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Chapter 6

Developments in the Foundations of
Mathematics, 1870-1910

¢ . R. Bunn

6.1. Introduction

This chapter deals with some of the most important work in foundations
from the time of the investigations into the foundations of analysis in
the early 1870s up to the publication in. 1910-1913 of Whitehead and
Russell’s Principia mathematica. My treatment of the foundations of
analysis is limited to the work of Richard Dedekind, for Cantor’s con-
tribution has already been covered in chapter 5; moreover, Dedekind
is most suitable for my purposes because his motivation is most explicit.
In general, I have restricted myself to positive contributions to the
foundations of mathematics, and have not tried to include the criticism
and polemic which is especially prominent in the writings of Frege,
Poincaré and Brouwer. This in part explains why there is not a separate
section on intuitionism. Brouwer’s early writings (1907-1914) on
intuitionism are largely critical ; the real development of intuitionistic
mathematics does not occur until 1918. For readers who would like to
supplement this chapter—which concentrates on the classical founda-
tions of Dedekind, Frege, Russell and Zermelo—with an account of
Brouwer’s intuitionistic mathematics, I recommend chapter 5 of E. W.
Beth’s Mathematical thought (1965a).

The most prominent feature of the period under consideration here
is the tendency, culminating in Principia mathematica, towards -the
logical systematisation of mathematics, and replacement of so-called
¢ intuitive > explanations and arguments pertaining to the elements of
mathematics by formal proofs based on logically precise definitions or
systems of axioms. The first area of mathematics to be so reconstructed
was mathematical analysis. As far back as 1858 Dedekind had been
motivated to improve matters in the foundations of the calculus by his
first experiencé with teaching differential calculus. This made him
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feel ¢ more keenly than ever before the lack of a really scientific founda-
tion for arithmetic ’ (1872a, preface). Although he had worked out his
basic definitions already in 1858, his pamphlet Stetigkeit und irrationalen
Zahlen (‘ Continuity and irrational numbers ’) was not published until
1872. Even before this work appeared, he had a plan for a similar

-treatment of the foundations of the theory of natural numbers, which

was eventually realised as 1888a in his Was sind und was sollen die
Zahlen? (known in English as  The nature and meaning of numbers *).
In 1889a, art. 1 Giuseppe Peano presented independently a system of
axioms for the theory of natural numbers which is very closely related
to Dedekind’s basic definition. Earlier, Gottlob Frege had w:v_mwrma a
penetrating investigation 1884a of the general concept of cardinal
number and of the finite cardinals.

Dedekind had intended to present the whole subject of natural,
negative, rational, irrational and complex numbers ‘in a systematic
form’, but he never achieved it. A very comprehensive systematic
presentation of logic and mathematics was, however, effected by Peano
and his school, and an even more thorough-going exposition of a system
of logic and arithmetic was given by Frege in his Grundgesetze der
Arithmetik (‘ Foundations of arithmetic ’), which was published in two
volumes as 1893a and 1903a. Frege’s work, though it dealt with a much
less extensive part of mathematics, was executed with remarkable atten-
tion to detail and an exactness of expression which goes far beyond what
was achieved by Peano or anyone else. For example, he was especially
clear on the distinctions between the use and mention of expressions
and between logical theses and rules of inference.

The foundations (in some cases only implicit) of the works of
Dedekind, Cantor, Frege and Peano turned out to be inconsistent, as
was shown by the antinomies (especially Russell’s). These antinomies
elicited a variety of responses from mathematicians and logicians
interested in foundations. One reaction was the determination to find
a system for avoiding the antinomies which would include as much as
possible of the results obtained before their appearance. There are a
number of methods of avoiding the antinomies, because there are‘a
number of characteristics common to the paradoxical cases. Depending
upon which characteristic is chosen as a basis for avoiding the anti-
nomies and what supplementary assumptions (such as Russell’s axiom
of reducibility) are made, systems comprehending various portions of
the classical results (perhaps in a somewhat modified form) are obtained.
In some cases—especially Russell’s—there has been an attempt to
formulate a system which not only avoids the antinomies but also
eliminates the precise fallacy to which they are due. It could, thus,
count as a philosophical solution to the antinomies.
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6.2. Dedekind on continuity and the existence of limits

I shall begin my more detailed discussions with the work of Unaowm.:&.
Like many other mathematicians of the mid-19th century, Dedekind
was dissatisfied with the foundations which had so far been provided
for the calculus and for the arithmetic of real numbers. The primary
motivation behind his ¢ Continuity and irrational numbers’ was the
desire to replace undefined concepts (more or less geometrical) and the
so-called intuitive justifications based upon them with proofs T..on.:
precisely formulated definitions. Above all, he wished to find defini-
tions from which the basic theorems on the existence of limits could be
proved. To accomplish this he needed to define a w%mﬂna r»ﬁum a
certain sort of completeness or continuity. The term  continuous’ is
not an especially apt one for the characteristic involved, but it indicated
the correlate in the old m%mﬁ05|ooban=o5m magnitude. It had been
the practice to present the calculus as being concerned with continuous
magnitudes. But this property of continuity, which was attributed to
such things as line-segments and motions, was not defined—at least not
in a way which could serve as a basis for proofs. As Dedekind put it :
‘ By vague remarks upon the unbroken connection in the smallest parts
obviously nothing is gained; the problem is to indicate a precise
characteristic that can serve as the basis mOn valid deductions’ (1872a,
pt. 3; 1901a, 10).

.H.rm sort of complete system Dedekind needed to define had to be a
densely ordered system for which arithmetical operations could be
defined and in which could be proved propositions such as that every
element of the system has a square root. This completeness of arithmeti-
cal operations may be described by saying that the system must be closed
under arithmetical operations satisfying the laws of elementary algebra.
Furthermore, the system must be complete with respect to limits ; that
is, every convergent sequence of its elements must have a :u.mﬁ

The property of ‘completeness or continuity which Dedekind found
satisfactory for his purposes is a characteristic of ordered systems. A
cut in an oaonwa system M is a pair of classes M, M, called the ‘ lower’
and ‘ upper ’ sections of the cut, which together exhaust M and are such
that every element of M; precedes every element of M, Then a
densely ordered system is complete (continuous) in Dedekind’s sense if
every cut in the system is produced by exactly one element of the system,
that is, if there is an element of the system which is either the maximum
of the lower section or the minimum of the upper section.

Dedekind seems to have thought of this definition by reflecting on
lines, and contrasting the system of points on a line with the system of
rational numbers. But he was not willing to settle for an axiomatisation
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of the concept of magnitude, which would feature an axiom of continuity.
Geometry was to serve only as the source of the idea for constructing an
arithmetical foundation. The continuous system which was to be
Dedekind’s foundation would be arithmetical in the sense that its opera-
tions would ultimately be defined in terms of operations on natural
numbers, and no mention would be' made of any geometrical objects.
Thus, _umwamm a basis for proofs, Dedekind also sought a purely NEQT
metical foundation for the calculus.

A demonstrably complete (continuous) domain was defined by
Dedekind in terms of the cuts in the rationals. This domain, called
‘ the system of real numbers’, is to contain all rational numbers, and,
in addition, for each cut in the rationals which is not produced by a
rational, exactly one new object, which is called an irrational number.
By reference to the system of cuts, Dedekind defined among the real
numbers a relation which could be proved to have the properties of a
dense ordering. Furthermore, and this is the main point, it can be
proved from the definition of the real numbers and the definition of ¢ < ’
that the system of real numbers is complete : every cut in it is produced
by one of its elements, which is to say that for every cut in the system
of real numbers, either its lower section has a maximum or its upper a
minimum. The fundamental theorems on limits follow from this
property of completeness. In particular, he proved (1) that every
bounded increasing sequence of real numbers has a limit, and (2) that
a function f whose arguments and values are real numbers has a limit
when x —00,if for every positive & there is an x, such that |f(x) —f(x,)| < 8
for all x> x,.

Arithmietical operations Amaa:_o: multiplication, w:a S0 on).may
be defined in terms of the cuts in the system of rationals and the cor-
responding arithmetical operations defined for the rationals. The
operations on rationals can in turn be defined in terms of the operations
between natural numbers. From the definitions of the operations on
the real numbers such algebraic laws as

a+b=b+a and a(b+c)=ab+ac (6.2.1)

can be proved. It also becomes possible to demonstrate equations like
2 33 = /\m which so far as Dedekind knew had ‘ never been estab-
lished before ’.  Although the difficulties concerning existence theorems
for limits were fairly well recognised, some mathematicians were reluc-
tant to admit that the rule for multiplying square roots had never really
been proved. For instance, R. Lipschitz maintained in correspondence
with Dedekind that the basis for the proof of the theorem in question
was already in Euclid’s Elements. Dedekind’s reply was that, even
setting aside the desire to avoid a geometrical foundation of arithmetic,
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no axiom of completeness for the domain of magnitudes is to be found
in Euclid. But no generally valid definition of, for example, multiplica-
tion is possible for an incomplete domain, because for any two quantities
of such a domain it may be that 7o quantity of the domain is the product
of the two quantities. ‘ If, to be sure, general definitions of addition,
subtraction, multiplication, and division are relinquished, one only
needs to say : I understand by the product /2. J/3 the number ./6,
consequently /2. /3= /6, which was to be proved ’ (see Dedekind
Works, vol. 3, 474).

Many authors who adopted Dedekind’s basic ideas preferred nat to
follow him in defining the real numbers as creations of the mind cor-
responding to cuts in the system of rational numbers. In-The principles
of mathematics (1903a) Bertrand Russell emphasised the advantage of
defining the real numbers simply as lower sections of cuts whose upper
sections have a minimum or, as he said, segments of the rationals. A
segment of the rationals is a non-empty proper subclass of the rationals
having the property of being identical * with the class of rationals x
such that there is a rational y of the said class such that x is less than y’
(Russell 1903a, 271). Russell needed to use a definition like this
because it was his aim to define all mathematical concepts in terms of the
vocabulary of logic and the theories of classes and relations. But
Dedekind had his reasons (though not necessarily good ones) for defining
the real numbers as he did. When Heinrich Weber expressed his opinion
in a letter to Dedekind that an irrational number should be taken to be
the cut, instead of something new which is created by the mind and
supposed to correspond to the cut, Dedekind replied (Works, vol. 3, 489) :

We have the right to grant to ourselves such a creative power,
and besides it is much more appropriate to proceed thus because of
the similarity of all numbers. The rational numbers surely also
produce cuts, but I will certainly not give out the rational number
as. identical with the cut generated by it ; and also by introduction
of the irrational numbers, one will often speak of cut-phenomena
with such expressions, granting to them such attributes, which ap-
plied to the numbers themselves would sound quite strange.

