematics was recognised.

For convenience I shall usually cite particular passages in Cantor’s
writings from Zermelo’s edition of his works (Cantor Papers in the
bibliography). For more general studies of his life and work, see
Fraenkel 1930a, Meschkowski 1967a, Grattan-Guinness 19715 and
Dauben 71977a and 1979a. :
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182 5. The development of Cantorian set theory

5.2. The trigonometric background : irrational numbers and derived sets

Though Cantor’s Dissertation of 1867, written at the University of
Berlin under the auspices of Kummer and Kronecker, was mn%oﬁmm to a
difficult problem in number theory (as was .Em ﬁa@&&n&e&a&w&.ﬁ
published in 1869), this was not the area which first stimulated his
interest in set theory. Having left Berlin early in 1869 to Uwooam a
. Privatdozent at the University of Halle, he found that one of Ew senior
colleagues there, Eduard Heine, was working on w.HoEan dealing with
the theory of trigonometric series (compare sections 3.11 and w.H.Nv.
Heine recognised in Cantor a young mathematician of great promise,
and encouraged him to take up a very important question in mb&%m_m. :
If a given, arbitrary function could be represented by a trigonometric
series, was the representation unique ? Heine had B.mbmmwm ao.mo?o a
part of the problem in 1870a by assuming that Q.Hm given T.Soﬁo.b was
almost everywhere continuous, and that the trigonometric series in
question was also uniformly convergent almost everywhere. But .ONES
was anxious to do away with such restrictions, m:a. to establish the
uniqueness theorem in the most general terms possible. (For more
details on this work, see Dauben 1971a.)

This Cantor did, though for his first proof in Hm,\o.wo found it
necessary to assume that the trigonometric series in question was con-
vergent for all values of x (Papers, 80-83). In 1871 .ra published a
short note indicating that it was in fact possible to mmﬁ.m‘crmr the ﬁroow.ma
even if, for certain values of x, either the representation of the function
or the convergence of the series could be given up, so long as the total
number of such exceptional points remained finite (Papers, 84-86).
Cantor’s greatest achievement (with respect to the uniqueness aw.nowamdv
came in his 1872a, when he succeeded in showing that even an Em._b:.m
number of exceptions might be permitted, so long as they were distri-
buted in a specified way. . .

Wanting to present this last proof in as simple m:&. as rigorous a way
as possible, Cantor found that he had to develop a mmﬁmmm.oﬁo.nuw theory of
the real numbers in order to deal precisely with the infinite sets .Om
exceptional points which he now had in B:.a. .Onaommm:m. earlier
approaches for assuming the existence of ﬁr.o irrationals as limits of
infinite sequences of rationals used to ‘define’ them, he wanted to
present a theory of the irrationals which in no way vnmmcwwomoa. their
existence. Beginning with the set of all rational numbers 4, he intro-
duced sequences of rationals: a;, @y, .- - @ps - -+ - These sequences
were further subject to the condition that, for S.rmﬁ.én m, if n was
taken large enough, |a,,,—a,|<e for any H.mﬁon& :chm.n €>.0,
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however small. If the sequence satisfied this condition, Cantor called
it a ‘fundamental sequence’ and said that it had a definite limit 5
(Papers, 93, 186). This was to be taken as a convention to express,
not that the sequence {@,} actually had the limit b, or that the number &
was presupposed as the limit, but merely that with each such sequence
{a,} a number b was associated with it.

Cantor then denoted the collection of numbers b associated with such
infinite sequences {a,} by B. Two numbers b and &’ defined by two
fundamental sequences {@,} and {a,’} were said to be equal, b="0’, if
a,—a,’ became very small as v increased without limit. He also
noted that by virtue of the fact that any constant sequence {a} was a
fundamental sequence, then 2 must be an element of B. Consequently,
A < B, though the converse was clearly false (Papers, 93-94).

In an analogous fashion, Cantor considered infinite sequences of
elements from B: b, by, ..., b,, ... . With each fundamental se-
quence {b,} there was associated a number ¢. All such sequences
generated from B constituted the domain C. He went on in this way
to define higher-order domains from C. Proceeding through A such

. constructions, he. reached the domain L. Given an element / in this

domain L, he called it a number, value or limit (he took these to be
the same for his theory of real numbers) of the A-th kind (Papers, 95-96).

Though Cantor had built up the real numbers B from the domain of
rationals 4, and had then gone on in similar fashion, using infinite
sequences to define higher-order domains, he was now faced with the
problem of identifying the real numbers so constructed with points of
the real line. It was clear that every such point could be associated
with one of his real numbers, but it was by no means obvious that to
each of his real numbers in B a unique point of the linear continuum
must correspond. Therefore, he invoked the axiom: To every real
number a definite point of the straight line corresponds, whose co-
ordinate is equal to that number ’ (Papers, 97). 'This identification was
to be especially important in terms of Cantor’s definition of derived sets
of the first and second species, which required the concept of limit-
point : ‘ Given a point set P, if an infinite number of points of the set P

lie within every neighbourhood, however small, of a point p, then p is

said to be a “ limit-point  of the set P’ (Papers, 98 ; note that p may
be a limit-point of P, and yet not belong to the set P itself).

Given any point set P, Cantor noted that every point was either a
limit-point of P, or it was not. The set of all limit-points of P was
denoted P’, and called ‘ the first derived set ’ of P. Just as he was able
to generate from B an entire system of A-domains, he did the same with
P’. If P’ were an infinite point set, then it gave rise to a second derived
point set P, and so on, until after taking successively # such derived
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sets, it was possible to produce the (z+1)-th: mo_.?a&. set. of P, Pl
The case important for Cantor’s extension of his uniqueness theorem
was the one in which, after # repetitions, the derived point set P®)
consisted only of a finite number of points, thus making: ﬂ.ro extension
to further (non-empty) derived sets impossible. mn.aompmbwﬁom such
sets as point sets of the first species, for which the derived set Pm =¥
for some finite value of n.© Were P® s ¥ for any finite value of 7,
then P was said to be a point set of the second species. It was from nrmm.m
point sets of the second species that he would eventually produce his
transfinite numbers, but for his uniqueness theorem of 1872 he was
concerned only with point sets of the first species. .
Cantor showed that such point sets existed by appealing to a point
on the line whose abscissa was determined by a number of the v-th kind
(hence the need for- his axiom). Working cmowim.ﬁm. he took the
sequence of numbers of the (v—1)-th kind determining v, then the
numbers of the (v—2)-th kind determining each of these, and so on,
until eventually he reached an infinite set of rational numbers in the
domain 4. By taking the point set corresponding to this set-of rationals,
he had clearly produced a point set of the v-th kind. It was then
possible to establish the most general of his arooHoEm. concerning the
uniqueness of representations by means of trigonometric series (Papers,

99): . ;

If an equation is of the form
0
0=13d,+ Y ¢,sinnx+d, cosnx .
n=1

for all values of x with the exception of those which oo.d.nmmo:a to
the points in a [closed] interval (0 . .. 27) of a given point set P of
the v-th kind, where v is any whole number, then d,=0, ¢, = d,=0.

Cantor’s achievement was impressive. Following the success of
his application of first species sets to establishing the uniqueness
theorem, even for infinite sets of exceptional points, he must vmﬁw been
intrigued by the reasons which might account for &o <&:r.€ .0m the
result. His proof had insisted that the points of exception be a_.mﬁd.g.:om
in a carefully specified way. Nevertheless, there could be infinitely
many such points, which raised the question : E.oé,_ Q,EE one charac-
terise the important difference between the rationals and the reals ?
‘The rationals were dense (between any two rationals there €onn.m_€m%m
infinitely many others), but the set of all rationals was not continuous.
It was perhaps natural to suspect that there were more :.nmﬁo:w_.m than
rationals, but what did that mean ? Try as he might, he could find no
reason to establish or to deny the denumerability of the reals.
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5.3. Non-denumerability of the.real numbers, and the problem of dimension

On 29 November 1873, a year after their first meeting in Switzerland,
Cantor wrote to his friend Richard Dedekind. In his letter, Cantor
posed the problem which his analysis of irrational numbers had directly
suggested. Was it possible to correspond uniquely in a one-one
fashion the collection of all natural numbers N with the set of all real
numbers X of the continuum ? He assumed that the answer was ‘no ’ ;
but he had not been able to find a reason why this should be so, and he
hoped that Dedekind might see a simple answer.to the dilemma. But
Dedekind replied that he could find no reason to prohibit any such
correspondence (Cantor|Dedekind, 12-20).

Before the year was over, however, Cantor had discovered a valuable
key to understanding the nature of continuity, and in 1874 he published
an important theorem in Crelle’s Journal : The set of all real numbers R
cannot be corresponded in a unique, one—one fashion with the set of all
natural numbers N. In other words, the set R is non-denumerable
(Papers, 117). The proof ran as follows. Assuming that the real
numbers w were countable, it followed that they could be placed in a
one-one correspondence with the natural numbers N :

Wy, Woy Wy, Wyy v v vy Wyy v v v (5.3.1)

Cantor then claimed that it was possible, given any closed interval [a, 5]
in R, to find at least one real number neR such that 7 failed to be listed
as an element of (5.3.1). Assuming a < b, he picked the first two numbers
from (5.3.1) which fell within the interval [a, b]. Denoted by a’ and &’
respectively, these were used to constitute another interval [a’, b].
Proceeding analogously, he produced a sequence of nested intervals,
reaching [a™, b"], where 4 and b were the first two numbers from
(5.3.1) lying within [¢"~%, b71]. If the number of intervals thus
constructed were finite, then at most only one more element from (5.3.1)
could lie in [@®, b»]. It was easy in this case to conclude that a number
n could be taken in this interval which was not listed in (5.3.1). Any
real number in [a%, b”] would suffice, so long as it was not the possible
least number indexed in (5.3.1).

On the other hand, if the number of intervals [a”, 5] were not finite,
Cantor’s argument shifted to alternatives in the limit. Since the
sequence a, @, . . ., a%, . . . did not increase indefinitely, but was bounded
within [a, b], it had to assume an upper limit, which he denoted by a.
Similarly, the sequence b, &', . . ., b, . . . was assigned the lower limit 5%.
Were. a® < b®, then, as in the finite case, any real number ne(a®, 5®)
was sufficient to produce the necessary real number not listed in (5.3.1).
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However, were a® =5b%®, he reasoned that 7=a® =5 could not be in-
cluded as an element of (5.3.1). He designated 5 as w,. But w, for
sufficiently large index 7z, would be excluded from all intervals nested
within [a®, b*]. Nevertheless, by virtue of the construction that he had
given, n had to lie in every interval [a®, b*], regardless of index. The
contradiction established the proof : R was non-denumerable.

Cantor’s proof, coupled with the fact that the set of all algebraic
numbers was denumerable, provided an independent corroboration of
Liouville’s proof 1851a that there were an infinite number of trans-
cendental numbers in any given interval [a, b] of reals. But this was
hardly the most significant part of Cantor’s conclusion. - As he described

it, without particular emphasis (Papers, 116) :

This theorem shows why sets of real numbers (for example, the
entirety of real numbers >0 but <1) cannot be uniquely cor-
responded with the set of all natural numbers N. Thus I have
found the clear difference between a so-called continuum and a
set of the nature of the entirety of all algebraic numbers.