But of course Dedekind’s method of introducing the irrationals was only
a matter of preference, and in a letter to Lipschitz he remarked paren-
thetically that if one does not wish to introduce numbers in his sense,
¢1 have nothing against it; the theorem I prove [on completeness]
then reads: the system of all cuts in the discontinuous domain of
rational numbers forms a continuous manifold ’ (zbid., 471).

Although there were often different preferences and philosophical
convictions among classical mathematicians, they were not such as to
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lead to any essential differences in the mathematics produced. B

contrast, a.rmw philosophical differences between classical and oo:mﬂz.poﬁ?w
Bmﬂroﬁmcﬁmzm result in completely different mathematical theories
HLQ.Ba illustrate the point. Some of the classical mathematicians we .
nmm_pmﬁ.m. and regarded their work as formulating truths describin zw.o
objective facts concerning such abstract entities as functions mb% am
ui:ov were taken as existing independently of thought. Others ere
idealists and 8:.&.@20& mathematical systems to be onamnmm by the BWMMo
Many constructivists were also idealists. But the idealism of a Qmmmmomm
B»ﬂrwn.umﬁﬁmz like Dedekind was much more similar to realism th

to ﬁ.ra ﬁmmmma of a constructivist like Poincaré or Brouwer. In mmmw
the idealism sometimes advocated by classical mathematicians .oo:E <oo ;
.3a= .Uo called ¢ quasi-realism ’. For, although a mathematical wc.:oﬂcm%
is said ﬁo.vo. created in the sense of being thought up, rather than &Mo
oowowmm. .; 1s conceived of as, so to speak, a system me mmacxubaocw_-
existing inter-related entities. But the constructive idealist concei 4
m.m r_m mathematical entities as things coming into being one after mboﬂr<om
5&::9“&._% created. Thus the infinity which enters into nobmc.:oﬂ.mn..
mathematics is only potential infinity, whereas the infinity Qmmnnm:mw

‘classical mathematics is always actual infinity.

<<Er.w Dedekind’s definition or ones serving the same pur ose
were n.EnE% adopted by many mathematicians interested m% Mmﬁom
rigour in foundations, Leopold Kronecker found such mmmcmﬂobm co i
pletely .z:»oonwnmzm. He disapproved of definitions for which #nw-
not decidable in the case of any entity whether it satisfies the ammiﬁom

.or not (see his 71882a, art. 4). But Dedekind and Cantor considered

knowledge of a decision procedure for membership in a particular set
to be of no account for their purposes; as Dedekind explained, ‘the
mobo.nm_ laws to be developed in no way depend upon it ; they hold “E&Q.
all circumstances ’ (1888a, art. 2, note ; compare Omm:oﬂ Papers, 150—
Hmu.. E.&. Frege 1884a, art. 80). Kronecker also had the nobiomo.b that
ﬂr.m H.HEES should not be introduced except in cases in which it could b
eliminated (see 1886a, 334-336 ; Works, vol. 3, 155-156), and Bmwbﬁmwsom
“&pmﬁ the various concepts of irrational numbers are om the sort which
must be avoided in arithmetic-algebraic theories’. Dedekind’s re o_
was simply .ﬂrmﬁ the restrictions on nouon?.moﬁBmmo: advocated _.uvw
.Hﬁ.ozmnwﬂ did not seem justified, but that there was no point in omnw
into the matter further until Kronecker published his reasons Qu&mwmbm
,S%%.S art. 2, note). Unfortunately, Kronecker seems never to have
w:rrmrmm.ﬂro desired reasons. While he had carried on vigorous
movwﬂm.m S%& his colleague Weierstrass concerning the mo:zammmum of
analysis, his writings contain only a few brief expressions of his opinions
on the foundations of mathematics (compare sections 5.4 and 5.8 above)
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It is interesting to consider the account given by Cantor of the point
of view of those who disapprove of the method of introducing the
irrational numbers by means of infinite sets or sequences. In his 1883
Grundlagen Cantor explained that those who reject this approach hold
that ‘ a merely formal significance should belong to irrational numbers
in pure mathematics, in that they serve as it were only as marks of
computation for fixing and describing in a simple, uniform way proper-
ties of groups of whole numbers’ (Papers, 172). The advantages of
reducing the content of analysis to relations among finite integers are a
greater security and completeness in its foundations as well as an im-
provement in its methodology. Hence (Papers, 173) :

In this way, a definite, even if rather prosaic and obvious prin-
ciple is assumed, which is recommended to all as a guiding principle ;
it is supposed to serve for indicating the true limits for the flight of
the desire for mathematical speculations and. conceptions, where
it runs no danger of falling into the abyss of the transcendent,
where, as it is said with fear and holy dread, ‘ everything is possible ’.
Setting this aside, who knows if it has not been just the point of
view of expediency alone which caused the authors of this opinion
to recommend it to the powers, so easily endangered by enthusiasm
and extravagance, as an effective regulative [principle], as a pro-.
tection against all errors, although a fruitful principle cannot be
found in it . ..

Cantor did not think that those who recommended the restrictive
principles had made their discoveries by adhering to them. No true
advances are due to the observation of such principles, and if science
actually proceeded in accordance with them, it ‘ would be held back
or still would be bound within the narrowest limits ’ (¢bid.). He himself
recognised only two restrictions on concept formation : the concepts
must be consistent, and the new concepts must be related by definitions
to concepts already recognised. He did not think that there was much
danger to science in his point of view, because poor ideas So:_m fade
away ; on the other hand, he did see a real threat to science in un-
necessary restrictions (Papers, 182).

6.3. Dedekind and Frege on natural numbers

The desire to base arithmetic on a system of precisely formulated
definitions motivated both Dedekind’s and Frege’s work on the founda-
tions of the theory of natural numbers. Regarding what was v.ﬁ.wmﬁm
the most significant point, the basis of inference by mathematical induc-
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tion, their systems are the same. Buf Dedekind, unlike Frege, did not
define a particular set of objects as the natural numbers. Rather, he
defined a class of structures, which he called ¢ simply infinite systems ’,
any one of which could serve as the subject of the arithmetic of natural
numbers. Indeed, he understood the primary concern of arithmetic
to be the ‘ relations or laws ’ derivable from the essential characteristics
of simply infinite systems (1888a, art. 73). A class N is simply infinite
if there is 2 one-one function ¢ mapping N into itself and an object b
such that b is not a value of ¢ for an argument in N, and N is the inter-
section of all classes containing b and also ¢(y) whenever they contain y.
Thus the essential characteristics of a simply infinite system N are the
following (Peano’s axioms in 188%a coincide with or are immediate
consequences of them) :1

(Vy)(yeN — ¢(y)eN), (6.3.1)
N=M{Z[beZ. & . (Vy)(yeZ - $(y)eZ)}, (6.3.2
~(Yy)(yeN - b+ 4(y)), . (6.3.3)

,ﬁ is one—one. : (6.3.4)

Dedekind said that the elements of a simply infinite system may be
called ‘ numbers’ if ‘ we entirely neglect the special character of the
elements ; simply retaining their distinguishability and taking into
account only the relations to one another in which they are placed by
the order-setting transformation ¢’ (18884, art. 73). Thus it may be
said that any simply infinite set could be defined to be the set of (natural)
numbers. . .

The appropriateness of. Dedekind’s definition is easily perceived.
A number series must have a first element, b=1, from which the suc-
cession of numbers proceeds without end. That 1 is the first term of
the succession of numbers means that 1 is a number which is not the
successor of any number. . The series proceeds without end in that every
number has a successor. Moreover, each number has only one suc-
cessor, that is, a successor relation is a function ; and different natural
numbers have different successors, so that the successor function is
one—one. Thus we have the basic requisites concerning 1 and a suc-
cessor function . But the most significant part of the definition of a
natural number series (simply infinite system) NV is the specification that
N be the intersection of all classes Z which contain the ‘ base-element ’
1 and which contain ¢(x) whenever x€Z and ¢ has a value for x. The
idea for the definition of a set of natural numbers N is that it should
contain a base-element 1, the successor ¢(1) of 1, and so on, and 7o

! Attention is recalled to the list of notations in section 0.5.
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other elements, that is,

N={1, (1), (1)), - - -} (6.3.5)

The means of defining N so as to exclude undesirable o_oawam was,
Dedekind says,  one of the most difficult points of my mb&.%mﬂm .»Dm its
mastery required lengthy reflection’ (letter to Hm.nmonmnazw, in van
Heijenoort 19672, 100). For it cannot be said without *the most
pernicious and obvious kind of vicious circle’ that # v&o.:mm. to Nif n
is 1 or a value of ¢ after a finite number of iterations of ¢ beginning from1.
The method which Dedekind found sufficient for his purposes was to
define IV as the class which contains exactly those things which belong
to every class Z which contains 1 and also all values of ¢ for arguments
in Z. .

: This definition of the finite numbers has the following principle of
mathematical induction as a consequence :

1eM . & . (Vy)(yeNAM— $(9)eM) . >. NcM.  (6.3.6)

In words, any class M containing 1 as well as the successor of any
number belonging to it contains every number. Unmmwia also .?..o.,aa
a theorem (1888a, art. 126) justifying inductive or recursive definitions
such as the following definition of addition :

x4+ 1=d¢(x), (6.3.7)
x+¢(y)=d(x+ p). (6.3.8)

His theorem justified this definition in that it asserts mwﬁ there mxmwmm
one and only one function of two arguments which satisfies ﬁyw .oobaT
tions (6.3.7) and (6.3.8). In general, the Hrooﬁn.w on definition by
induction states that for any functions g and % there is one and only one
function f such that

f(x, 1) =h(x) | (6.3.9)
(s $(9))=5(f(x, ¥)) - (6.3.10)

(1888a, arts. 126 and 135). . .

We have seen that Dedekind did not specify any particular set. of
things as the natural numbers, but he did prove the nxmmﬁﬁ.ﬂom of .mﬂqu
infinite systems in order to show the consistency of his definition.
Instead of the example of a system N, ¢, b, which he actually .:mom, we
shall consider a more mathematical example suggested by Ew..w%%%@
arts. 66 and 72. Let ¢(x)={x} and b=F. From these definitions it
follows that ¢ is one—one and that b is not a value of ¢. The class

N={g, (&} (DI DM - - & (6:3:11)
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which is the intersection of all classes containing ¥ as well as the unit
class of anything belonging to them, is simply infinite. This method of
proving the existence of a simply infinite system is, however, affected
by the antinomies (see the énd of section 6.8 below).

Dedekind’s treatment of the concept of the cardinal number of a
set or the number (Anzahl) of things in a set was restricted to finite
sets. He proved that for each finite set M there is a unique natural
number 7z such that there is a one—one correspondence between M and
the initial segment .