But, as he was to discover, the features distinguishing continua from
other kinds of sets were not ‘completely described by the fact that they
were non-denumerable. Nevertheless, with the idea of denumerability
and the existence of non-denumerable sets established, Cantor was now
able to make some of his earlier ideas more precise. For example,
though he had the basic idea for the transfinite numbers in the sequence
of derived sets P’, P”, ..., P®) . . the basis for any articulate distinc-
tion between. P®) and P() was lacking. There was no precise basis
for defining the first transfinite number co following all finite natural
numbers z until it was clear that in fact there were sets much larger
than N, sets that could not be counted or enumerated by the indices of
natural numbers. / ‘

Cantor’s next subject of research produced surprising and unexpected
results. (They are discussed in more detail in Dauben 1974a.) Shortly
after his discovery that the real numbers were non-denumerable, he
must have begun to search for other distinct powers of infinity greater
than the power of the real numbers. Early in 1874 he wrote to Dedekind,
posing a new but clearly related problem: ‘Might it be possible to
correspond a surface (a square, perhaps, including its boundaries) with
a straight line (perhaps an interval with the inclusion of its endpoints)
so that to each point of the surface, one point of the line corresponds,
and conversely ? ’ (Cantor|Dedekind, 20).

Cantor cautioned that the solution was one of great difficulty,
though one might be tempted to say that the answer was clearly ‘ no”’,
and, even more clearly, that a proof was superfluous. In fact, when he
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mentioned the same problem to friends while visiting Berlin in the spring
of 1874, they were astonished at the seeming ridiculousness of the ques-
tion (Cantor|Dedekind, 21).

More than three years passed before Cantor discovered a way to
produce a one—one correspondence between lines and surfaces. Finally,
in 1877, he wrote to Dedekind and explained that, contrary to prevailing
mathematical opinion, the ‘ absurd ’ correspondence between lines and
planes was not impossible. The discovery prompted one of his best-
known remarks : ‘Iseeit, but I don’t believe it!’ (Cantor/Dedekind, 34).

Although Cantor had originally constructed a one-one corres-
pondence between the points of any p-dimensional space and the linear
continuum, the basic idea of his proof can be expressed more easily.
For the simplest case of the two-dimensional plane and the one-dimen-
sional line, he took any point (%, x,) in the plane and matched it with
exactly one y of the line. He did so by considering the infinite decimal
expansions

Xy 0, gy ey %y sy - (5.3.2)

%=PB1, Boy - s By oo . (5.3.3)

The corresponding y under his mapping was then determined as follows :
Y=oy, By, g Bay ooy oy By oo n . (5.3.4)

Unfortunately, there was a difficulty which Dedekind explained in a
letter to Cantor of 22 June 1877 (Cantor|Dedekind, 27-28). In order
to avoid the representation of one and the same value x twice, the
assumption had to be added that no representation be allowed which
from a certain index on was always zero. Otherwise a number x would
have two representations, for example: x=0-3000 ... and x=0-2999
... . The only exception to the above restriction would of course be
the representation of zero itself. But under these conditions, Cantor’s
mapping was necessarily incomplete. Any y of the form

Y=oy, %E %oy .mm“ s ey Oy mE Ov mwi_.. O. .m<+mv cee Amwmv

was inadmissible under his assumptions, since it would have cor-
responded to the two points :

Xy =0y, gy ... 0, 0,0,0, ... Amwav
RN”RE muu CRCRS ] .ms c e o Amm.ﬂv

Fortunately, the damage was not irreparable, and he was soon able to
find an alternative proof which, though more complex, nevertheless
established the general validity of his theorem. It was possible to
determine a one-one correspondence which mapped the points of the
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two-dimensional plane onto the one-dimensional line (Papers, 122-125).
Cantor’s discovery was so startling because it was noB.EnﬂoG.nob-
trary to what mathematicians had believed for so long. He mBBamEﬁmq
criticised the work of others, particularly the work of Riemann and
Helmholtz, who had assumed that the dimension of a space was uniquely
determined by the number of coordinates needed to agn@.m point in
that space. As Cantor had demonstrated, there was no such invariance.
But, as Dedekind was quick to point out, Cantor’s theorem involved a
mapping that was discontinuous, and, as everyone had always umchoQM.
dimension was invariant under continuous, one-one ooﬂm%ob&nbn».m.
Above all, the value of Cantor’s proof was the justification it gave him
for narrowing his study of continuity to the linear continuum of real
- numbers. His next major publications presented a systematic study of
linear point sets, and introduced his transfinite numbers as the keys to
producing a general theory of infinite sets. . .
Though the paper published in 1878 was a triumph for Omuwon. it
was also the cause of some distress and unpleasantness. In fact, it was
the first occasion for open hostilities between Cantor ma.a. one of H.#m
life-long opponents, his former teacher at the University of Berlin,
Leopold Kronecker.

5.4. First trouble with Kronecker

The details of Kronecker’s programme of arithmeticisation, basing all
of mathematics on a finite number of operations involving only the
integers, were outlined in his article ‘ Uber den Zahlbegriff u.A. On the
number-concept ’ : Kronecker 1886a). Cantor, who had written both
his Dissertation and Habilitationsschrift under Kronecker, could not
have been unaware of his extreme position. In the o.mn_% 1870s
Kronecker was building his forces in opposition to such basic concepts
as the Bolzano—Weierstrass theorem, upper and lower limits, and the
irrational numbers. At one point he had even tried to persuade Heine
not to publish his 1872a, but Heine was not deterred. . N

As an editor of Crelle’s Journal, Kronecker was in a position to
refuse any article for publication, and by 1879 he was so appalled at the
direction Cantor’s work was taking that he did just that. Though
Cantor had sent his manuscript on the subject of dimension to the
editors of Crelle’s Journal on 12 July 1877, it did not appear immediately.

1 This assumption was supported shortly after Cantor’s startling article by a number,

of mathematicians who offered proofs in a number of forms m:@ ciﬁr. S:.E:m. &ommnnm
of generality, but the first completely satisfactory argument that @_Sﬂ..-ﬂou was invariant
appeared only in Brouwer 1911a. Cantor’s alleged proof of the invariance of dimension
is discussed in Dauben 1975a. d
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Despite the editors’ promise to accept it, and Weierstrass’s efforts to
P p P

_promote its appearance, no steps were taken to prepare the paper for

press. Cantor, suspecting Kronecker’s intervention, became so agi-
tated over the matter that he wrote a bitter letter to Dedekind com-
plaining about the treatment of his work, and raising the possibility of
withdrawing it from the journal and asking Vieweg to publish it sepa-
rately (Cantor|Dedekind, 40). Dedekind, acting upon his own ex-
perience in such matters, was able to convince Cantor that he should
wait. As it turned out, Dedekind was right: Cantor’s paper finally
appeared in the volume for 1878. But he was so offended by the
apparent reluctance of the editors to give his paper speedy notice that
he refused to publish again in Crelle’s Journal.

- The delay in publication represented the first major conflict that
Cantor was to experience with regard to the acceptance of his work.
No longer could he believe that his differences with Kronecker were
purely academic. He recognised the extent to which Kronecker would
go to prevent the spread of his work. In the years to come, he fought
vigorously against all those who refused to allow the completed infinite;
the transfinite numbers of the new set theory, into the bounds of
accepted mathematics. ‘

5.5. Descriptive theory of point sets

Beginning in 1879, Cantor published a series of four papers dealing
specifically with the theory of linear point sets. He returned to the
concept of derived set that had proven so useful in his research on
trigonometric series, and stressed that the analysis of the properties of
derived sets would eventually reveal the properties of the continuum.

Some preliminaries were required, starting with this definition : If
P lies partially or entirely in the interval [a, 5], then it can happen that
every interval [¢, d] in [q, b] contains points of P. In such a case the
set P is said to be everywhere-dense in the interval [a, b] (Papers, 140-141 )
Cantor immediately connected the ideas of derived and everywhere-
dense sets. A set P was everywhere-dense in an interval [q, b] when-
ever the first derived set P’ of P contained [a, b] itself. Furthermore,
everywhere-dense sets were necessarily sets of the second species, while
first species sets could never be everywhere-dense.

The second definition is this : Two sets M and N are said to be of
the same power if to every element of M one element of N corresponds,
and conversely, to every element of IV one element of M corresponds
(Papers, 141). Cantor singled out two cases : denumerable sets, whose
power was that of the natural numbers N; and continuous, or non-



190 5. The development of Cantorian set theory

denumerable sets, whose power was that of the real numbers R.
Countably infinite sets included the natural numbers, the Hmmodﬁ .EE
algebraic numbers. All sets of the first species were also of this m:.m.ﬂ.
denumerable, kind. But he noted that the rational and algebraic
numbers showed that everywhere-dense sets, and hence sets of - the
second species, could also be denumerable.

Like the derived sets P®) of a given set P, the power of P was given
intrinsically with the set P. Cantor explained the mathematical im-
portance of the concept of power as follows (Papers, 150, 152) :

The concept of power, which includes as a special case the con-
cept of whole number, that foundation of the theory of HEBU.Q..
and which ought to be considered as the most general genuine
origin of sets [Moment bei Mannigfaltigkeiten], is by no means
restricted to linear point sets, but can be regarded as an attribute
of any well-defined collection, whatever may be the character of
its elements . . . Set theory in the conception used here, if we only
consider mathematics for now and forget other applications,
includes the areas of arithmetic, function theory and geometry.
It contains them in terms of the concept of power and brings -
them all together in a higher unity. Discontinuity and- continuity
are similarly considered from the same point of view and are thus
measured with the same measure.

Cantor’s next article of 1880 was short. It continued the same
brick-laying work of the 1879 article, and sought to reformulate old
ideas in the context of linear point sets. It also introduced for the
first time his transfinite numbers. Given a set of the second species P,
he explained how the first derived set P’ of P could then be given the
disjoint decomposition

P'={0Q, R}, ! (5.5.1)

where Q was the set of all points belonging to first species sets of P,
and R was the set of points contained in every derived set of P'. He
defined this last property (intersection) by

R=9(P, P",...). (5.5.2)

Df

Since R was to consist of points belonging to every derived set of P/,
then it was equally true that

R=g(P®, P®), ', ..}, vus (5.5.3)
R=g(P™, Pt ). . (5.5.4)
Consequently, he felt justified in defining R, taken from P, as
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R= P, (5:5.5)
Df
P®) was the derived set of P of order oo (Papers, 147). Assuming
P©®)s£ ¥, he denoted the first derived set of P™®) by P®+1), the n-th
by P®+n). Continuing in this fashion, it was possible to generate
derived sets of the following general form :

NUQS ®© 4+ o Pt W

By allowing v to be taken as a variable, one could then produce ‘an
endless sequence of concepts ’, as he put it :

Pme®) pP@®+h) p@@+n pw) pe®Y) pe®®)  (5.5.6)

Cantor summarised the entire procedure in decisive terms: ‘we
see here a dialectic generation of concepts’, he said, ¢ which always
continues further and thus is free of any arbitrariness’ (Papers, 148).
He also took care to add (in.a footnote which Zermelo failed to include
in Cantor’s Papers) that he first had the idea of the second species sets
and their corresponding transfinite symbols (soon to be named his
transfinite ordinal numbers) a decade earlier (Cantor 1880a, 358).
This note was doubtless in response to an accusation made in 1879,
in which du Bois Reymond claimed priority in the matter - of designating
‘ everywhere-dense ’ sets with his own terminology °pantachisch’.*
Cantor was anxious to make clear that his work certainly had been done
earlier than that of du Bois Reymond. Thus his footnote was.intended
to underscore the origins of his own work on the subject in his paper on
trigonometric series published in 1872. But until he came to terms

“with the metaphysical nature of the transfinites, he referred to them only

as ‘infinite symbols’ (Papers, 160). The derived sets remained the
focus of his research for another few years, and the transfinite numbers,

- the infinite symbols themselves, were taken only for useful tags by means

of which derived sets could be distinguished and identified.

The importance of the infinite symbols, however, was demonstrated
without delay. The paper of 1879 had left unanswered the question of
second species sets and whether they were necessarily everywhere-dense
in any given interval. The new infinite symbols made it easy to
describe a procedure by which second species sets could be identified

! du Bois Reymond had alluded to everywhere-dense sets in 1875 ; he had named
them explicitly in 1879, soon followed with direct reference to Cantor’s own_paper of
1879. He even suggested in not-so-oblique terms that Cantor was misappropriating
ideas not entirely his own. Though the concept of everywhere-dense sets was certainly
of long standing, du Bois Reymond clearly felt some claim to priority in designating the
property such sets exhibited. He must have hoped his terminology, ¢ pantachisch’,
would become standard. Even more clearly, he felt Cantor posed a threat for un-
disputed recognition. See du Bois Reymond 1880a, 127-128,
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which consisted of a single point (Papers, 148). These sets, which
Cantor grouped with sets of the first species, were clearly losing candi-
dates in the search for a complete explanation of the nature of the
continuum. ,

In pressing his study of point sets of the second species further,
Cantor offered a number of definitions and theorems dealing with
various kinds of sets. For example, a set P was said to be isolated if it
contained none of its limit-points ; in other words, when 9(P, P')= &
(Papers, 158). Then, given any set P, an isolated set Q resulted by
simply removing 2(P, P') from P. Thus

Q=P-9(P, P'), (5.5.7)

and consequently

P=0+9(P, P). (5.5.8)

(5.5.8) offered some immediate insights. Clearly, mbw set P could
be considered as a disjoint combination of an isolated set O and any set

that was a divisor of P’. Since P®+1)  P®) it followed that P®) — P®+1),

was always an isolated set. Two decompositions were of special im-
portance, and led to some far-reaching conclusions :

.Nu\nﬁ.w\lmu\\v.*nﬁmhlwivﬁ*n. . .+ANV§\|:|.~U§VV|Tw§‘v“

w~”Aw~|.~U§v+Aw§l.~05v+c ... ) X
4 (P — Pt 4 (P — P@D) 4+ P™), (5.5.10)

(5.5.9)

Following five theorems proving the denumerability of certain types of
sets, Cantor offered a corollary which dealt with non-denumerable sets :
¢ If P is a non-denumerable point set, then P®) is also non-denumerable,
whether « is a finite whole number, or if it is one of the infinite symbols ’
(Papers, 160). :

The transfinite numbers were still merely symbols, employed only
as indices for the sake of adding precision to the distinction between
first and second species sets. But it was only a matter of months
before Cantor was to alter his goals dramatically, abandoning this older
view of the ¢ infinite symbols ’ to introduce the new transfinite numbers.

5.6. The Grundlagen : transfinite ordinal numbers, their definitions and
laws

- By the end of 1882, Cantor had finished a manuscript : Grundlagen
einer allgemeinen Mannichfaltigkeitslehre (‘ Foundations of a general
theory of sets’: 1883a), which outlined a defence of his new ideas in
theological, philosophical and mathematical terms (Papers, 165-208).
He was unusually anxious that its publication proceed rapidly. Towards

——

'
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the end of the year, he wrote nearly every day to Felix Klein, editor of
.EQSQE.R%@« Annalen, and urged the greatest speed wOmmeo 1 He
even visited the press in Leipzig himself, hoping to expedite ﬁ.wm ap-
pearance of his defence, both mathematical and philosophical, of Wﬂ
entirely new mathematics. The Grundlagen established his w,_mom as
the mocjann of set theory, and he subsequently overshadowed even his
closest rivals like du Bois Reymond and Harnack. It was the beginni
of moanrmn.m new, quite startling and profoundly original. aie-
‘va.g‘&on achievement of the Grundlagen was its presentation of the
transfinite numbers as an autonomous and systematic extension of the
real ::B@nn.m. Cantor had reached the point in his research where no
progress in set theory, no advances in his study of continuity, were
wOmmmEo without recourse to the transfinite numbers. His own mbﬁ#o-
mnm._unm_ future hinged in large measure upon the acceptance of the actual
infinite by mathematicians. : o
.OE.HSH admitted that his new ideas might seem risky, but he argued
their simplicity and necessity in a straightforward way. v With oobmoﬂ.b

for the introduction of ideas i i i
0 previously foreign to mat
suggested (Papers, 165) that : g ¢ mathematics, he

So awﬁzm as this may seem, I can express not only the hope
but the firm conviction, that this extension will, in time, have to Wm
Homma.mm as a thoroughly simple, appropriate, and natural one
But I in no way hide from myself the fact that with this undertakin :
I place myself in a certain opposition to widespread views about erm
mathematical infinite and to frequently advanced opinions on the
nature of number. ‘

Cantor’s first concern was to counter mathematicians sympathetic
to Kronecker’s finitism who might easily have refused to read further
H_ME.H ar..n Grundlagen’s first paragraph. He began by explaining the
QwS:oﬁow that had long been recognised between_ the voﬁgmm_m and
actual infinite. The former was used in mathematics as the ver roots
of the calculus. It involved essentially the idea of variation, of mwoémb
beyond any ascertainable bound, but a state never mnﬁcmzv“ oobmamnom
as .oo.d.%~2& or final. He also referred to such infinities as improper
infinities. H.b contrast with these were proper or actual wbmcaomw ’

The mermmmob that his transfinite numbers were equally Lm real
mathematically as the finite whole numbers had only recently come to

! The correspondence between Can i
) : ¢ tor and Klein, largely unpublished, i
-Hb the mnnr:\nm of the Niedersichsische Staats- und ,Cb?nnmmnmﬂmvmzmo%a_w ~m%MMMMHMMm
n particular, see Cantor’s letter to Klein, No. 429, 18 December 1882, and his lerter

No. 430, 20 D i : e
i ecember 1882. This correspondence is referred to again in section 5.10
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consciousness in Cantor’s mind. This recognition represented signifi-
cant progress: ‘I will define the infinite real whole numbers in the

following, to which I have been led over the past few years without

realising that they were concrete numbers of real meaning ’ (Papers, 166).
In the Grundlagen Cantor explained how the sequence of natural
numbers 1, 2, 3, ... had its origin in the repeated addition of units.
He called this process of defining finite ordinal numbers by the successive
addition of units the first principle of generation. It was clear that the
class of all finite whole numbers (I) had no largest element. Though
it was incorrect to speak of a largest element for (I), he believed there
was nothing improper in thinking of a new number w which expressed
the natural, regular order of the entire set (I). This new number w,
the first transfinite number, was the first number following the entire
sequence of natural numbers ». It was then possible to apply the first
principle of generation to , and to produce additional transfinite ordinal
numbers : .
w,w+l,w+2, .., 0+, ... . Am.m.:

Again, since there was no largest element, one could mamwmbm another
number representing the entirety, in order, of numbers w+v. Denot-
ing this entirety by 2w, it was possible to continue further :

ey, Dert Ly 2t 2y wie iy 2O+ Py s 5% s (5.6.2)

(Later Cantor reversed the order of the terms in ordinal multiplication,
so that, for example, ‘2w’ became ‘w2’ ; this latter is the modern
notation.) ;

In attempting to characterise this mode of generation, Cantor allowed
that w could be regarded as a limit towards which the natural numbers N
increased monotonically but never reached. Lest the analogy seem
entirely mistaken, he added that by this he meant only to emphasise the
character of w taken as the first whole number following next after all
the numbers zeN. The idea of w as a limit served to satisfy its role as
an ordinal, the smallest integer larger than any integer neN.

This then was the second principle of generation. Whenever a
sequence of numbers could be considered as limitless in extent, new
transfinite numbers could always be generated by positing the existence
of some least number larger than any in the given sequence. Cantor
expressed the essential feature of this second principle of generation in
terms of its logical function (Papers, 196) : - .

1 call it the second principle of generation of real whole numbers
and define them more precisely: if any definite succession of
defined whole real numbers exists, for which there is no largest,
then a new number is created by means of this second principle of
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.mo:.aa.umob .Srmor is thought of as the Lmit of those numbers, that
is, it is defined as the next number larger than all of them.

By successive application of the two principles it was always possible
to ﬁ.nomcnm new numbers, and always in a completely determined suc-
cession. In their most general formulation, such numbers could be
given in the following form :

vowt + viwt 14 L+ vy
But by proceeding apparently without constraint, there seemed to
be no end to the numbers of this second number-class. Were this the
case, what distinctions could be drawn between the first and second
classes ? Cantor was able to add, however, a third principle which he
nmﬂ.om the principle of limitation (‘ Hemmungsprinzip ), and which was
designed to produce natural breaks in the sequence of transfinite

‘numbers. Consequently it was possible to place definite bounds upon

the mmowsa bc.avonlowwmw (II), and to distinguish it from the third and
successively higher number-classes, with this definition (Papers, 197) :

<<w define therefore the second number-class (II) as the
collection of all numbers o (increasing in definite succession) which can
be formed by means of the two principles of generation :

i . ‘
w, w+l, .., vt el Ly, L w0

.« e oey

with the condition that all numbers preceding o (from 1 on) constitute
a set of power equivalent to the first number-class (I).

In the Grundlagen he went on to establish that not only were the
powers of the two number-classes (I) and (II) distinct, but that in fact
the power of the second number-class (II) was the next larger after that
of the first number-class (I) (Papers, 197-201). ,

. An important advance made possible by the new numbers was the
distinction that Cantor made between ¢ Zahl’ and ¢ Anzahl’. Zahl, or
Z.csvmn. referred to the cardinal sense of the number of objects in a set
without regard to the order in which elements occurred ; Anzahl, or
Numbering, took into consideration the order of elements. The dif-
ference was fundamental. For example, all of the following sets have

‘the same cardinal number, they are equal in power, and are all de-

bcsmnwzw. Nevertheless, their Numberings, their ordinal numbers,
are different :

(@as By« + oy Bygs Bqgy = = ) =ty
(@9 gy - - oy Bpyyy Gpigy « - o @) =w+1,
(agy @gy « « oy Ay« - -, @y, Gg) =w+2,

(B Ggs g5 v 5§ Ay Bys Bgs 5 5 5) =W+ w=2w;

(5.6.3)
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Once his transfinite numbers were defined, Cantor went on to
describe their arithmetic and properties such as prime numbers among
the transfinites (Papers, 201-204). Among the most significant charac-
teristics of the transfinite ordinals was their non-commutativity. In
general, a+b#b+a, nor did ab=ba in all cases. For finite numbers,
commutativity of operations was preserved,. but not for transfinites.
For example :

24t =(1,.2; @y, Bay <.+ o0 By = »s)
ey By » o oy Bigy » 5 0. 15 Z)=tik-2, * (5.64)

by, by, . . .) |
# (g, by, @y by -« o) @y by, .. )=w2.  (5.6.5)

Two sets were defined to be of the same Numbering (that is, their
corresponding ordinal numbers were equal) if they could be corresponded
in a one—one fashion such that the order of elements was preserved in
each case. In a similar way, the powers of two sets M and N were
defined as equivalent if the elements of one set could be ooHnomwo:&mm
one-one with those of the other.!