Zp={x[l<x<n} (6.3.12)
Df

of the set of natural numbers (1888a, art. 160). This justified his
definition of the number of elements belonging to a finite set M, or the
cardinal of M, as the natural number 7 such that } is in one-one cor-
respondence with Z,.

I turn now to Frege’s definition, in which the cardinal number of a
class 4 is the class of all classes in one-one correspondence to 4 (1884a,
art. 72).' This definition is quite appropriate, if a cardinal number is
conceived as something belonging to a class of things which is common
to different classes when they are ‘equal in number’. Now it is
possible to say, without using numerical terms, when two classes are
equal in number : they are numerically equal or equipollent when there
is a one-one correspondence between them. By saying a relation R
is ‘ one-one ’ it is meant that for every x, y and z,

2Ry . & .zRx . > .x=9y, (6.3.13)
xRz . & .yRz . —. x=y. (6.3.14)

Thus classes are numerically equal if and only if there is a relation having
the properties (6.3.13) and (6.3.14) between their elements. Frege
specified something which is common to different classes when they are
equipollent in the sense just defined. Moreover, in his system it could
be proved that each class has a unique cardinal number and that the
cardinals belonging to classes in one-one correspondence with each
other are identical. The same treatment was later given independently
by Russell, first in his 71901 b, arts. 1-2.

Frege defined the number 0 as the number belonging to the empty
class ; since there is only one empty class, 0={} (1884a, art. 74).
The number 1 may now be defined as the class of all classes equipollent
to 0, that is, to {F}, the class whose only element is the empty class.

! In this chapter I use both the words ° class ’ and set’. Certain historical and
philosophical considerations have guided the choice of those terms, but the reader can
take them as synonymous if he so wishes.
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Any class equipollent to {F} could have been used to define 1, but
Frege wished to use only classes definable in the vocabulary of logic.
The number 1 could also be defined thus :

_wﬁﬁ YyeZ . & . (Vx)(xeZ >x=y)]} (6.3.15)

In either case, we get 1 as the class of all unit classes. In similar ways,

the cardinals 2, 3, and so on could be defined (1884a, arts. 77-83).
The relation S of immediate succession between finite numbers is

also easily defined in the vocabulary of logic (1884a, art. 76). Let C(M)

be the cardinal number of the class M. Then the relation S may be
defined as follows :

nSm « (Ix, AY{xed . & . C(A)=n.& . C(A—{x})=m}. (6.3.16)

Using this definition and the definitions of 0 and 1, it can be proved that
1 immediately succeeds 0, that is, 15 0: just let x= ¢ and A={J}.
It can also be demonstrated from Frege’s definitions that the relation S
is one—one and that 0 is not the successor of any number.

Using the same method which Dedekind employed in his definition
of a simply infinite system, Frege defined the set NV of natural numbers
(finite cardinals) as the intersection of all classes Z such that 0eZ and
whenever xeZ and ySx, then also yeZ.. The principle of mathematical
induction is a consequence of this definition, and it can be proved that
every natural number z# has a successor ##zn. Moreover, from this
proposition and his definitions and logical assumptions, Frege could
prove that there exists an infinite cardinal number. The cardinal
number of the class NV is infinite, for N is equipollent to, for example,
the class NU{IN}. Therefore, the cardinal number of N succeeds itself
and, hence, is not a finite number. This also shows why Frege’s S is
only suitable as the relation of immediate succession among finite
numbers.

Not all mathematicians were satisfied with such foundations of
arithmetic as were formulated by Dedekind and Frege. Some preferred
to define the natural numbers as the results of a process of construction
which proceeds according to a rule (see, for example, Kronecker 1887a,
art. 1 ; Poincaré 1913a, 469 ; and Brouwer 1907a in Works, vol. 1, 15),
and to take the methods of proof and definition by induction as funda-
mental. The principle of induction involved in ‘ constructive * number
theory has a totally different content from the proposition which occurs
in the systems of Dedekind and Frege, and it has a different justification.
The latter is a principle concerning sets, while the former brings in the
concept of possibility. According to the principle of induction belong-
ing to constructive mathematics, if a property can be verified for 1 and a
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method is known for turning a verification of the property for # into a
verification of the property for n+1, then the property can be verified
for an arbitrary number, which is what is meant, from the constructive
point of view, by saying that ‘all’ numbers have the property. The
justification of this method of induction was explained by Poincaré
thus : “the mind ... knows it can conceive of the indefinite repetition
of the same act, when the act is once possible. The mind has a direct
intuition of this power, and experiment can only be for it an opportunity
of using it, and thereby becoming conscious of it ’ (19134, 39).

Of course, such a justification would appear quite unsatisfactory to
those seeking a logical foundation of arithmetic ; indeed, it was the very
thing they wished to avoid. Thus Russell preferred the justification of
inductive reasoning as a consequence of the definition of the finite
integers rather than  in virtue of any mysterious intuition ’ (1919, 27),
and both Frege and Russell found the assertions of possibility which are
involved in justifications like Poincaré’s doubtful (Frege 1903a, arts.
125 #f. ; Russell 71904a). On the other hand, Poincaré had his reasons
for rejecting the methods used to define the finite numbers and prove
the principle of induction used in the logical foundation (1913a, 481).

6.4. Logical foundations of mathematics

Both Dedekind and Frege intended to reconstruct arithmetic, under-
stood in the broad sense, on the basis of a system of precisely formulated
definitions, from which the theorems were to be rigorously deduced by
means of logical principles. But Frege went further than Dedekind
by systematising the logical principles used in these deductions. He
gave the following description of his ‘ ideal of a strictly scientific method
in mathematics ’ (18934, introduction) :

It cannot be demanded that everything be proved . . . but we can
require that all propositions used without proof be expressly declared
as such, so that we can see distinctly what the whole structure rests
upon. After that we must try to diminish the number of these
primitive laws as far as possible by proving everything that can be
proved. Furthermore, I demand—and in this I go beyond Euclid—
that all methods of inference employed be specified in advance . .

Other mathematicians and logicians such as Peano and the American
C. S. Peirce were engaged in formulating a logic of mathematical argu-
ments, but no one carried it out with Frege’s thoroughness and rigour.!

) !'In this chapter I am not describing the development of Boolean algebra by Boole,
Peirce, Schrioder and others ; consult, for example, Kneale and Kneale 1962a, ch. 6.
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It is not possible to go into the details and peculiarities of Frege’s
system of logic here, but the basic ideas may be presented.

The principles of inference used in mathematical proofs were in-
tended to be such that when applied to truths of any subject as premises,
the conclusions derived would also be truths. Thus, by means of basic
logical principles whose correctness or validity could be recognised,
and certain axioms whose truth could be apprehended, further principles
and truths could be derived.

The rules of Frege’s logic were formulated solely on the basis of
the meaning intended for the logical symbols ‘ =17, * =’, ‘&’ ‘ v ’,
‘e, “(Vx)’, ‘(Ix)’ (see, for example, the account in Frege 1923a, 40).

The first five of these are used to form sentences from sentences in’

order to have compound -sentences whose truth or falsehood depends
solely on the truth or falsehood of the sentences from which they are
constructed. Sentential connectives used in this way are called ‘ truth-
functional>. The intended meaning is given in the following table
(where the letters'* 4’ and ‘ B’ represent sentences) :

A4 B -4 AvB A%B A-B 4

B
T T F T T T T
T F T F E F
F T T T F T F
F F F F T T

Some of these connectives can be defined in terms of others. For
example, ‘ 4B’ could be defined as * 74 v B’, and ‘ Av B’ could
be introduced, alternatively, as an abbreviation for * 74 —-B".

When the sentential connectives are used in the way just explained,
the basic logical rules and formulas of classical logic are obviously valid.
Thus, given the intended meaning (from the table) of the conditional
connective ¢ —’, the correctness of such rules as the following is evident :

A, A—-B A 14
B B—>A A-B

(6.4.1)

The first of these rules, the rule of detachment, may be read : Given the
sentences ‘ 4’ and ‘ A—>B’, the sentence ¢ B’ may be inferred. This
rule is sometimes called the ‘ modus ponens’. .

The general theory of deduction constituting Frege’s logic comprises,
besides the principles concerning arbitrary sentences, ‘also principles
relating to universal and existential statements. For example, it follows
from the meaning of ‘ for all > and ‘ there is ’ that it is not the case that
everything lacks the praperty P if and only if there is something having P.
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The obvious rule of inference for existential propositions is this : From
the statement ‘ Pa’ infer ‘(3x)Px’. Thus, the existence of a thing
having a certain property may be proved by giving an example of a
thing having that property. But Frege’s logic also includes another
way of proving existence ; for if a contradiction can be derived from the
supposition ¢ 71(3x)Px ’, then, by means of the rule :

—1(114)

kﬁ 3

it can be concluded that (3x)Px. (Inferences of this type are not valid

in the logic of intuitionistic mathematics, where a different meaning is
given to the logical symbols.)

Frege’s programme of deriving mathematical theorems from defini-
tions using only a small list of logical principles of the sort just described
involved only arithmetic and did not extend to geometry. For Frege
considered the axioms of Euclidean geometry to be intuitively appre-
hended truths, and therefore did not intend to reduce them to logic by
the definition of basic geometrical concepts (see his 7906a). By con-
trast, Russell aimed at a logical reconstruction of all pure mathematics,
including geometry insofar as it belonged to pure mathematics as Russell
conceived it: ‘As a branch of pure mathematics, Geometry is strictly
deductive, indifferent to the choice of its premisses and to the question
whether there exist (in the strict sense) such entities as its premisses
define > (1903a, 372). Geometry throws light on actual space only
indirectly through °increased analysis and knowledge of possibilities ’
(1903a, 374).

According to Russell’s explication of the concept proposition of pure
mathematics, the axioms of a particular mathematical theory (for example,
Euclidean geometry) are not propositions of pure mathematics. What
any branch of pure mathematics asserts is that ‘ such and such conse-
quences follow from such and such premisses ...’ (1903a, 373 ; com-
pare p. 458). The axioms of a mathematical theory are not actually
propositions asserted in pure mathematics : ¢ The so-called axioms of
Geometry, for example, when Geometry is considered a branch of pure
mathematics, are merely the protasis [conditional clause] in the hypo-
theticals which constitute the science. They would be primitive
propositions if, as in applied mathematics, they were themselves asserted
..."(1903a,430). Russell construed these  so-called axioms ’ as ‘ parts
of a definition ’ of a class of relations (19034, 397). The asserted propo-

(6.4.2)

sitions of the theory, in the form ¢ Axioms -7’ (where T is a theorem),

would then be those derivable by logic from the definition of a class of
relations. Thus, the only genuine axioms used in the deduction of the
asserted propositions of a mathematical theory would be logical axioms.
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Besides the derivation of mathematical propositions from anﬂanoumu
logic (in Russell’s sense) had m:oﬂ.ron. very mboH.ﬁmbﬂ function. It
provided the existence theorems justifying the definitions formed from
the axioms of a theory. An existence theorem mon.m theory asserts .ﬁzz
there is at least one relation satisfying the oo:&ﬁo.bm of the definition
formed by its axioms. The demonstration of the existence theorem was
also regarded as a proof of consistency. .

The appearance of the antimonies mvoéwa that existence theorems
proved by logical constructions did not give complete assurance of
consistency. Russell consequently did not o_mzﬁ. mdmn.:cﬁm. certainty for
his method, and he pointed out that such certainty 1s not had in any
science. Since the antinomies have shown that logical common sense
is not infallible, ¢ an-element of uncertainty must always remain, just as
it remains in astronomy. It may with time be immensely diminished;
but infallibility is not granted to mortals . ..’ (19065, 631 ; 1 wNww. 194).
Moreover, he thought that it follows from the very nature of an
attempt to base mathematics on a system of :baa?.bnm oo:n“o@ﬂm and
primitive propositions that the ‘results may be disproved’ by the
discovery of a contradiction, ‘ but can never be proved . .. All am@obmm‘
in the end, upon immediate perception’ (1903a, 129). As érn.nnrmwm
put it, ¢ the only rigid proofs of existence zx.woﬂoam are those which are
deductions from the premises of formal ﬂom_.o. Thus .ﬁrﬁd can be no
formal proofs of the consistency of the logical premises themselves

(1907a, 3).

6.5. Direct consistency proofs

Logicians and mathematicians like Frege, Wcmmo_m and ér:orom.a.vma
been inclined to think that the only way the consistency of a definition
or axiomatic theory could be established was by an mxmmaobom. :.6035.
Russell, for example, asserted that mnmmaﬁ.:b from .oo.bﬁ.m&oﬁwb can
never be proved except by first proving existence : it is impossible to
perform all the deductions from a given hypothesis, and show ﬁrmm none
of them involve a contradiction’ (1910b, 438). He apparently did not
recognise the possibility of proving general theorems mvo.cﬁ the proofs
which are possible in a theory. The mwmm one to seek consistency @nn.vo*m
along such lines was David Hilbert. His consistency proofs for arith-
metic theories were to be ¢ direct ’ ; it was to be shown by purely formal
considerations that from the axioms of a particular ﬁron a statement
and its negation cannot be derived by means of a finite number of
logical inferences.

Hilbert’s ¢ Uber die Grundlagen der Logik und Arithmetik’ (‘ On
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the foundations of logic and arithmetic’: 1904a) contains the first
presentation of his ideas for direct consistency proofs. The first step
in his method involves the specification of symbols which are to be used,
the axioms, and the means of inference ; thus logic and mathematics
are formulated concurrently. Actually his procedure in this first attempt
Wwas not nearly so rigorous as it was to become in another twenty years.
In 71904a he did not make a clear distinction between the formal axio-
matic system which is to'be investigated for consistency and the meta-
theory in which the object theory (that is, the axiomatic system) is
studied ; and, what is of particular importance, there is no characterisa-
tion of the means of proof to be used in demonstrating the consistency
of logico-arithmetic object theories. Indeed, it was on issues related to
this point that critics concentrated. .
Since Hilbert needed to prove a general proposition relating to a
denumerable infinity of possible formal derivations, it seemed that a
form of inductive argument would be necessary ; but one of the systems
whose consistency he aimed to establish was the theory of finite integers,
which contains an axiom of induction (see Poincaré 1913a, 455 ; and

. Brouwer 1907a in Works, vol. 1, 93). Hilbert’s 1904a has nothing to

satisfy people who wonder about that situation, but later he did clarify
this matter. Proofs about the formal axiomatic theory of numbers

were to be based solely on the construction and decomposition of

numerical expressions, and this method was, in his view, essentially
different from that principle of induction which needs and is capable of
proof (1922a, 164 ; compare what was said in section 6.3 above con-
cerning the constructive principle of induction). His clarifications,
however, were not entirely satisfactory to everyone. (See van Heijenoort
1967a, 480482, where the editor gives an excellent account of this issue.)

The system that Hilbert dealt with in  On the foundations of logic
and arithmetic ’ contained two axioms of identity and three arithmetical

-axioms. Because this system is rather peculiar, I shall discuss his

treatment of a very similar, but simpler, system which is found in his
‘ Neubegriindung der Mathematik’ (‘ New foundations of mathe-
matics ’: 1922a) and contains the following five axioms :

a=a, (6.5.1)

- : a=b—a+l1=5b+1, (6.5.2)
at+l=b+1->a=b, (6.5.3)
a=c—~(b=c—>a=b), (6.5.4)

a+1#1, . (6.5.5)

together with the rule of detachment (6.4.1). A proof with respect to
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these axioms is defined to be a list of formulas having a last entry, such
that each formula in the list is either one of the axioms or the result of
substituting numerals or other variables for the variables in an earlier
entry, or a formula B with the formulas 4 and 4 —B occurring among
the preceding entries (that is, a formula inferred in accordance with the
rule of detachment). For example, the following list of formulas is a
proof of the symmetrical property of equality :

a=c—>(b=c—>a=Db), (6.5.6)
a=a—>(b=a—>a=b), (6.5.7)
a=a, , _ (6.5.8)
b=a-—>a=b. . (6.5.9)

The last line of a proof, the formula proved, is called the ¢ end formula ’.

The axiom system (6.5.1)-(6.5.5) is consistent if an equation a=f
and its negation «5 8 are never both provable. In order to prove that
the system is consistent, Hilbert established the lemma: A provable
formula can contain the sign ¢ -’ at most twice. Suppose that a proof
contained a formula in which there were more than two occurrences of

< b

—’. If a proof contains such a formula at all, it must have a first

such. But the first formula B in a proof containing ‘ -’ more than "

2&8ooim:o#rmnvomma?mamnoaoun:m:mbow‘c%m:vmmﬁcmobzgU%
means of the rule .
4, A->B
.w ?
for the premise 4 —+B would already have to contain more than two
occurrences of ¢ -’

Hilbert also proved a second lemma stating that an equation «=f
is provable only if « is the same symbol as . It should be noted here
that the symbols ‘«’ and ¢ 8’ do not.belong to the vocabulary of the
object theory under investigation ; they are variables belonging to the
meta-theory, and their range of values consists of the numerals and
variables of the object theory together with the expressions made up
from them by using ‘ + °. Thus, according to his second lemma, an

equation written in the language of the object theory is only provable

from axioms (6.5.1)—(6.5.5) if the same symbol occurs on both sides of
the sign ‘ = .

By means of the two lemmas, Hilbert demonstrated the consistency
of his axiom system as follows. Since only equations having the same
sign on both sides of ¢ = ’ are provable, if the system were inconsistent,

some formula of the form

oo .Ao.m.ﬂov
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would have to be provable. But only inequalities of the form
at1#1 (6.5.11)

are provable by direct substitution in the axioms (for only axiom (6.5.5)
contains the sign ¢ #’). If a formula as « were provable by means of
the detachment rule, then a premise of the form C — x5« would have
to be used ; but since it could not be derived directly by substitution, it
would require a premise B— (C — a5 «), which in turn would depend
on a premise 4 (B (C—a#a)). Butaccording to the first lemma,
no provable formula has more than two occurrences of ¢ — ’.

The axiom system which Hilbert used to illustrate direct proofs of

- consistency was a rather elementary part of the arithmetic of natural

numbers and did not contain an axiom of mathematical induction.
But he was confident that essentially the same methods of reasoning
would yield consistency proofs for much more advanced systems, such
as the full arithmetic of integers, the theory of real numbers, and also
the theories of Cantor’s higher number-classes. However, in 1931a
Kurt Gédel published a theorem, called { Gédel’s theorem on oo=m_m8=o%
proofs ’, which showed that consistency proofs for (say) Peano’s axio-
matisation of arithmetic, using only the very &manbﬂmaw (finite com-
binatorial) methods of the sort which Hilbert had in mind, are
impossible. Nevertheless, interesting results (in particular, QmENg s
theorem on the consistency of elementary number theory) have been
obtained by modifying Hilbert’s programme. The interested reader
may consult Andrzej Mostowski’s Thirty years of foundational studies
(1966a) for further information on the work of Goédel and Gentzen,
and on other advances in foundations onnE.dDm after the period ooﬁu,ma
in this chapter. :

6.6. Russell’s antinomy

Cesare Burali-Forti was the first mathematician to publish an antinomy

. of set theory. In his 1897a he considered the class of all Cantorian

ordinals and showed that its ordinal Q satisfied the contradictory
properties

Q+1>Q and Q+1<Q. (6.6.1)

However, his result does not seem to have made much of an impression.
People were perhaps inclined to believe that some error had been made
in reasoning in a new and unfamiliar subject. The same applied to the
next antinomies that were reported in print—of the set of all alephs and
the set of all powers—which were similar to Burali-Forti’s. For
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example, when Hilbert mentioned them to Frege in 1900, Frege seems
to have been uninterested (see Frege 1971a, 12). While he was a firm
supporter of the new theory of the transfinite, he considered Cantor’s
formulations to be imprecise ; perhaps he thought that some error had
been made on that account.

The case was entirely different with the antinomy of the class of all
classes which do not belong to themselves, which was discovered inde-
pendently by Russell and by Zermelo and first published in 1903 in
the second volume of Frege’s Grundgesetze (1903a, appendix) and in’
Russell’s The principles of mathematics (1903a, ch. 10). This antinomy
involves only the concepts of class and membership, and it follows almost
immediately from the axiom which had been the implicit _um%m of set
theory. Yet it is an interesting fact that Russell was led to .&mnoe.on it
by reflecting on the implications  of Cantor’s theorem which asserts
that for every set there is another set, its power-set, of greater cardinal
number (see section 5.9). )

Russell noticed that although Cantor had proved that there is no
greatest cardinal number, there must nevertheless be such a number.
In fact, the greatest number should be the number of the class of all
entities, for there cannot possibly be a larger class. This antinomy,
which was already known to Cantor, is usually called  Cantor’s para-
dox ’.! Russell became aware of it in January of 1901 and gave it its
first mention in print in an article 19014, in which he said that if Om:;o%w
proof that there is no greatest number were valid, ‘ the oo.anm&niwbm
of infinity would reappear in a sublimated form. But in this one point,
the master has been guilty of a very subtle fallacy, which I hope to
explain in some future work ’ (1917a, 89). .

Thus Russell’s reaction to the first antinomy which he discovered
was that there must be some subtle mistake in Cantor’s argument ;
he did not conclude that there is something fundamentally wrong in set
theory. Russell minutely examined-the proof of Cantor’s _&no.nmg.
expecting to find some error ; in cases like that of the class'of all entities,
the class of all classes, or the class of all propositions, it seemed to him
¢ as though Cantor’s proof must contain some assumption which is not
verified ’ (1903a, 362).