The newly introduced distinction between Number and Numbering
brought new insights to understanding the difference between finite
‘and infinite sets. For finite sets, regardless of ordering, the Numbering
of elements was always the same. Infinite sets were much more
interesting because of the different Numberings one could find for sets
of the same power. The ZCBUQFM of sets, therefore, was a concept
totally dependent upon the order in which the elements of the set oc-

curred. And there was a correlation between the Number of a set and
the Numbering that its elements might produce, depending upon their
arrangement : - Every set of the power of the first class is denumerable
by numbers of the second number-class and only by such numbers’
(Papers, 169).

Though the difference vnﬁzoob Number and Numbering was in-
distinct on finite sets, it helped to explain how the number concept
functioned in a double sense, and why there had been confusion for
centuries over potential and actual infinities. For finite sets, ordinal

" and cardinal numbers coincided. But because the two kinds of number
were fundamentally different, Cantor could demonstrate the illegitimacy
of trying to press properties of finite numbers onto infinite numbers.
Once the ordinal/cardinal distirtction had been recognised on transfinite

2w=(ay, a, .

! Though Cantor did not identify the powers of infinite sets with transfinite cardinal
numbers until after the Grundlagen had appeared, he later defined inequalities among
cardinal numbers in full detail ; see section 5.10 below, and Papers, 284-285. The
somewhat more involved mmm_ns_odm for inequalities between transfinite ordinal hcavonm
are.discussed in section 5.11 below, and Papers, 320-325.
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E:uvonm he was able to re-apply the same concepts to finite sets, and in
the process find that it was another way to characterise the differences
between finite and infinite domains : if a set were finite, then its cardinal
and ordinal numbers were the same (Papers, 168-169).

5.7. The continuum hypothesis and the topology of the real line

One of the major goals of Cantor’s transfinite set theory was the answer
to a question that seemed quite simple, but one which to this day
remains unanswered : What is the power of the continuum ? This
question, with an answer always believed to be the only possible solu-
tion, has come to be known as ‘ Cantor’s continuum hypothesis ’: The
power of the continuum is equivalent to that of the second number-class
(II) (Papers, 192).

Though Cantor was never able to establish the truth of this conjec-
ture, his Grundlagen did manage to make some progress in refining the
mathematical description of continuous sets. One such advance was
his description of the general conditions necessary and sufficient to
constitute a continuum, which involved the idea of perfect sets : A set P
is said to be perfect if it equals its derived set ; in other words, if P=P’
(Papers, 193).

It was clear that continua had to be perfect sets, since the classic
o.xm.BE? the set of all real numbers R, clearly equalled the set of its
limit-points. But there was a further difficulty: perfect point sets
were not necessarily everywhere-dense. As an example, Cantor offered
his famous ternary set, the set of all real numbers Z represented by

VA Cn

HW+uN+ +w|m+..; ¢,=0or 2. (5.7.1)
Though he could prove that perfect sets never had the power of the
first number-class (I), his ternary set was everywhere-dense in no
interval. Consequently, in addition to the fact that continua must be
perfect sets, another definition was needed: ‘T is a connected point
wnﬁ.&.., for any two points ¢ and ¢’ and for any arbitrarily small number e,
a finite number of point 2, t,, #;, 2,, .. ., t, can always be found in T,
such that the distances 77, %,Z,, 0, . . ., £,2° are all less than €’ (Papers,
194). Thus the characteristic features of continua were identified :
they were both perfect and connected. These, stated Cantor, were the
necessary and sufficient conditions under which a point set could be

! Cantor introduced this set in note 11 of the Grundlagen (Papers, 207). In Papers,
235, he proved that it was of measure zero ; compare section 4.5.
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considered continuous. But there was a serious lacuna in the Grund-
lagen : the question of the power of the continuum was still unanswered.
He intimated that he was hopeful a wno% would be forthcoming,
establishing his conjecture that the power of the continuum was none
other than that of the second number-class (II). v

The corollaries to such a solution would be numerous. It would
immediately follow that all infinite point sets were either of the power
of the first or second number-class, something Cantor had long claimed
but never proven. It would also establish that the set of all functions
of one or more variables represented by infinite series was necessarily
equal in power to the second number-class. Likewise, the set of all
analytic functions, and that of all functions Hownomozﬁm& by trigonometric
series, would also be shown to be equivalent in power to that of the
second number-class (II).

In a continuation of the Grundlagen published in 1884 Cantor
developed a number of ideas which were related directly to the continuum
hypothesis. He began by establishing a number of theorems concerning
perfect sets and various kinds of derived sets. - Characteristic of these
theorems is the following : If P is a point set such that its first derived
set P’ is of power greater than the first, then ‘ there are always points
which belong to all derived sets P@), where « is any number of (I) or
(IT), and the set of all these points, nothing other than the derived set
P®) is always a perfect set * (Papers, 221).

Next, Cantor established a theorem (Theorem E) of interest because
it corrected an error in the Grundlagen that had been discovered by the
Swedish mathematician Ivar Bendixson. Originally, Cantor had
claimed that if P’ were equal in power to the second number-class,
then P’ could be uniquely decomposed into two sets, P’=RuU.S ; the
set R he took to be reducible, meaning there was always some y of (I)
or (II) such that R®) = (¥ (Papers, 193 and 222-223). 'This, in fact,
was not true, as Bendixson pointed out.! S was a perfect set, meaning
that for any number y of (I) or (II), S®'=.S. Thus the question arose
as to what properties distiriguished the denumerable set R from other
denumerable sets. This question was answered in one of Bendixson’s
theorems, as Cantor acknowledged: If R is the set of first power
mentioned in Theorem E, then there is always a smallest number o of
(I) or (II) such that 2(R, R*)= & (Papers, 224).

Cantor then turned his attention to another class of sets closely
related to perfect sets: those he termed ‘closed sets’. If a set con-

! Bendixson’s letters to Cantor are kept in the archives of the Institut Mittag-Leffler,
Djursholm, Sweden. These archives also contain the correspondence between Cantor
and Mittag-Leffler, which is used occasionally in the rest of this chapter mba which is
mostly unpublished.
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tained its first derived set, then it was said to be closed, namely :
9(P, P')=P'. (5:7.2)

Every set might be closed by simply adding its first derived set P’:
thus PUP’ was a closed set. Any set P could be decomposed into the
sum of two sets, one set Q which was isolated and therefore denumerable,
the second set P’ which was closed : P=QuUP’ (Papers, 226-227). He
went on to discuss the properties of sets dense-in-themselves (for which
9 (P, P')=P), perfect sets, everywhere-dense sets, and the like, as well
as inter-connections between them (Papers, 225-229). But he did not
come any nearer to answering the question of the power of the continuum
itself.

5.8. Cantor’s mental breakdown and non-mathematical interests

Nothing caused Cantor greater annoyance than did Kronecker and his
persistent attacks upon transfinite set theory. Cantor was especially
angered by the fact that Kronecker refused to be open, preferring to
save his most critical remarks for lectures and informal discussions with
students. Kronecker thus carried on his polemic privately, or semi-
publically in university, but never openly in print.

In early September 1883, Cantor learned that Kronecker was writing
to the French mathematician Hermite and criticising Cantor’s work as
‘ Humbug ’ (Cantor to Mittag-Leffler, 5 May 1883). Shortly before
Christmas Cantor wrote to Gosta Mittag-Leffler, for a time one of
Cantor’s closest friends, who was responsible as the founding editor of
Acta mathematica for having nearly all of Cantor’s early work on set
theory published in French translation (Cantor 1883b). Cantor con-
fided that he had written to the Ministry of Education, hoping to annoy
Kronecker by applying for a position in Berlin available the following
spring. 'This was a direct expression of Cantor’s lifelong belief that he
deserved the honour of a position at one of two German universities
known for their great mathematicians: either Géttingen or Berlin.
But on 30 December 1883 he admitted to Mittag-Leffler that the
application in Berlin would come to nothing. He had heard from
Weierstrass that the obstacles were largely financial, owing to
Kronecker’s large salary. The letter to Mittag-Leffler was another
occasion for Cantor to re-iterate the bitterness which he felt towards his

‘position at Halle. The entire episode underscored the frustration and

hostility which he felt in realizing that there was little he could ever do
in the face of powerful opposition to improve his position.
If Kronecker was annoyed at Cantor’s move, he returned the challenge
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masterfully. Early in January 1884 he wrote to Mittag-Leffler asking
to publish in the Acta mathematica a short paper in which he would show
‘ that the results of modern function theory and set theory are of no real
significance’ (see Schonflies 1927a, 5). At first Cantor was mildly
receptive to the idea, believing that the article would at last bring
Kronecker’s opposition into the open, where it could be directly
countered and presumably rejected. But Cantor began to have second
thoughts. He feared that Kronecker might reduce his arguments to
personal polemics. It all seemed as though Kronecker, by wanting to
publish in the Acta mathematica, was trying to drive Cantor out of the
“one journal in which he had found a sympathetic editor, just as Kronecker
years earlier had tried to prevent Cantor from publishing any work in
Crelle’s-Journal.

Cantor threatened that Mittag-Leffler could eéxpect him to withdraw
his support for the journal in the years to follow should any polemical
writings appear in the Acta mathematica under Kronecker’s signature
(Schonflies 1927a, 5). Kronecker apparently never sent anything for
the Acta, but the threats that Cantor was willing to make even to his
friend Mittag-Leffler show how sensitive he could be to the conspiracy
he felt was brewing against his work under the auspices of a single man :
Leopold Kronecker. .

While Cantor was becoming increasingly annoyed by the opposition
to his work in Germany, there were other frustrations conspiring to
upset his peace of mind in the early part of 1884. The continuum
problem seemed as intransigent as -ever, though he had reduced it to
the problem of showing that perfect sets were equal in power to the
second number-class (1I).

Then, barely a month later, Cantor experienced his first mental
breakdown (see Grattan-Guinness 1971b, 356 ; and Peters 1961a, 15,
27). It came upon him swiftly, unexpectedly, and apparently lasted
somewhat more than a month. By the end of June he was sufficiently
recovered to write to Mittag-Leffler, but complained that he lacked the
energy and interest to return to rigorous mathematical thinking, and was
content to take care of trifling administrative matters at the university.
He felt capable of little more. But it was significant that he wrote to
Mittag-Leffler saying that he was anxious to return to work, and would
prefer his research to confining himself to the preparation of his lectures
(see Schonflies 1927a, 9). Infact, as soon as he had recovered sufficient
strength, he set off for his favourite vacation resort in the Harz mountains
and returned to his analysis of perfect sets.’ * He also undertook the bold
step of writing directly to Kronecker, and attempted to put their dif-
ferences aside (see Meschkowski 1967a, 237-241).

Less than a week after his letter of reconciliation to Kronecker,

5.8. Cantor’s breakdown and non-mathematical interests 201

Cantor wrote to Mittag-Leffler announcing at last an extraordinarily
simple proof that the continuum was equal in power to the second
number-class (IT). The proof attempted to show that there were closed
sets of the second power. Based upon straightforward decompositions
and the fact that every perfect set was of power equal to that of the
continuum, he was certain he had triumphed at last. He summarised
the heart of his supposed proof in a single sentence : ‘ You see, therefore,
everything comes down to defining a single closed set of the second
power. When I have put everything in order, I will send you the
details * (Meschkowski 1967a, 243).