Expecting an error of this sort, Russell examined the results of apply-
ing the method of Cantor’s proof to such classes. The result was his
discovery of the antinomy which has come to be called ‘ Russell’s para-

! 1 avoid using the word ¢ paradox ’ to describe such results, for vm.n»n_ox d um used
very loosely in common speech to cover antinomies, correct arguments with puzzling or
counter-intuitive though non-contradictory conclusions, ».:a. »._mo only uﬁﬁw—.w:ﬁ%.a&_i
arguments, such as the old-fashioned ‘ paradoxes of the infinite’. 'The antinomies of
set theory are real contradictions derivable by means of m.onmSm logical rules (correctly
applied) from an apparently true thesis concerning the existence of sets.
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:

dox In his Introduction to mathematical philosophy he says that when
he first came upon the contradiction of the greatest number in 1901,
‘I attempted to discover some flaw in Cantor’s proof that there is no
greatest cardinal . . . Applying this proof to the supposed class of all
imaginable objects, I was led to a new and simpler contradiction . . .’
(1919a, 136). .

In order to see how Russell discovered the antinomy of the class
of all classes which do not belong to themselves, recall from section 5.7
the method of showing in the proof of Cantor’s theorem that any set 4
is not equipollent to the power-set P(4) of all its subsets. For any
one-one correspondence f whose domain of arguments is 4’ <4 and
whose range of values is a subset of P(4), the class

Nw? |xed’ . & . xéf(x)} (6.6.2)

belongs to P(A) but not to the range of values of f- If it is supposed
that K is an f-correlate of some element y of A4, that is, if

yed' . & . f(y)=K, (6.6.3)
it follows that -

yeKo y¢K, (6.6.4)

which implies the contradiction yeK . & . y¢K. Now let us see what
happens when A4 is the class U of all things, 4’ is the subclass C of U
containing all classes, and for each ceC, f(c)=c. In this case, K is
the class R of all classes which do not belong to theémselves, and it
follows that

ReC . & . f(R)=R (6.6.5)
(compare (6.6.3), which was only a supposition), and consequently that
"ReR—R¢R. (6.6.6)

It is in this or some very similar way that Russell discovered his anti-
nomy ; I would guess that the same is true in the case of Zermelo.
Once R is thought of, it is evident that its existence and the antinomy
(6.6.6) -follow immediately from the principle that for any sentential
form ¢ ¢x’, .
AM)(Vx)weMegx), (6.6.7)

and hence that this principle is false. Thus, while Russell set out to
correct a supposed error in Cantor’s reasoning, he obtained another
antinomy which made it entirely clear that something was wrong with
the very first principles of set theory, or, as Russell would have said,
with the principles of logic, since he regarded the general theories of
classes and relations as branches of logic.
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The principle (6.6.7) usually referred to as ‘ the naive .ﬁ.&b&ﬁn of
comprehension ’ (or abstraction), asserts that every propositional func-
tion ¢ ¢x’, or every property, determines a class. This was taken to
be an evident truth by Russell (see 19034, 102). He also pointed out
that the naive axiom of abstraction is unofficially present in Peano’s
system : ‘ Peano holds (though he does not lay it down as an axiom)
that every proposition containing only one variable is Hmacomzo.ﬂo .go
form “xisana”’ (1903a, 28 ; compare pp. 19 and 103). A principle
having the same effect as (6.6.7) was also advanced by Frege.

Perhaps no one was so upset by Russell’s antinomy as Frege. At
first he made some attempt to resolve this antinomy (1903a, m@umn&.xv.
but apparently he became dissatisfied with any of the methods which
were introduced to avoid the antinomies. Near the end of his life, he
said that set theory had been  destroyed ’ by the antinomies (19694, Nw.ov.
He gave up attempting a logical reconstruction of arithmetical theories
and settled for a geometrical foundation of arithmetic (1969a, 298-302).
In contrast, Russell’s attitude was that the antinomies ‘can all be
removed by patience in distinguishing and defining ’ (1910a,.373).

6.7. The foundations of Principia mathematica

When Russell began to deal with the problem of the antinomies, he
‘ hoped the matter was trivial and could be easily cleared up ’ (1944a,
13). But it took five years of effort before he produced the system for
avoiding the antinomies which is used in Principia mathematica. H:.moma.
he never succeeded in formulating a system which completely satisfied
him. One thing that made the problem of the antinomies so hard for
him was that he sought not merely a way of avoiding them ; he also
desired an independent explanation for the necessity of making the
particular restrictions. In My philosophical development he says that
while he was ‘ looking for a solution’ he considered it a requisite of a
¢ wholly satisfying ’ solution that it ‘should, on reflection, appeal to
what may be called * logical common sense ’—i.e. that it should seem,
in the end, just what one ought to have expected all along ’ (19594, 79).
And in 19066 he said that satisfactory principles should ‘ recommend
themselves to intuition’ and ‘ show exactly how we formerly fell into
error ’ (1906b, 631 ; 1973a, 195). Although he wanted to find a way wm
avoiding the antinomies which appeals to logical. common sense, in his
The principles of mathematics he had said the antinomy of the class of all
classes which do not belong to themselves ‘ springs directly from common
sense, and -can only be solved by abandoning some common-sense

assumption ’ (1903a, 105).
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Russell’s main idea for a solution of the antinomies is already con-
tained in.Principles : the doctrine that each propositional function? has a
“ range of significance’, and is meaningless with arguments outside this
range. 'The-formulas which give rise to the antinomies are, of course,
the meaningless ones : in particular, the expression ‘ x belongs to x’
and its negation were declared to be meaningless. But in order to have
a ‘solution’ of the antinomies, Russell needed an explanation of why
certain apparently meaningful statements about classes are really
meaningless ; he did not wish merely to propose that certain combina-
tions of symbols be declared not well-formed as one way of avoiding the
antinomies. Now Russell did not believe that (for example) © xex’
and its negation would be meaningless if there are such things as classes :
‘ That it is meaningless . .. to regard a class as being or not being a
member of itself, must be assumed for the avoidance of a . .. mathe-
matical contradiction ; but I cannot see that this could be meaningless
if there were such things as classes ’ (1910a, 376).

Consequently, another feature of Russell’s efforts with the anti-
nomies was his tendency to employ some form of ©no-class theory ’,
that is, a theory in which it is not assumed that many entities ever
‘ collectively form a single entity which is the class composed of them ’
(1906a, 46 ; 1973a, 155). Russell formulated two such theories. The
first one, the substitutional theory, was only briefly described in Russell’s
publications, but he wrote a long exposition of it which has now been
published (1973a, 165-189; for commentary, see Grattan-Guinness
1974b, 389-401). The second no-class theory appears in Russell’s
‘ Mathematical logic as based on the theory of types’ (1908a) and in
Principia mathématica. Both of Russell’s no-class theories provided a
meaning for some statements purporting to be about classes, but neither
provided a meaning for such statements as ‘ xex ’ or ‘ wéx ’.

Russell eventually became convinced that the basic fallacy underlying
the antinomies was some sort of vicious circle. This idea had appeared
in Poincaré 1906a, where it was explained by reference to the following
antinomy formulated in Jules Richard 1905a.2 Let E be the set of all

1.The term ‘ propositional function ’ is not clearly used with a single definite meaning
in Russell’s writings. Sometimes it seems to mean a function whose values are proposi-
tions in the sense of objective truths and falsehoods, while at other times it means a sen-
tential form,-that is, an expression like a sentence except that it contains one or more
variables and becomes a sentence when constants are substituted for its variables. Un-
fortunately, it is sometimes impossible to be sure what Russell intended.

2 Although the idea that a sort of vicious circle was involved in the use of bound
functional variables had occurred to Russell as early as 1904, he did not (or was at least
uncertain whether to) regard the antinomies as *vicious circle ‘fallacies’ until 1906.
The paper on the substitutional theory written before Poincaré’s article does not claim
that the antinomies are due to vicious circles. Rather the suggestion was that the anti-
nomies are due to ‘false abstraction’ (see 1973, 165). In a letter of January 1906
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decimals which can be defined in a finite number of words ; the set is
obviously denumerable and, hence, can be arranged wb. a sequence.
But, by reference to a sequence of the elements of E, it is possible to
define in a finite number of words a decimal NV which does not belong
to E. N is the decimal containing the digit p+1 in its n#-th place if p
is in the n-th place of the n-th element of E and is not 8 or 9, but con-
taining the digit 1 if pis 8 or'9. Now, according to Poincaré, ‘ the true
solution ’ of Richard’s antinomy is this: * E is the aggregate of all the
numbers definable by a finite number of words without introducing &R
notion of the aggregate E itself. Else the definition of E would contain
a vicious circle ; we must not define E by the aggregate E itself ’ (1913a,
480). Since N is defined ‘ with the aid of the notion of the aggregate E’,
it dees not belong to E. The other antinomies are supposed to be
explicable in a similar manner.

But no definition given in the statement of Richard’s (or any other)
antinomy is circular in the ordinary sense: the term n.ﬂmmbma or a
synonymous term does not vccur in the defining expression, and the
definitions are not defective for the reason that the definitions usually
calléd ‘circular’ are. Thus Peano asserted that ‘the definitions of
Richard do not contain a vicious circle’ (1906a, art. 4 ; 1973a, 214),
and pointed out that the usual definition of the least common BE%@T\
of two integers is of the kind which Poincaré alleges to contain a vicious
circle (1973a, 215). Zermelo also emphasised in 1908a the fact that
definitions of the form called ¢ viciously circular ’ by Poincaré have been
very frequently used in mathematics ‘ and up to now it rm:m not occurred
to anyone to regard this as something illogical ’ (van m.ocmwbo.o; N.@QVP
190-191). As a matter of fact, Russell himself vma QQ.E.WP in an
appendix to The principles of mathematics, that there is any vicious circle
involved in the method of Frege’s definition of the natural numbers
(1903a, 522), though that definition is a prime example of the sort
classified as viciously circular by Russell and Poincaré in 1906.

In Principia mathematica Russell tried to explain why statements
purporting to assert something about mvmo?a&.% all propositions,
propositional functions, or classes must be considered BnmE.smrwmm.
The reason why such general statements are supposed to be Bombsm_mw.w
is that the totalities to which they refer cannot be definite. - A proposi-
tion such as : all propositions are true or false, ‘ could bwﬂ.va _nmmma.ﬂmno
unless “ all propositions ” referred to some already definite collection,
which it cannot do if new propositions are created by statements about
“all propositions ”’ (1903a, 37 ; see also 1959a, 82). Many years

Russel! wrote to Philip Jourdain that ¢ The error seems to me . lie in mcvvo&:m that
many entities ever combine to form one new entity, the class ‘nongmm& of them ’ (see
Grattan-Guinness 1977a, 68).
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later he said in his book My philosophical development : © I must confess
that this doctrine has not won wide acceptance, but I have seen no
argument against it which seemed to me cogent’ (1959, 83). It may
be remarked, however, that some have found his explanations hard to
understand (see Chihara 1973a). ,

The scheme for avoiding the antinomies in Principia is called the
“ theory of types’; or the ‘ ramified theory of types’ (to distinguish it
from the ‘simple theory of types’ which was developed later by L.

" Chwistek, F. P. Ramsey and others). The principle guiding its formula-

tion is'the wvicious circle principle (VCP), which may be stated as follows :
A totality T may not contain elements which are only definable by means
of an expression containing a bound variable (such as ‘ x’ in * for all #,
... %..." and in ‘there is an x such that ... x ...’) whose range of
values contains all elements of T.. For example, the property P of
having all properties Q of the class 7" must not be a member of 7.

In accordance with the VCP, propositional functions which have a
value for an object a as argument (a-functions or functions * significant ’
for a) are classified into orders. The VCP rules out a totality of all
a-functions, for there are g-functions which can only be defined by
means of a bound variable ranging over some. totality of a-functions.
Such functions must lie outside of the totalities in terms of which they
are defined : at least, they must according to the VCP. But note that,
strictly speaking, we cannot say that any ‘legitimate’ totality of a-
functions does not include all a-functions, or that for any legitimate
totality of a-functions there is some a-function not belonging to it :
such statements are supposed to be meaningless (see PM, vol. 1, 55).

Let us say that a function presupposes or involves a totality 7' if it
is definable only by means of a bound variable whose range includes all
of T'; it also presupposes whatever is presupposed by the members of
such a totality, and so on. The order of a function depends on what
totalities it presupposes. The functions significant for a particular

“entity a as argument are of infinitely many different orders above the

order of a. The objects of the absolutely lowest order are the individuals
(concrete objects). First-order functions are those which presuppose
only the totality of individuals, while second-order functions of individuals
presuppose only a totality of first-order functions, in addtion to the

- totality of_ individuals. There are also functions of individuals of

arbitrarily many higher orders, and functions of order m can be argu-
ments to functions of arbitrarily many orders above m. A function is
said to be predicative if its order is next above the order of its highest-
order argument ; in other words, ¢ if it is of the lowest order compatible
with its having the arguments. it has’ (PM, vol. 1, 53). Alternatively
explained, ‘a predicative function of a variable argument is one which
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involves no totality except that of the possible argument, and those that
are presupposed by any one of the possible arguments’ Q.F.&; mé.p .:
should be noted that the concept of a predicative function is a primitive
idea in Principia mathematica.

In addition to orders, there is also a hierarchy of types. The type
of a function depends not only upon its order but also on the number and
kind of the arguments that it takes ; thus it is a sub-classification of orders.

‘For example, second-order functions of two individual arguments

constitute a type. .

Russell defined finite cardinal numbers as classes of equipollent
classes independently of, though in broadly the same manner as, Frege’s
definitions in section 6.3 above ; but because of type theory numbers
have to be defined for each type. (Russell also extended his definitions
to include transfinite cardinal and ordinal arithmetic.) Now adherence
to the system of orders is sufficient to develop these definitions and also
to avoid the antinomies, but it makes it impossible to define the finite
numbers by means of the property of having absolutely all rono&ﬁm.@
properties of 0 (a property is hereditary if Srwbwﬁ:.,m. number rw.w it,
so does its successor). According to Russell’s doctrine, expressions
containing the phrase ‘ all properties ’ or ‘all functions’ are meaning-
less, and the property of having all of a certain totality of properties is of
higher order than any of the properties belonging to that totality. .Hm
the integers are defined as the things having all hereditary properties
of a particular order m which belong to 0, then the principle of En.mc.nﬁob
is not a consequence of the definition. Since, by the original amrd_m_ob.
the property N of being a number is Eobao@onﬁ.% of having all hereditary
properties of 0, it follows that if P is a hereditary property of P then
whatever has N has P. But if N is only the property of having all
hereditary properties of order 7 which belong to 0, and P is a hereditary
property of 0 whose order is higher than , it does not follow from the
definition of IV that every number has P. To take a simple example
from Russell 71908a, art. 5, if the finite numbers are defined as those
having all first-order hereditary properties of 0, then ‘ we shall be unable
to prove that if m, n are finite numbers, then m+n is a finite number.
For, with the above definition, ““ m is a finite number ”’ is a second-order
property of m ...’ (van Heijenoort 1967a, 167). .

The theory of real numbers is also affected. It will be recalled from
section 6.1 that the virtue of Dedekind’s definition was that it had the
property of completeness (continuity) as a consequence : that is, using
Russell’s modification of the definition of the system of real numbers,
it follows that every segment of the real numbers has an upper limit.
A segment of reals is a certain class of classes of rationals, and its upper
limit is its union. But, owing to the bound variable occurring in its
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definition, the union of a class 4 of classes will generally be a class of
higher order than the elements of 4 and consequently cannot, according
to the VCP, belong to a class containing 4 as a subclass. Thus, accord-
ing to the VCP, the upper limit of a class of real numbers cannot generally
be a member of the system of real numbers, and the system will not be
complete.

In order to compensate for the much too negative effect of the vicious
circle principle, Whitehead and Russell postulated the axiom of reduci-
bility :  The axiom of reducibility is introduced in order to legitimate a
great mass of reasoning, in which, prima facie, we are concerned with
such notions as “all properties of a” or “all a-functions ”, and in
which, nevertheless, it seems scarcely possible to suspect any substantial

~error’ (PM, vol. 1, 56). The axiom of reducibility is the statement that

any propositional function satisfied by an object a is formally equivalent
to a predicative function (or predicate) of @. Two propositional func-
tions are formally equivalent if they are satisfied by exactly the same
arguments, that is, if they are co-extensive. Thus, the axiom of reduci-
bility means that for a propositional function of any order whatsoever

. which is satisfied by the object a there exists a co-extensive function

whose order is next above that of a.

Assuming the axiom of reducibility, if the finite numbers are defined
as those having all hereditary predicates of 0, then it will be possible to
prove that a higher-order hereditary property P of 0 belongs to all finite
numbers. For it follows from the definition that a hereditary predicate
of 0 belongs to all finite numbers, and the axiom of reducibility asserts
that there is a predicate Q of numbers which is coextensive with the
property P. Since Q is coextensive with P, Q is a hereditary property
of 0, and P belongs to all finite numbers because Q does. ~Similarly, the
axiom of reducibility saves the theory of real numbers in spite of the VCP.

6.8. Axiomatic set theory

After Cantor discovered that a contradiction is sometimes implied by the
supposition that there exists a set of all things having a certain property,
he began to distinguish two kinds of multiplicities, which he called
‘ consistent’ or ‘sets’ and ‘inconsistent’ or ‘absolutely infinite ’.

Though this distinction was not satisfactory, his basic idea for avoiding

the contradictions has—after being extended and improved—become
the most widely accepted reformulation of set theory.

Cantor explained an inconsistent multiplicity, in a letter of 1899 to
Dedekind, as one for which ‘the assumption that all of its elements
““ are together ” leads to a contradiction, so that it is impossible to con-
ceive of the multiplicity as a unity, as  one finished thing *’ (Papers,
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443 ; van Heijenoort 1967a, 114). But this is practically as much as to
say that there are no such things as inconsistent multiplicities ; as Cantor
himself said to Jourdain, ‘inconsistent multiplicities . . . can never be
conceived complete and actually existing’ (Grattan-Guinness 1971a, 119).
Thus Cantor does not really have ‘two kinds’ of multiplicities. It is
no wonder that Dedekind found Cantor’s purported distinction ‘un-
clear’ and did not know what Cantor meant by ¢ Zusammensein aller
Elemente einer Veilheit’ (‘ togetherness of all elements of a multiplicity ’;
Grattan-Guinness 1974a, 129). The fact is, Cantor spoke of an in-
consistent multiplicity when he might better have spoken of a property
such that the supposition that there is a set of all things having that
property leads to a contradiction. i

Later, John von Neumann formulated a system which avoids the
antinomies by not assuming that every class belongs to further classes
(see especially his 1925a). The term ¢ set ’ is reserved for those classes
which are elements of other classes. Here two kinds of -classes really
are distinguished. It is usually stated that Cantor’s inconsistent multi-
plicities are von Neumann’s classes which are not elements ; but in the
case of the former a contradiction results from the supposition of their
existence, while the latter are such that the supposition that they are
elements leads to a contradiction. What is common to the systems of
Cantor and von Neumann is not the distinction between ‘sets’ and
¢ proper classes’ (Cantor having no satisfactory distinction), but the
supposition that it is the very large totalities which are involved in the
antinomies.

Which multiplicities Cantor thought to be inconsistent is, it seems to
me, evident from his alternate description of them as ‘ absolutely
infinite >. He had always characterised the series of transfinite ordinals
as absolutely infinite. His idea seems to have been something like this :
each transfinite number is surpassed by other transfinite numbers, but

what is absolutely infinite has the property of being essentially- in-

capable of enlargement (see Papers, 167, 175 and 375). Thus I take
his identification of the inconsistent multiplicities with those which are
absolutely infinite as an expression of his belief that the only inconsistent
multiplicites are the absolute totalities such as the totality of all things,
all sets, or all ordinals, or totalities. which would have to be as large,
that is, which would have to contain-a part equipollent to one of these
absolutes. As Gerhard Hessenberg put it in Grelling and Nelson 1907a,
330 (Nelson 1959a, 82) :

Certainly every set containing a part equivalent to W [theset of
all ordinals] is infected with the same contradiction as W itself, and
its power is greater than every aleph. Now Herr Cantor conjec-
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tures that conversely this condition is sufficient, that therefore

oMaH% movr whose power is an aleph, is consistently concejvable, so

that one has i i

; ; to Qomwm:mg the type W so to speak as the ¢ first’ or
smallest  paradoxical type.

O»ao%m method of dealing with the antinomies is of the sort which
.w:mmm: discussed (but did not adopt) in his 1906z under the title
theory of limitation of size . ¢ This theory ’, Russell said, ¢ is naturall
suggested w.u% the consideration of Burali-Forti’s noqu&,omnvb as Som

as by certain general arguments tending to show that there mmu not
such a thing as the class of all entities’ (1906a, 43 ; 19734, 152). He
»_mo. wSﬁm.m that the theory of limitation of size ‘ naturally becomes
@mnﬁoﬁmﬁwma into the theory ’ that a propositional function determines
a o_mmm. Hm. ﬁ.:m_.m is a one-one relation between the things satisfying it and
some H.Eﬁm_ segment of the ordinals. He even thought certain con-
siderations made it seem likely that if an antinomy can be derived from
the mcvmo&mo: of a class of all things having the property ¢, then it will
be possible to define a one—one relation between all on&bm__m and some
(or m.=v of the things having ¢ (1906¢, 36 ; 1973a, 144). In Cantor’s
SHBGO.E@ : If' 4 is an inconsistent multiplicity, then some sub-
Bc_ﬂwro_.ﬁ%.om A is equivalent to W. This is just a particularisation of
the conviction,- maintained by Cantor, that only absolutely infinite
multiplicities-are inconsistent. .