But on 20 October Cantor sent a lengthy letter to Mittag-Leffler
announcing the complete failure of the new proof. On 14 November he
again wrote saying that he had just found a rigorous proof that the
continuum did 7ot have the power of the second number-class, or of any
number-class. He consoled himself by saying that ‘so fatal an error,
which one has held for so long, makes it an even greater advance to
overcome it ’ (Schonflies 1927a, 17). Nevertheless, within twenty-four

~hours he had decided that his latest proof was wrong, and that the

continuum hypothesis was again an open question. It must have been
embarrassing for him to have been compelled to reverse himself so often
within so short a period of time. Even more discouraging must have
been the realisation that the simplicity of the continuum hypothesis
concealed difficulties of a high order that he was unable to resolve,
despite his best efforts. However, he was not easily discouraged, and
his continuing search for new methods and results marked the final and
most devastating episode responsible for his disillusionment with
mathematics and his discontent with colleagues both in Germany and
abroad. .

Cantor had developed a theory of simply ordered sets, sets for which
given any two distinct elements a and b, either a<b or b<a. He was
confident that a systematic study of the types of simply ordered sets,
in particular the rational and real numbers as given in their natural order,
would make new advances possible (for details, see section 5.11 below).
Consequently he prepared an article entitled ‘ Principien einer Theorie
der Ordnungstypen ’ (‘ Principles-of a theory of order-types ’ : 1885a),
which he sent to Mittag-Leffler for the Acta mathematica. 'The manu-
script was partly set in type and dated 21 February 1885, but not pub-
lished until it appeared in Grattan-Guinness 19705.

The Principien was a remarkable paper. To deal with simply
ordered sets like the rationals or reals, Cantor introduced new concepts,
including those of coherent and adherent sets and their order-types.
Designating the type of simply ordered set represented by the rationals
as 7, he produced a general theorem establishing the necessary and
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sufficient conditions for any set to be of type n. He also introduced 6

as the simply ordered type represented by the continuum of all real -

numbers taken in their natural order on [0, 1]. .

The Principien, in addition to such technical mmﬁno,nm_ oobamz.uma
Cantor’s first explicit statement that pure mathematics was H.Hoﬁ.?:m
other than pure set theory. By this Cantor meant that .nrn principles
and results of set theory were so general and so penetrating Q.En all of
mathematics could be understood in terms that were essentially set-
theoretic in nature (Cantor 18854, 84). .

Despite the importance of his theory of simply ordered types, to
Cantor’s dismay Mittag-Leffler wrote on 9 gmaor 1885 to suggest that
the Principien be withdrawn from press. Mittag-Leffler was convinced
that the publication of Cantor’s newest research, before vo had been
able to obtain any positive results from it, would harm his reputation
rather than advance it. He added that if Cantor’s set theory came into
discredit because of the Principien, it would take n.Eow Fbm&.& .moﬂ any of
Cantor’s work to win general acceptance among Bmﬂrmsmﬁﬁn:m. He
even -added that though Cantor’s ideas concerning simply ordered sets
might never be appreciated in his lifetime, it would perhaps be re-
discovered by someone a hundred <years later, and then Cantor would
receive the credit he deserved ! (Grattan-Guinness 19706, 102).

In recalling this episode more than a decade later, Cantor confided
in Poincaré his real feelings about Mittag-Leffler’s request that he
not publish the Principien in the Acta mathematica : * It was soon clear

‘to me that he was doing this in the interest of his Acta Mathematica’

(ibid., 105). Cantor was deeply hurt by Mittag-Leffler’s rejection of his
newest research. More than his polemic with Kronecker, ‘more than
his nervous breakdown or the trouble he was having in finding a @Hw&
that his continuum hypothesis was true, Mittag-Leffler’s suggestion
that he not print his work in the Acta 3&@3&&.& .mmmBom the oﬁ.:wzmmﬁ
blow of all. Though he never admitted that H.rw incident affected in any
way his personal regard and friendship for gﬁw@-ﬁ&ﬁnb he wrote less
frequently, and only seldom did he mention matters concerning r.pm
research. He felt as though the last mathematician at all sympathetic
with his struggle to establish the transfinite numbers had mvwbaomwmm
him. He published only once more in the pages of the Acta mathematica,
and that was a paper (1885b) which had already been accepted.
Instead, Cantor began to concentrate Boao_mm:m more upon wnoEMBm
f philosophy, theology, and the Bacon—Shakespeare controversy (see
mnmﬂnwul@ﬂmwbamm Nwwmww. esp. pp- 363-365; and gomowwoﬁmwn 1967a,
172, 264). Isolated and alone in Halle, he began to teach mvmowovrv.a
and to correspond with theologians who provided a natural wcnnﬂ for his
need to communicate the importance and implications of his work. In
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turn, his contact with Catholic theologians may have made his own re-
ligious sympathies all the stronger. By the early part of 1884 he could
write to Mittag-Leffler that he was not the creator of his new work,
but merely a reporter (Schonflies 1927a, 15-16). He was even more
direct in a letter written to Hermite during the first month of 1894, in
which he claimed that it was God’s doing that had led him away from
serious mathematics to.concerns of theology and philosophy (Mesch-
kowski 1965a, 514-515) :

But now I thank God, the all-wise and all-good, that He
forever denied me the fulfilment of this wish [for a position at
university in either Géttingen or Berlin], for He thereby con-
strained me, through a deeper penetration into theology, to serve
Him and His Holy Roman Catholic Church better than I would
have been able to with my probably weak mathematical powers
through an exclusive occupation with mathematics.

At one stroke Cantor signalled the many disappointments and doubts
accumulated over more than two decades. His remarks reflected the

. frustration that he must have felt at being unable to solve the continuum

hypothesis, and the disastrous effects which both the relentless attacks
from Kronecker and Mittag-Leffler’s response to his work on order-
types had occasioned. Realising that no positions were ever going to
be offered him in either Géttingen or Berlin, Cantor turned to other
interests less demanding and more positively reinforcing. By the end
of his life, in the spirit of Pope Leo XIII's encyclical Aeterni patris, he
saw himself as the servant of God, a messenger or reporter who could .
use the mathematics he had been given to serve the Roman Catholic
Church (see Dauben 1977a). He firmly believed that ‘ for the first
time Christian philosophy will learn from me the true theory of the
infinite * (Meschkowski 1965a,.513). Convinced that he had been
inspired and helped by God, Cantor was sure that his work was of conse-

quence, despite the failure of mathematicians to understand the im-
portance of his discoveries.

5:9. Cantor’s method of diagonalisation and the concept of coverings

One of Cantor’s most important projects in the late 1880s was the forma-
tion of a professional society for the promotion of mathematics in
Germany. He viewed the idea as an alternative to the tradition-bound
universities and the poorly-organised Gesellschaft Deutscher Natur-
forscher und Aerzte (“ Society of German scientists and physicians ).
Above all, he felt his own career had been greatly damaged by the prema-
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ture and prejudiced rejection of his work by the prevailing o.mﬁwv:mrsonﬁ
led by Kronecker, and he hoped that an independent organisation <.§ch
provide an open forum, one that would give younger .Bmﬁrwamsnsnm
encouragement and a fair hearing of new, even radical, ideas.

The new society, the Deutsche Mathematiker-Vereinigung (‘ German
Mathematicians’ Union ’), held its first meeting in 1891 in Halle, and
elected Cantor its first president. (On the history of the Union, see
especially Gutzmer 1904a and Gericke 1966a.) As his own .ooa.lvz-
tion to the Union’s first proceedings, he presented a theorem using a
powerful new method to establish the existence of non-denumerable
sets (Papers, 278-280). He thereby reconfirmed his earlier .Gmﬁa
proof of the non-denumerability of the real numbers (see section 5.3
above), but he was able to go much further. He had made a m.cbmmu
mental . advance of major significance for the future of Q.mbmﬁ_::m set
theory : ‘ This proof seems remarkable not only because of its great
simplicity, but above all because the principle which it follows can be
extended immediately to the general theorem, that the powers of &6:..
defined sets have no maximum, or, what is the same, that every given
wmmnmmmﬂm L can be replaced by another M which is of greater power than
is L’ (Papers, 279). . , .

The proofs that Cantor offered in his paper of 1891 hinged on his
new method of diagonalisation. Relying upon only two elements,
m and w, he considered the collection M of elements E=(x;, %, . . ., %,
.. v, where each x, was either m or w. As examples, he suggested :

%

El=(m, m, m, m, ...), (5.9.1)

El=(w, w, w, w, ...), (5:9.2)

EM=(m, w, m, w, . ..). ‘ (5.9.3)

He then claimed that the collection of all such elements M was non-
denumerable : ‘ If E}, E,, E,, . . ., E,, . .. is any simply infinite sequence

of elements of the set M, then there is always an element E, of E which
corresponds to no E,’ (Papers, 278). In his proof he first listed the
elements of M, assumed to be denumerable : .

Ei=(an, a1, - - - Qg « - -)
Ey=(ag, asg, - -+ Qg - - -)

e (5.94)

Each element a,, of the array (5.9.4) was taken to be either m or w.
He then defined a new sequence by, by, ..., b, ... . Again, each
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b, was -either m or w, but determined so that b,#a,. Then
Ey=(by, by, bs, . ..) was an element of M, but it was immediately clear
that Eos E, for any value of the index ». Using only two elements m
and w, he had shown that from these alone a new set could be generated,
and one of greater power. In fact, the method of diagonalisation pro-
vided him with an easy means of showing that the ascending sequence of
powers of well-defined sets had no maximum. In other words, given
any set L, it was always possible to produce from elements of L another
set M which was necessarily of higher power than L itself. .

Above all, Cantor had advanced significantly beyond the specific
conclusion of his earlier paper of 1874, and had proved the existence of
more than just one non-denumerable transfinite power without having
to make any reference to irrational numbers or to the limits of infinite
sequences. The comprehensiveness of his new method of diagonalisa-
tion made the paper of 1891 an important contribution to the develop-
ment of set theory. As an example, he considered the linear continuum
L, the set of all real numbers on [0, 1], and the collection M of single-
valued functions f(x) which assumed only the values 0 and 1 for any
value of x in [0, 1], and proved that :* The set M of single-valued func-
tions f(x) assuming only the values 0 and 1 on the interval [0, 1] is
greater in power than the set L of real numbers x€[0, 1] (Papers, 279—
280 ; compare Fraenkel 1953a, 64).