Russell himself showed that there are at least as many classes which
.&o not belong to themselves as there are ordinal numbers. The follow-
ing argument is suggested by his considerations (1906a, 35; 1973a
143), but is not exactly the one he gave. If x is a set of sets ?Enr am
not Umr.vnm to themselves, then neither x nor xU{x} belongs to itself
Hrm union of a set of sets whose members do,not belong to mmemm?mm
is a set of sets not belonging to themselves ; hence it does not belong to
itself. Consequently, if x is any set not a member of itself, the series :

Sy=2, .

Df

S,1=8,U{S,},
n= u{S.}, (6.8.1)

“Sy= U S,, for limit numbers A,
Df a< A

is a series of sets which do not belong to themselves, and the series is
isomorphic to the series of all ordinals.

In order to reconstruct set theory on the basis of Cantor’s analysis
of m:o antinomies, it is necessary to formulate a system of axioms from
which the theorems can be proved but from which the existence of the
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large ‘sets’ involved in the antinomies does not follow. In corres-
pondence with Dedekind, Cantor formulated several of the most im-
portant axioms of-set theory. Let us first consider these axioms
formulated in Cantor’s terminology (writing ¢ S(A4)’ for “ A is aset’):

S(4).&.B~A4 .. S(B), (6.8.2)
S(4).&.A'sA. ~.S4), (6.8.3)
S(A) > S(UA). (6.8.4)

But what is the range of the variables ‘ 4°, * 4’’, and ¢B’? Itsurely
cannot be multiplicities in general comprising both consistent and in-
consistent multiplicities, for the latter do not exist. This defect in the
formulation of Cantor’s system is, however, easily removed. Instead
of inconsistent multiplicities, we could speak, as Russell did, of properties
which do not determine a set. (A property does not determine a set
if there is no set having as its elements exactly the things possessing the
property.) Thus, Cantor’s axioms could be formulated as follows :
(1) If ¢ is a property of sets and there is a one—one relation between the
things having ¢ and the set M, then ¢ determines a set, that is :

(3A)(Vx)Y{xeAd ()} (6.8.5)

(2) If M is a set, then the property of having ¢ and belonging to M
determines a set. (3) The property of being a member of 2 member of
the set M of sets determines a set.

The first published system of axioms based on the theory of limita-
tion of size was formulated in 1908 by Ernst Zermelo.* But his system
was designed to avoid the antinomies of ‘ finite definability ’, such as
Richard’s antinomy, as well as those concerning very large totalities.
Russell made no distinction between the various antinomies, but con-
sidered them all as ‘vicious circle fallacies’.. By contrast, Zermelo,
following Peano and Hessenberg, “distinguished between antinomies
which could be formulated in terms of the primitive concepts of set
theory and antinomies involving definability.

In order to avoid the antinomies of finite definability, Zermelo intro-
duced the concept of a ¢ definite’ assertion. An assertion about sets
is definite if the relations of set membership and identity ¢ by means of
the axioms and the universally valid laws of logic, determine without
arbitrariness whether it holds or not’ (1908b, art. 1; van Heijenoort
1967a, 201). A sentential form ‘ ¢x’ is definite, if every assertion
resulting from an assignment of a value to ‘x’ is definite. Now,
instead of axiom (2) above, Zermelo’s system contains the following

1 Some similar ideas are in Harward 1905a, which seems not to have been influential.
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axiom of ‘ separation’ (axiom III): A definite sentential form deter-
mines a subset of the set M ; thatis, if  ¢x’ is definite, then

(AA4)(Vx){xed . > . xeM . & . $x}. (6.8.6)

,H,E.m is to .»405 including such a set as the set of all decimals which are
definable in a finite number of words.

,.Zr:o Zermelo’s definition of ‘ definite ’ is hardly satisfactory, it is
not in the least doubtful which assertions he had in mind. The definite
assertions were to be all those which can be expressed using only

.wmnm.v_.om for sets, ‘ =’, ‘€’, and logical symbols such as ‘" —1’°, ‘&,
mlv .n_ %«@& and ‘(3x)’. The first precise definition of the concept

of a definite assertion was given in 1910z by H

i =04 g y Hermann Weyl (Papers,
_In addition to the axiom of separation, Zermelo’s system included the

axiom of extensionality : A

(Vx)(xed—xeB). - . A=B, (6.8.7)

and axioms asserting the existence of : an empty set, a set {a} for any a
a set {a, b} for any a and b, the union of any set, the set of all subsets 0m
any set. It also included the following axiom of choice: The union
of any set T of. pairwise disjoint non-empty sets contains at least one
subset whose intersection with each member of 7 is a unit set (see section
6.9 vm._oiv. He also formulated an axiom of infinity suggested by
Um&mwim.m proof (1888a, art. 66) that a simply infinite system exists.
According to this axiom, there exists a set which contains the empty set
and whenever it contains x, also contains {x}. A set whose elements
may be omza& ‘ natural numbers ’ is defined as follows: Let Z be a set
whose existence is postulated by the axiom of infinity. The set Z, of
:»EHW_ numbers is the intersection of the set of all subsets of Z Smmov
contain ¥ and the unit set of each of their elements :

N,,MDEN.mN. &. JeX . & . (Vx)(xeX—{x}eX)}. (6.8.8)

Z, cannot simply be defined as the intersection of the set 4 of all sets
containing the empty set as well as the unit set of any element they
contain, because such a set 4 would be ‘too big’, and its existence
could not be proved from Zermelo’s axioms.

In Principia mathematica axioms of choice and infinity are formulated
but not assumed to be true ; they are taken as hypotheses, and Bmsu“
conditional theorems are established having one of these propositions as
antecedent. There is a significant difference between Zermelo’s and
.W:.mmw:.m axioms of infinity : the former asserts the existence of an
Sm_.Enw set of sets, while the latter asserts the existence of an infinite get
of individuals or concrete objects. Russell had to formulate such an
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axiom of infinity because of his theory of types (see especially his 1908a,
art. 10). .

6.9. The axiom of choice

Before Zermelo’s 1904a focussed attention on the axiom of choice,
various mathematicians had without realising it %onB:_m.nma E.oo?
whose validity depended upon that axiom. A good example is wao«ﬁam
by Dedekind’s argument for the proposition that every mnn..m. containing
for each natural number z a subset equivalent to N:. ?ﬁ:nw is Eo,mmﬁ
(6.3.12) of natural numbers between 1 and 7) is a@:.%ozaa to
some proper subset of itself (1888a, art. Hmwv. According to mrm
hypothesis of the theorem, for each 7 there is a one-one ?wo.co:
mapping Z, into S ; that is, for each =, the set mrw of one-one mappings
from Z, into S is not the empty set. Dedekind went beyond the
hypothesis of the theorem when he assumed that there is a sequence of
functions «, such that «, belongs to 4,,. .
‘Russell also unwittingly used an argument (due to Cantor) which
needs the axiom of choice as a premise (1903a, 122-123). Hu..cﬁ he
eventually recognised as a separate assumption the form of the axiom of
choice which he called the ‘ multiplicative axiom’: For every class 4
of mutually exclusive non-empty sets, there exists at least one .set com-
prising exactly one element from each SmBU.on of A. In a letter to
Jourdain written in 1906, he relates how this came about (Grattan-

Guinness 1972a, 107 ; 1977a, 80) :

As for the multiplicative axiom, I came on it so. to mvo»_ﬂ.. by
chance. Whitehead and I make alternate recensions of the various
parts of our book, each correcting the last woombmmn: made by the
other. In going over his recensions, which oobs::oa. a proof of
the axiom, I found that the previous proposition used in Eo. proof
had surreptitiously assumed the axiom. This happened in a.ro
summer of 1904. At first I thought probably a proof Q.EE easily
be found ; but gradually I saw that, if there is a proof, it must be
very recondite. :

The problems which eventually made the axiom of choice mnoBEoE
were those concerning the comparability of powers mbm .Sa:-oan:bw.
Cantor had always been convinced that any two ».umsmm:w:m ﬁoueﬂ.m are
comparable, and so fully deserve the name ‘ cardinal number . .H,S.o
powers are comparable if for any sets having those powers, one is equi-
pollent to a subset of the other. Now he had succeeded in showing
that any two well-ordered sets are oonm.nm.Eov and roE.um .Q.EH any two
alephs are comparable, and that a transfinite power which is less than
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some aleph is itself an aleph. It only remained to show that every
power is an aleph, or that every set has at least one well-ordering.
Now my guess is that he thought that any power must at least be com-
parable with the alephs (compare Hardy 19044, 88), and, therefore, that

' two incomparable powers must both be greater than any aleph. I
_speculate further that it was in pursuing this line of thought that he

came upon the antinomies and subsequently made his distinction
between consistent and inconsistent multiplicities. He then formulated
the following argument, which he communicated to Dedekind in 1899,
for the proposition that every transfinite power is an aleph. Suppose
that the multiplicity ¥ does not have an aleph as its power. In that
case, for every ordinal «, ¥ is not equivalent to W, (the initial segment
of the ordinals determined by «). Cantor assumes then that W is
‘ projectible into > ¥, which means that * there must exist a sub-multi-
plicity V" of V' that is equivalent to the system’. W (Papers, 447 ; van
Heijenoort 19672, 117). By the axiom (6.8.2) V" is inconsistent because
W is, and therefore V is inconsistent by (6.8.3). Thus, if ¥ does not
have an aleph for its power.it is an inconsistent multiplicity ; conse-
quently, if V' is a set, then its power is an aleph. .

In an editorial note to this argument in his edition of Cantor’s works,
Zermelo explained objections which led him to formulate his own proof.
To explain why Cantor asserts that W is ¢ projectible ’ into a multi-
plicity V' whose power is not an aleph, Zermelo supposes Cantor to
have thought in terms of a procedure of successive assignments of
members of ¥ to ordinals. Zermelo’s objection is that ‘ the intuition
of time is applied here to a process that goes beyond all intuition . . .’
(Cantor Papers, 451 ; van Heijenoort 1967a, 117). But Cantor may
not have intended any such thing ; it is possible that his reasoning is
based on the following proposition :

(VX (V~ W) >@VRV' SV . &. V'a W} (69.1 )

taken as an axiom.