Similarly, the diagonalisation argument made it possible for Cantor
to show that given any set, the set of all its sub-sets was always of a
power greater than the parent set itself. Though he apparently did not
realise it at the time, the means were now available whereby the con-
tinuum hypothesis itself could be given a direct algebraic formulation.
But the'discovery of how this could be done was not made until July
1895 (see section 5.10 below). -

* One last feature of Cantor’s paper of 1891 deserves notice. Unlike
the Grundlagen, where powers were never considered as numbers, he
had come to see that powers actually represented the sole and necessary
generalisation of the concept of cardinal number (Papers, 280). Thus
regarded as powers, transfinite cardinal numbers should enjoy the same
reality and definiteness as did the finite cardinals. The only difference
involved the non-commutativity which distinguished transfinite numbers
operationally from their finite counterparts. But in emphasising the
fact that powers were to be regarded as necessary generalisations of the
finite cardinal number concept, he was indicating a significant advance
in his conceptualisation and representation of the basic principles of
transfinite set theory.
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5.10. The Beitrige : transfinite alephs and simply ordered sets

Cantor’s last major publication was his Beitrdge zur Begriindung der
transfiniten Mengenlehre (‘ Contributions to the founding of transfinite
set theory’), issued in two parts as 1895a and 1897a.* In terms of
new results, it made few startling advances. Where it was most innova-
tive, it either improved the scope and presentation of procedures like
multiplication or exponentiation of transfinite numbers, or it refined-
more successfully the details of conclusions already obtained. Above all,
it introduced for the first time his special notation for the cardinal
numbers, the alephs, where in particular ¥, expressed the cardinality of
denumerably infinite sets and was thus the smallest of the transfinite

alephs: :
Cantor opened the Beitrdge with what has become a classic defini-

tion: ‘ By a ‘“set” we understand any collection M of definite, distinct’

objects m of our perception or of our thought (which will be called the
elements of M) into a whole’ (§1; Papers, 282). Powers, which he
had come to regard since the Grumdlagen as cardinal numbers, were
defined in terms of the process of abstraction introduced in his 71887a
(Papers, 411-412). He now wrote : ‘ We call *“ power ”” or “ cardinal
number ” of M that general concept which, with the help of our active
thought-process, arises from the set M, abstracting from: the character

of its various elements m and from the order in which they occur’ '

(§1; Papers, 282).

Here Cantor’s philosophical idealism was plain. Gottlob Frege later
criticised him sharply, however, for depending upon such lax and un-
rigorous formulations. He particularly disliked Cantor’s use of abstrac-
tion in defining both ordinal and cardinal numbers. Nevertheless, he
believed that Cantor’s theory could be salvaged from its uncritical
presentation, and once opined that, basically, the results of transfinite
set theory were sound, though its foundations required much more
careful scrutiny.? ,

Equivalence between sets and their corresponding cardinal numbers
was defined no differently in the Beitrdge than in previous presentations

1 Part 1 of the Beitrdge was translated almost immediately into Italian as Cantor
1895b. Both parts were translated into French as Cantor 1899a. English-speaking
readers had to wait until 1915 for a translation made by P. E. B. Jourdain (Cantor 1915a).
All references in this chapter to the Beitrdge are made first to the appropriate section,
and then to the corresponding pages of the Beitrdge in Cantor’s Papers.

2 Frege criticized Cantor’s idealism even before the Beitrdge appeared (Frege 1892a,
270). But he also made it clear that he thought the transfinite set theory could be given
a rigorous foundation, one that would make it entirely acceptable mathematically (see
Frege 1892a, 272). For an even more critical evaluation of Cantor’s use of abstractions,
see Frege’s unpublished draft version 1890a of an earlier review of Cantor’s work.
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c% .Ombﬁomm theory. One important question concerned the compara-
gr@ﬂ of omﬁ.&sm_m, for which he introduced this definition: Given
nH.E. b=N (his way of denoting the double process of abstraction
which produced cardinal numbers a and b), then if : (1) there is no
proper subset /" < M such that M’ ~ N, and (2) theré is a proper subset
N’ <N such that N'~ M, then it is to be said that a<b or b> g (§2;
Papers, 284-285). ’
A.;Em was essentially the same definition of the order relation for
cardinal numbers that Cantor had given as early as 1887. But he had
gone further in 1887 and claimed that if M and N were two non-
equivalent sets, then one always had to be equivalent to a proper subset
of the oﬁ.ﬁn (Papers, 413). Moreover, he noted in consequence of his
characterisation of order among the powers of sets that whenever two
sets M and N could be mapped in a one-one fashion to proper subsets
of each other, so that M~ N'<N and N~ M’ <M, then M and N were
necessarily equivalent. This same theorem appeared as Theorem B
of the Beitrdge’s section 2, but it was one which he had never been able
to prove directly himself. The theorem was later established inde-
pendently by Felix Bernstein and E. Schréder, and has subsequently
come to bear their names.! Cantor noted in the Beitrdge that the
mmvaaﬂ.lw@nbmﬁ&z Theorem, as well as three other theorems dealin
with equivalence relations among sets, followed easily from a @Hmioc&m
stated but unproven theorem, the trichotomy law : If @ and b are w:%
two cardinal numbers, then either =5, a>borb<a (§2; Papers mmmv%
Cantor had already shown that, given any two cardinal bcmd_uwaw..
only one of these order relations could hold, but he was unable to ﬁnoﬁw
that exactly one always had to be true. The pernicious complication
concerned the case of two cardinals represented by sets 4 and B
éro.nn A was assumed equivalent to no part of B and B was mmmcaom
nacimﬁonﬁ to no part of 4. He conjectured that this could only happen
for finite sets where 4 and B were equivalent. But he was unable to
show that the same could not occur on infinite sets. Consequently.
92@ was no way he could establish the necessary comparability of &M
cardinal numbers, finite and infinite. The matter was critical. for if
they were not comparable, it would be impossible to arrange all mﬁ&:&

numbers in an ordered sequence, and in turn, it would be impossible to

say whether one of two given cardinals was necessarily larger than the
other. This was a grave matter for his continuum hypothesis, for if
the power of the continuum were a non-comparable cardinal b“.:dvﬁ.
then he could never show that it was in fact equivalent to the power 0m
the second number-class, which was a comparable cardinal by virtue

! For the papers by Bernstein and Schréder dealing wi i
r . g with the e 1
see Schroder 1898a and Bernstein 1898a. See also Zermelo Nwsa”uwﬁumn.ﬂno o B,
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of its definition in terms of a well-ordered set. He assumed all along
that every set could be well-ordered, and thus he could overlook a
multitude of related difficulties while being able to assert, as a conse-
quence, that all cardinal numbers were comparable. .wca he never
published any proof of these claims, and chose not to raise the subject
again in either part I of the Beitrdge or its successor of 1897. -

Like his definitions of order relations, rules for the addition and
multiplication of any two cardinal numbers were first m?.o: in an earlier
paper, Cantor’s Mitteilungen (1887a), but now took nr_.w form : .H.r.o
union of two sets M and N, which have no elements in common, is
denoted (M, N). The cardinal number of (M, N ) depends only upon
the cardinal numbers e=M and b=N. This leads to the definition
of the sum of @ and b: a+b=(M, N) (§3; Papers, 285-286). Since
the power of the sets in question was independent of the order of the
elements in either set or their union, the addition of cardinal numbers
was commutative, and a+b=5b+a. For multiplication, ‘ every element
m of a set M may be joined with each element 7 of another set to form
a new element (m, n) ; we denote the set of all these elements (7, z) by

(M . N), and call this the ““ union set of M and N”. Thus (M.N)

={(m, n)}.. If a=M and b=N, then the product ab is defined as
ab=(M.N)’ (§3; Papers, 286). o

There was a conspicuous difficulty with this definition. Hunom:o.nw
were defined for cardinal numbers in terms of their corresponding sets.
These were combined to form a new set, a product set, but this was done
for only two sets at a time. Thus the procedure could not be Qmao:aom
directly to include any more than finitely many products. But in 1895
Cantor explained how it was possible to represent the power of the
continuum as an infinite exponentiation of the form 2*. It was conse-
quently of special importance to be able to define transfinite exponentia-
tion. He was able to do so by a significant innovation : the idea of the
covering of a set (§ 4; Papers, 287):

By a ‘ covering of the set N with elements of the set M’ or
more simply, by a ‘ covering of NV by M’, we understand a rule
by which, to each element 7z of N a definite element of M is cor-
responded, whereby one and the same element of M may be used
repeatedly. The element corresponded with 7 from E is clearly
a single-valued function of # and can therefore be designated Xav -
it is called the ‘covering function of n’, and the corresponding
covering of N is called f(IN). .

Drawing upon an example already used in the paper of .Hwﬁ to show
that the set of single-valued functions was at least equivalent to the
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power of the continuum, Cantor suggested a covering by two elements
of M, my and m,. If n, represented a particular element from N, then
a covering function could be given such that f(n,)=m,, and f(n)=m,
for all other values of z in IV excepting the value 7,.

"The set of all such covering functions served as the basis for defining
the exponentiation of cardinal numbers. ' Specifically, the set of all
different coverings of a set N by the set M produced a set with elements
f(N), which Cantor denoted (N|M). This he called ‘ the covering set ’,
and (N|M)={f(N)}. Since the definition depended only upon the
cardinal numbers = and b= N, then the cardinal number of (N|M)
served to define the exponentiation :

o =(N|M). (5.10.1)
Df

Cantor was very much pleased with the new results he could suddenly
obtain with merely * a few strokes of the pen’ (Papers, 289), and he sent
off word of his discovery on 19 July 1895 directly to Felix Klein, editor
of Mathematische Annalen. By then the first part of the Beitrige was
already in press, but he was determined to insert the new definition of
exponentiation, and to explain its ramifications in a freshly written
fourth section. The language of his letter to Klein appeared nearly
word-for-word, without change, in the Beitrdige, which still bore the
date March 1895 though he had not by then included the very important
conclusions made possible by the definition and rules of exponentiation
for cardinal numbers. As he told Klein on 19 July 1895,  from the -
following example one can see how fertile the simple formulae extended
from the powers are’. The example offeréed was none other than an
exact algebraic determination of the power of the continuum, expressed
in terms of two other known cardinals of lesser degree. This was some-
thing that he had never managed to do previously.

Cantor recognised that the power of the linear continuum, denoted
by 0, could be represented as well by the set of all representations :

f(1)  f2) f(

v)
.x]lwluTlel'T....T > w5 oy AMHO.NV

_where f(v)=0 or 1; x represented b,E.D,cQ.m of the continuum [0, 1] as

given in the binary system (§4; Papers, 288-289). Though the
numbers x=(2v+1)/2# <1 were represented twice, they were the only
numbers in [0, 1] that failed to have a unique representation, and they
could be discounted in the question of cardinality, as he showed, since
they were only countably infinite in number. By denoting the set of
elements with a double representation {s,}, then

_—

2v=({s}, X), (5.10.3)
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X representing the entire set of x given in (5.10.2). Removing from X
any countable set {¢,} and denoting the remainder by X, then

N”Qn:w. NHV = anm_\lu.ur Aswew. ;N‘Hv. Am.HO.A.v
({s} X)=@{s} {&h X1)s (5.10.5)
and since
.mnwulwv ~ T,cwu mnmvv ~ mucw. X1~ Xy, AMHOQV
then _ ‘
X ~({s,}, X), and thus 2% =X =0. (5.10.7)

For the first time, algebraically, Cantor had a firm grasp of what
the power of the continuum must be. Even before he had introduced
his niew symbol ‘ &, ’ for the smallest transfinite cardinal number, he was
using it to show the light he hoped the exponentiation 2% would shed
on his long-standing promise to establish the truth of his conjecture.

5.11. Simply ordered sets and the continuum

Cantor realised that, in order to describe completely the structure of the
continuum, more refined means were necessary than appeals to well-

ordered sets and their ordinal and cardinal numbers. Since no well-"

ordered set possessed the more interesting and essential properties of
the continuum, in particular the property of everywhere-denseness, he
turned to the study of simply ordered sets in order to advance his study
of continuity. A set S for Cantor was simply ordered if there is some
rule by which all its elements are ordered such that given any two,
one can always be said to precede the other. Thus for any two elements
m, and m, of a simply ordered set, either m, <m, or m; >my. If m, <ms,,
my<mg, then it is always true that m,<m; (§7; Papers, 296). Dif-
ferent sets could be arranged with different ordinal properties. For
example, the rationals in their natural order on the real line were
everywhere-dense, though they could be arranged to form a denumerable
sequence. . :

Cantor designated the order-type of any given set M by M : ‘Every
ordered set M has a definite “ order-type ”, or more briefly a definite
“ type ”’, which we denote by M ; by this we understand the general
concept which arises from M if we only abstract from the character of
its elements, but retain the order in which the elements occur’ (§7;
Papers, 297). Two simply ordered sets were said to be  similar, ex-
pressed M~ N, if and only if there was a one-one correspondence
between the two preserving the order in which elements occurred in
both sets. Since two simply ordered sets could have the same order-
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type if and only if they were similar, it followed that =N and M~ N

each implying the other. Moreover, since sets of equal type éoam

always of equal cardinality, M~ N always impli M=N,
the converse was clearly bwa true in MQ_NMMBE_& st M=l ﬂro:mr
Cantor denoted ordinal numbers by lower case letters of the Greek
alphabet. For example, the well-ordered set of natural numbers 1, 2,
3 ... was moﬁonom as type w. The simply ordered set of Hmmo,bmm
b:%cmu.m in their natural order on [0, 1] was denoted by the order-type 7
Mwmwm M%,mwn.qu oaan‘o& set of real numbers on [0, 1] in their natural
In reversing the order of elements,? a new set was produced which
n.umm;o.n denoted *M, with order-type *a, assuming that «=M. For
mE:o.Qmaw it was always true that *a=o. To make vOmmmEo the
mongmnob of various order-types, arithmetic operations were also
introduced. These followed the definitions given earlier in the Grund-
Naw.ms and included the familiar caveats concerning the non-commu-
MMMMMH MMHM.H»QQ of transfinite operations whenever order-types were
.Hrm set R of n.mﬁobmﬁ numbers within (0, 1) was a particularly fasci-
nating one as a simply ordered type. Though it was countable, and
ﬁrmnmmom‘o of cardinality R, it produced distinctly different o&m?w mm.
mowabms.m.:wob how the precedence of elements might be taken vﬁHD
characterising the properties peculiar to R, Cantor noted that mm was
denumerable. that there was neither a lowest nor a highest element
and that between any two elements of R there were infinitely man u
others belonging to the set. Thus R was everywhere-dense %.H.romw
Muovann._o.m. he claimed, were the necessary and sufficient w.nowmwmom
g MMW.H:E:N the order-type 7, exemplified by the rationals (§9; Papers,
Ormnmonnlmgm the ordinal properties of continuous sets, however
Huow,.w@ a special problem. The special character of :Bmm-wowbﬁm m
mma.:__mn component of continuous sets, also had to be translated into wrm
language of order-types. This Cantor did, first by defining fundamental
sequences, and then by introducing the concept of limit elements (§10;
N@&.& 307-308). Drawing upon the elements of his theory of Hmmm
:Eﬁ.vnnmv he reminded his readers that every fundamental sequence
{%,} in the linear continuum X had a limit element % in X, mbmw con-
versely, every element of X was the limit element of some ?W%Bmam_

! Cantor’s first substantial effort to stud i
G | eff y the types of simpl d, :
Principien (1885a). Cantor discussed the simply ordered wa M.oh» nﬂﬂwom M.M.wnwwﬂm M..m
Aﬁﬁwmwmﬂw uOulwody and the type 0 in § 11 (Papers, 310-311). s
antor first introduced the concept of inverse order-types i incipi
L - in the P;
later devoted part of section 7 of the Beitrdge to the same Bummmw_ Qo@mﬁ wmﬂw.v?m:. and
. 2 ’ 7
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sequence in X. Moreover, as the set of all real numbers in [0, 1], X
contained as a subset the set of all rational numbers R of type 7, and
thus it was true that between any two elements x, and x; of X there
were an infinite number of additional elements of X.

Collecting all of these properties together, Cantor claimed that
quite apart from the specific example of X, such properties were both
sufficient and necessary to characterise the ordinal type 6 of any linearly
continuous domain. He formulated the entire matter as follows (§ 11 ;

Papers, 310) :

If a set M is so constituted that
1) Itis ‘ perfect’, , _
2) That there is a set S contained in M with cardinality S=§,,
which is so related to M that between any two elements 2, and m,
of M elements of S occur,
then [the order of M is of type 6,] M=04.

This theorem brought the first part of Cantor’s Beztrdge to a close.
It was two years before the sequel to Part I appeared in 1897. Some-
time in 1895 he discovered the first of the paradoxes of set theory,
specifically those involving the largest ordinal and cardinal. numbers
(see section 6.6). He had probably come upon them in the course of
trying to establish his comparability theorem for transfinite cardinal
numbers, and in the attempt to deal with the related questions of whether
every transfinite power was necessarily an aleph, and whether every set
could in fact be well-ordered. - These problems may account for his
delay in forwarding the second half.of the Beitrdge to Felix Klein for
printing. They may also explain why Part I made few references to
well-ordered sets and went no further than to introduce the first trans-
finite aleph, 8, _

Perhaps Cantor believed he might soon be able to resolve the com-
plications which the paradoxes of set theory seemed to raise. It may
be that he even hoped to apply the new ideas introduced in Part I of
the Beitrdge to produce a proof that every set could be well-ordered.
In turn this would settle both the theorem concerning comparability
of the powers of all transfinite sets, as well as the question of whether
every cardinal number was also an aleph. He may even have thought
that the new algebraic formulations of the relations between cardinal
numbers he had most recently discovered would enable him to solve the
continuum hypothesis itself and to prove conclusively that 2% =¥N,.
But this was not to be. . ‘

]

- For example, given the well-ordered set F=(ay, a,, ... ; by, b
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5.12. Well-ordered sets and ordinal numbers

Part II of the Beitrdge presented the bulk of Cantor’s important theory
of the transfinite ordinal and cardinal numbers. These had not featured
with any prominence at all in Part I, but they now appeared in a detailed
study which would carry his readers beyond ¥, to the first of the non-
denumerable, transfinite alephs.

The first step was to define the concept of well-ordered set. This-
was essential, for Cantor had already shown that sets could be ordered
in many different ways, with diverse properties. But in arithmetic,
as he had indicated as early as the Grundlagen, well-ordered sets were
intrinsic to the process of counting by the successive addition of units.
Moreover, he found in the concept of well-ordered sets the rigorous
foundation for his transfinite numbers, something that his earlier

‘ principles of generation’ had failed to offer in the Grundlagen (§12 ;
Papers, 312) :

A simply ordered set F is said to be well-ordered, if its elements f
increase from a lowest f, in a definite succession, so that the following
two conditions are fulfilled :

I. ‘ There is in F a smallest element f, ’.

II. “If F’ is any subset of F and if F contains one or more elements
larger than all elements of F', then there exists in F an element f
which follows next after the entirety F', so that there is no element of
F which falls between F' and f'°.

Before Cantor could advance adequate definitions for his transfinite
ordinal and cardinal numbers, he had to introduce the concept of sections
or segments (‘ Abschnitte ’) of well-ordered sets :- * If f is any element
of a well-ordered set F' different from its first element f,, then we call
the set 4 of all elements of F which <f a “ section of F”, and in fact
the section of F determined by f. We call the set R of all other elements
of F including f the “remainder of F” ...” (§13; Papers, 314).

. g« 5 §
€1, €3, C3), a3 determined the segment (a,, a,) and the remainder (7 A

by, e 6y Gy ¢3); by determined the segment (a,, ...) and the re-
mainder (by, ...; ¢, ¢ ¢3); ¢, determined the segment (ap ---3
by, .. .5 ¢;) and the remainder (c,, cj).

Inequalities were introduced between segments as follows. Given
two segments A and A’ determined respectively by two elements f
and [ of F, A’ was said to be a segment of 4 if f <f. In such cases,
A’ was said to be the lesser segment, written 4’ < 4. Clearly, for every
segment 4 of F, A<F. In terms of such segments, Cantor was able
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to state clearly the relations that were possible under similar cor-
respondences between any two well-ordered sets F and G in the following
form: If F and G are any two well-ordered sets, then either (1) F and
G are similar to each other, (2) there is a definite segment B, of G
which is similar to F, or (3) there is a definite segment 4; of F which is
similar to G, and each of these three cases excludes the possibility of the
other two (§ 13 ; Papers, 319).

The results of this theorem were translated directly into important
conclusions concerning the order of any two ordinal numbers in general,

“once these had been defined as follows : ‘ Every simply ordered set M

has a definite order-type M ; it is the mo:nn& concept which arises from
M if the character [but not z.:w order] . . . is abstracted from the elements
of M.... Wecall the o&m?&ﬁa of a well-ordered set F the * ordinal
number 7 corresponding to it ’ (§ 14 ; Papers, 320-321).

Order-types, defined as the concept obtained from a well-ordered
set by abstracting all individual properties of the elements while retain-
ing their order, were represented as follows: «=F, B=G. Given any
two such sets F and G such that F=« and G = B, then the theorem above
(concerning the relations possible between segments of similar sets)
insured that only three mutually exclusive possibilities could occur.
Either: (1) F~G, in which case a=8; (2) G contained a definite
segment B; such that F~ B, then a<f; or (3) There was a definite
segment \_F of F such that G~ 4, : then a> 8.

Moreover, because of' the comparability of segments, it mozoin&
immediately that if « and 8 were any two ordinal numbers, then exactly
one of three possibilities was necessarily true: either a<f, a=p or
a>pB. The nature of segments also ensured that such relations were
transitive : among any three ordinal numbers, if < f and B<y, then
« <y, and it followed that the set of all ordinal numbers, taken in their
order of magnitude, constituted a simply ordered set. Later Cantor
showed that the set of all ordinal numbers was actually well-ordered,
since every subset of the set of all ordinals had a least element and every
element of the set had a definite and unique successor.

Cantor used the first number-class (I) of finite ordinals v to deter-
mine the first transfinite cardinal number X,. However, to introduce
the second transfinite cardinal N, it was similarly necessary to establish
securely the succession of transfinite ordinal numbers of the second
number class. First he gave this definition : ¢ The second number-class
Z(X,) is the entirety {a} of all order-types « of well-ordered sets of the
cardinality N,’ (§15; Papers, 325). He went on to prove that Z(X,)
was well-ordered, mnoB which he could then define its cardinal number
N;, and establish that &, < ;.

Cantor ended the Beitrdge, not with discussion of the cardinality
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of the continuum and the solution of his ‘continuum hypothesis that
2% =¥, but instead with a detailed study of the arithmetic character
of the numbers of the second number-class. At first he paid special
attention to the numbers of Z(¥,) which could be expressed as poly-
nomials in w. In fact, such numbers could always be uniquely ex-

pressed in the form : ,
p=wkryt+wtly 4. .+, (5.12.1)

Later Cantor was able to generalise such representations for ordinals
of the second number-class without restricting the degree w to finite
values. No transfinite ordinals of the form w®, for example, could be
included rigorously in his transfinite number theory until he had
established a satisfactory means of introducing the product of trans-
finitely many ordinal numbers. To do so, he invented the process of
transfinite induction which was similar, ,UE by no means the same as,
the familiar mathematical (or ooBEanov induction on well-ordered sets
of type w (§ 18 ; Papers, 336-339).

In the final section of the Beitrdge, Cantor investigated the properties

_ of a special kind -of number, the ‘ epsilon numbers ’ € of Z(X,) for which

wf=e. These were central to his introduction of transfinite cardinals,
since these were determined by those  initial elements ’ of each number-
class which could not be reached or produced by any arithmetic or
exponential combination of elements preceding them. Initial ele-
ments, like w and Q, were transfinite numbers which were preceded
by no numbers of equal power. Moreover, to every transfinite power
there was only one such number, and every such ¢ first number ’ was
necessarily an epsilon number. Thus there was a basic connection be-
tween the succession of transfinite alephs and the epsilon numbers which
he introduced at the very end of the Beitrige (§ 20 ; Papers, 347-351).
Cantor’s presentation of the principles of transfinite set theory in
the Beitrdge was elegant, but ultimately disappointing. One might have
thought that, at long last, having given the extensive and rigorous
foundations for the transfinite ordinal numbers of the second number-
class, he would then have gone on to discuss the higher cardinal numbers
in some detail. In particular, one might have expected him to fulfil
his promise made in Part I to establish not only the entire succession of
transfinite cardinal numbers Ry, &, ..., ¥,, ..., but to prove as well
the existence of N, and to show that in fact there was no end to the ever-
increasing sequence of transfinite alephs. But instead, the final sections

of the Beitrige were devoted to an analysis of the number-theoretic

properties of transfinite ordinals. The entire manner of his handling
of the transfinite cardinals in the Bertrdge was fundamentally unsatisfy-
ing because it seemed so anti-climactic.
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By the time that Cantor came to write the wm&w&mﬁ. n.rn continuum
hypothesis seemed as elusive as ever, despite a _“m.::mrmEN. hope that
coverings, which led to the formulation 2* =1,;, might ?.oﬁmw the key
for which he had searched so long. But by 1897 he had discovered
the paradoxes of set theory, he had failed to establish directly the com-
parability of all cardinal numbers, and he had not memmnm to find any
proof that every set could be well-ordered (for details on all these
matters, see sections 6.6 and 6.9). These obstacles seemed to leave no
alternative : rather than produce the complete and absolutely certain
solutions to the outstanding problems that his set theory had raised, he
was forced to accept something less. - Instead, he sought to present the
elements and internal workings of his theory of transfinite sets as
rigorously as his research completed since the appearance ﬂ.um the Grund-
lagen would allow. Abstract, and independent of point sets and
physical examples, the Beitrdge represented his last mm.oﬂ to present
mathematicians with the basic features of his transfinite set theory.
He hoped that at last the theory would speak mmﬁ itself, and that its
utility and interest would be acknowledged accordingly.

5.13. Cantor’s formalism and his rejection of infinitesimals

Cantor always insisted that his transfinite numbers arose naturally and

"necessarily from the elements of sets, and thus he was convinced that

his characterisation of the infinite was the only characterisation possible.
This attitude was reflected in his eagerness to represent transfinite set
theory as absolutely certain, complete, open bo:&m.n to variant opinions
nor to opposing interpretations. In this connection the work of the
Italian mathematician G. Veronese was particularly unwelcome, be-
cause it advanced a theory of the infinite very different from Cantor’s
in a number of fundamental respects. Cantor devoted some of his most
vituperative correspondence, as well as a wo;mo:. o.m .ﬁrm. Beitrdge, to
attacking what he described at one point at the ‘infinitesimal Cholera
bacillus of mathematics ’, which had spread from Germany through the
work of Thomae, du Bois Reymond and Stolz, to infect Italian mathe-
matics. Mostly at issue, but not exclusively, was the question of
infinitesimals. (For more details, see Dauben 1977b.)

Very early in his career Cantor had denied any role to irfinitesimals

in determining the nature of continuity, and by 1886 rm. Vm&. aaimm.a a
proof that the existence of such- entities was in r.mm view impossible
(Papers, 407-409). Thus any attempt to urge their _om;::.movw could
be interpreted as a direct challenge to one of the most basic ?S.Q@rwm of
Cantorian set theory, since it was in terms of the character of his trans-
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finite numbers that he had argued the impossibility of infinitesimals.
Moreover, any acceptance of infinitesimals necessarily meant that his own
theory of number was incomplete. Thus to accept the work of Thomae,
du Bois Reymond, Stolz and Veronese was to deny the perfection of
Cantor’s own creation. Understandably, Cantor launched a thorough
campaign to discredit Veronese’s work in every way possible. Veronese
had just published a German translation of his Fondament: di geometria,
and Cantor felt it was timely to warn everyone of its manifold errors.?
But the very nature of Cantor’s own view of his set theory determined
from the start the attack he would make, and the fate of its outcome.

Cantor underscored in the Beitrdge that his concept of ‘ordinal
type’, together with that of  cardinal number’ or ¢ power ’, included
everything capable of being numbered that was thinkable (§7; Papers,
300). To him this meant that no further generalisations were con-
ceivable. Moreover, there was nothing in the least way arbitrary about
his definitions of number; cardinals and order-types were perfectly
natural extensions of the number concept. Equally free from arbitrari-
ness was his condition for the equality of two order-types, which was
given in terms of their similarity. This condition followed with absolute
necessity from the concept of order-type, and hence permitted no
alteration. He claimed that Veronese’s failure to understand this
absolute character of the transfinite numbers was the major source of
error in his misguided attempt to establish a different sort of infinite
number in his Fondamenti di geometria. He could reject Veronese’s
definition of the equality of his  numbers of ordered groups ’ by pointing
out that it was viciously circular and therefore meaningless. To employ
the concept ‘ not equal ’ in a definition of equality presupposed that one
already knew what was meant by ‘ equality’. Thus the Dpetitio principii
rendered Veronese’s entire approach suspect and mathematically un-
sound (§ 7 ; Papers, 301). .

But there were more reasons for rejecting Veronese’s theory of
number, reasons which concerned the impossibility of results which he
had obtained. Examining both Veronese’s transfinite numbers and
his infinitesimals, Cantor easily spotted ‘ erroneous ’ conclusions. Not
surpfisingly, his criticisms were based on the incompatibility of

“Veronese’s conclusions with his own.

! Veronese 1891a ; the German translation by A. Schepp appeared three years

- later (Veronese 1894a). Cantor told Killing in a letter of 3 June 1895, that it was ap-
© propriate to warn everyone of Veronese’s errors ; see page 156 in the second of his

letter-books. (These were volumes in which he would draft his letters before mailing
a final copy. Three survive, and all are now part of the Cantor Nachlass, recently given
to the Gottingen Academy of Sciences. In the following text, Letter-book 1 refers to
the book used by him between 1884 and 1888, and Letter-book II denotes the one used
between 1890 and 1895. For further details, see Grattan-Guinness 1971b, 348-349.)
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Concerning Veronese’s infinitely large numbers, Cantor once com-
mented that as soon as he saw the equation 2. co =0 . 2, he knew that
the entire theory which Veronese had developed was false (Letter-book 11,
165). Assuming the absolute character of his own theory of transfinite
numbers, Cantor concluded that any theory of the infinite would have
to be comparable with his; one major requirement was the non-
commutativity of arithmetic operations for infinite ordinal numbers.
Since Veronese’s numbers clearly violated such necessary laws, they
were inadmissable. To Cantor’s way of thinking, it was as simple as
that.

Infinitesimals, at the opposite extreme, were equally unwelcome,
and were high on Cantor’s list of mathematical  ghosts and chimareas’
(Letter-book 11, 30, 138). His proof of the self-contradictory nature of
the idea of infinitesimals was based upon a property he regarded as
common to all finite numbers, expressed by the Axiom of Archimedes :
If @ and b are any two positive numbers, then there exists a positive
integer n such that na>b (Papers, 408-409). Basically, he refused to
regard this as an axiom at all, but argued that it followed directly from
the concept of linear number (Letter-book 1, 96 ; 11, 16, 137 ; Papers,
409). Numbers were linear if finitely or infinitely many of them could
be added producing yet another linear magnitude. But Cantor assumed
all along what Hilbert in his Grundlagen. der Geometrie (1899a) was to
call the Axiom of Continuity, and consequently all of his assertions
followed directly. In particular, since the Axiom of Continuity and the
Axiom of Archimedes implied each other, one could be derived from the
other, and from Cantor’s view there was no difficulty in asserting that the

Archimedean - Axiom ’ could be proven. In terms of his assumptions, -
P P

it was as provable as the non-existence of infinitesimals. Moreover,
had he agreed that the Archimedean property of the real numbers was
merely axiomatic, then there was no reason to prevent the development
of number systems by merely denying the axiom, so long as consistency
was still preserved. But to have allowed this would have left him open
to the challenge that, if infinitesimals could be produced without contra-
diction, then his own theory of number would have been contravened.
On the other hand, were the Axiom of Archimedes not an ‘ Axiom’
at all, but a theorem which could be proven from other accepted princi-
ples, then Cantor could rest assured that it was impossible simply to
deny the proposition and produce a consistent theory of infinitesimals.

He was so persuasive, in fact, with his disavowal of ‘infinitesimals that A

he was able to convince Peano, who wrote an article 1892a on the subject
in his Rivista di matematica. Bertrand Russell went even further than
Peano, and argued in The principles of mathematics that mathematicians,
completely understanding the nature of real numbers, could safely con-
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clude that the non-existence of infinitesimals was firmly established.
.Em. was' wise to add, however, that if it were ever possible to speak of
infinitesimal numbers, it would have to be in some radically new sense
(Russell 719034, 334-337).

Finally, there was an additional argument, one that Cantor found
equally persuasive in rejecting the attempts Thomae, du Bois Reymond
.mno_n and Veronese had made to develop logically'sound theories of ﬂrm
infinitesimal. Once more his reasons were based on his view of set as
the ultimate origin of any concept of number. In writing to Veronese
on z:.w subject, Cantor accused the infinitesimalists of talking nonsense
since in the realm of the possible there were no infinitely small obmnmm“
He stressed that his transfinite numbers were linked with real N.&gm
produced directly from sets, and he challenged Veronese to show
any real.ideas corresponding to the supposed infinitesimals (Letter-book
I1, 15). Until Veronese could do so, Cantor insisted that deviation
from the ‘ Axiom’ of Archimedes, which he took as proven, was an
error of the greatest seriousness. , ,

5.14. Conclusion

ﬁo:wémum publication of the Beitrdge and its translation almost im-
mediately into Italian and French, Cantor’s ideas became widely known
and were circulated among mathematicians of the highest rank the world
over. .,Hv@ value of his transfinite set theory was recognised almost
5.55&58_%. and soon his ideas were fuelling heated polemics between
widely divided camps of mathematical opinion. Though he never
seemed able to avoid controversy over the nature of his work, he was
after 1895, increasingly defended by younger and more ,o:m.nmonm
mathematicians. No longer was he left to face the opposition alone.
Hro:mw Kronecker had died in 1891, he was replaced in the phalanx of
dissenters by mathematicians like Poincaré; but Cantor could begin to
count an -ever-increasing, always impressive array of those ready to
Join in support of set theory. For him, the crusade was nearly over, and
though the difficulties were by no means satisfactorily resolved, mm was

‘widely recognised at last that Cantor had contributed something of

lasting significance to the world.
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