Zermelo remarks that the.theorem which Cantor wished to prove
could only be established by means of the axiom of choice ¢ which postu-
lates the possibility of a simultaneous choice . ..°. But how it would be
possible to make so many arbitrary choices ‘ simultaneously ’ is not
evident. Actually Zermelo did not understand his axiom to assert
anything about the possibility of ‘choices. Indeed, Sierpinski quotes
Zermelo as having said in a letter that the formulation of the axiom in
terms of choice ‘ concerns only the ‘psychological method of presenta-
tion, while the axiom, as its wording by the way makes sufficiently clear,
should be regarded as a pure axiom of existence ’ (1965a, 96). Cantor
might well have attempted to defend his argument in some such terms.
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Had he done this, Zermelo could have brought into play his much more
serious objection to Cantor’s argument—the objection to the employ-
ment of inconsistent multiplicities. Surely the purported mention of
inconsistent multiplicities cannot occur in an axiom.

Zermelo’s own proof in 1904a that every set has at least one well-
ordering, which implies the comparability of powers, was constructed
in accordance with the following requisites. The proof was to avoid
¢ not only all notions that were in any way dubious [such as that of an
inconsistent multiplicity] but also the use of ordinals in general’;
also, only * principles and devices that have not yet by themselves given
rise to any antinomy ’ were used (Zermelo 1908a, art. 2, sect. ¢; van
Heijenoort 1967a, 192). The idea of using the axiom of choice to prove
the well-ordering theorem was due to Erhard Schmidt. The form of
the axiom in Zermelo 1904a is: for any set M, there is at least one
mapping y such that for each non-empty subset M’ of M, y(M")eM'.

The axiom of choice has many important consequences in set theory.
It is used in the proof that every infinite set has a2 denumerable subset,
and in the proof that every set has at least one well-ordering. From
the latter, it follows that the power of every set is an aleph. Since any
two alephs are comparable, so are any two transfinite powers of sets.
The axiom of choice is also essential in the arithmetic of transfinite
numbers. For example, it is needed to prove that the cardinal of the
union of « disjoint sets each having § elements is « x B.

The axiom also plays a role in various parts of Weierstrassian analysis
(see Sierpinski 1918a, -and Grattan-Guinness 1977a, passim), whose
development was described in sections 3.11-3,14. Here are some of
its uses : to prove that a limit-point of a set is an accumulation point ;
to prove that every field has an algebraic closure which is unique (up
to isomorphism) ; to construct non-measurable sets ; and to prove
the Bolzano-Weierstrass theorem, if it states that an infinite (in the
non-inductive sense) set has a limit-point (as opposed to an accumula-
tion point).

After Zermelo’s proof of the well-ordering theorem in 1904a, the
proof and the axiom on which it was based became the subject of a
considerable amount of controversy (see Zlot 1960a; and Fraenkel,
Bar-Hillel and Levy 1973a). In 1908a Zermelo published a new proof
of the well-ordering theorem and answered the criticisms directed against
the first. proof and the axiom of choice. One reason for the disagree-
ments was the fact that not everyone understood the axiom in the same
way. Thus someone to whom it seems an evident truth might well
grant that it is quite doubtful when interpreted in a different way.

But metaphysical convictions determine what a given author considers

to be the possible interpretations.
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Let us first consider Peana’s remarks on the axiom of choi i
he understood to mean °that we may arbitrarily choose MMNMWWM
number of elements’ (1906a, art. 1; 1973a, 207)." He pointed out
that he r,mm.m;mma% rejected this as a pringiple of inference in Hwow
”E.Ho only objection which he mentioned to the axiom of choice was arwm
it is not provable from the axioms of his system of logic, which he a
parently considered as definitive of the concept of .E.omm. ‘In so e
cases we do not know how to eliminate the postulate of Noﬂ.ro_o .Hrnawa
these proofs are not reduced to the ordinary forms of argument . and &M
m._.oomm are not valid, according to the ordinary meaning of .mrn word

proof ”*”’ QwNw&, 210). 1In a letter written to Russell in 1906, Peano
expressed his point as follows : ¢ this form of reasoning is not na.acomzm
to the cm.ﬁm_ forms (for example, to those contained in pages 1-14 of the
.m.ewﬁia:ﬁ vol. 5 [1908a]) ; and to prove a proposition means to deduce
it mmoB _Soéb. propositions by the usual forms of nmuwo.nmbm without
mm&E.m new principles ’ (Kennedy 71975a, 209). Peano nonmmmonmm the
question of the truth or falsehood of the axiom of choice to be of no
Moﬂﬂn@ﬁwboo MNMNwa. 210). Thus he did not pass any judgment on the
ruth-value of the axiom of choi i iti i
ekl e choice, .g.: only on its legitimacy as a prin-
: Ewﬂ did Zermelo say to this ? He had stated in 1904z that the
principle  cannot, to be sure, be reduced to a still simpler one’ ?m:.
ﬂocmboonn 1967a, 141). But he did not consider, as Peano apparentl
did, that the system of mathematical principles was already 0%9 _03%
.HSE.@B\Q., the axiom of choice emerged in the same way as the @HEM _mm.
included in Peano’s system must once have done, by analysis of .m““r
ﬂo&nm of inference that in the course of history have come to be reco :
Em.on_. as valid’. It is also justified in the same way, namely, ¢ M..
pointing out that the principles are intuitively evident mbm :noommww mow
science ’ Q .bcma, art. 1; van Heijenoort 19674, 187). The very Ewamb..
sive nam.ro_.ﬁ use of the axiom of choice by many mathematicians could. -
Nmnaoﬁo mm._m. ‘ be explained only by its self-evidence ... No matter mm
this self-evidence is to a certain degree subjective—it is surely a necessa
source of mathematical principles, even if it is not a tool of Bwﬁroamﬂoww
proofs, mnm Peano’s assertion [1973a, 210] that it has nothing to do with
mathematics fails to do justice to manifest facts ’ (bzd.). ¢ _

.Hﬂc,mmmz. was one of those who had implicitly used the .axiom of
choice (or the multiplicative axiom) in arguments ; as we have alread
seen, when he first became aware of the latter as a proposition SEow
had not yet vo.ob proved, he thought it must be provable. Perhaps he
had thought this because the proposition seemed evident and. as Nﬂwzm_o
would say, ‘necessary for science’. But, unlike Nman.Ho Russell
after realising that the axiom was probably independent of ﬂm:w m%mﬁg“
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tions he had made so far, became sceptical wvoﬁ. the axiom of
MMMWM M_%m its equivalents. Fortunately, he explained quite clearly the
is doubt. o e
moEMMmMM_wm first publication dealing Smﬂ.r the Bcgvr.oﬁ:\n axiom is .r_m
1906a. ~Although he opens his discussion of a.vw axiom v% wammnbﬁum
the difficulty as one about the ﬁOmmmE_Q o*. making an infinite HEBUQ.. o
arbitrary choices, the real point at issue is the existence of m.wn_ooao.:
set for each class & of mutually exclusive, non-empty sets : What is
required is not that we should actually be able to pick out one term ?oB
each class which is a member of &, but that there should be ?&559.. sM
can specify it or not) at least one class composed of one term from eac
member of k&’ (Russell 1906a, 48 ; 1973a, 158). Now because of S.rmﬁ
he meant by a class it seemed doubtful to Russell mrmﬁ there m._Sm%m 1s a
selection set. He conceived of a class as something determined by a
property or propositional function: If no property, .ﬁvg no o_wmmm.
Thus, from this point of view, ‘ what we are ._uﬂn.umz_% in doubt about
is the existence of a norm or property such as s::.. pick out one term ?m:ﬁ
each ‘of our aggregates ; the doubt as to the existence of a &a&.ér_or
will make this selection is derivative from the doubt as to the existence
of a norm ’ (Russell 1906a, 52 ; 1973a, 162-163). . .
Now the multiplicative axiom does seem to be as evident as any o
the other axioms of set theory on the pure oxnn.zwpow& o&:on@n. of set.
Moreover, as Godel has said (with this concept in w353. uoﬁg.bm can
express better the meaning of the term “class ” than n.vn axiom wm
classes and the axiom of choice’ (1944a, 151). But with W:mmm:.m
concept of a class as something dependent on a property, the Bc.:T
plicative axiom really is doubtful. m,m:. then it amounts to the assertion
that for any class & of pairwise disjoint, non-empty classes, there is at
least one property possessed by exactly one &omsoa ?m:b each Ban&nm
of k& and by no other things. It would be quite ,vomm:urw to agree wit
Russell’s opinion that ‘ this is not at all obvious Qw:.ﬁ 33) E.a yet
think the multiplicative axiom an mSawbﬁ truth, by taking sets in the
purely extensional sense to be the oEQO- of set theory. .E_m meta-
physical convictions prevented him from moE.m this, but it is interesting
to note that later he was persuaded for a ér:.n g\ ﬁambw Ramsey and
Henry Sheffer to assert the truth of the multiplicative axiom (Russell
1927a, 299 ; compare Ramsey 1931a, 58). . .
What was Zermelo’s concept of set ? dn.moﬁcaﬁn_w. he B.mao no
positive statement, but that he did not conceive sets as oxnnbmpo.bmrmum
properties (as Russell did) is suggested by a couple of vmmmmmom&._”u ._M
writings (van Heijenoort 1967a, ﬁm.o. last para. ; ONE.SH Nunvs.w.o itoria
note on p. 442). It remains possible that Zermelo intended his system
to concern the purely extensional concept of set.
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6.10. Some concluding remarks

What kinds of conclusion can we draw from such a miscellany of studies
and techniques ? Perhaps two main points will suffice. Firstly, the
introduction of set theory into mathematics and propositional functions
into logic brought these two topics into newly intimate contact. ' Russell
and Frege saw the connection as so close that they espoused a doctrine
of ‘logicism ’—that mathematics (for Frege, only arithmetic) was a
branch of logic. These forms of logicism are not normally asserted
today, but the location of the dividing- line between logic and mathe-
matics is still a controversial matter. Secondly, the development of
meta-mathematics by Hilbert and the distinction between use and men-
tion by Frege (though, unfortunately, not by Russell) led mathematicians
and philosophers to -see the profound importance of the distir.ction
between theory and meta-theory in the study of the foundations of
logic and mathematics.

These remarks largely refer to the later developments in founda-
tional studies. They lie outside the time-period of this book, which
now draws to its close. A fitting conclusion to the book is provided by "
a return. to the 17th century, where the final words of Descartes’s
La géométrie (1637a) may apply here also :

But it is not my purpose to write a large book. I am trying
rather to include much in a few words, as will perhaps be inferred
from what I have done . . .

I hope that posterity will judge me kindly, not only as to the
things of which I have explained, but also as to those which I have
intentionally omitted so as to leave to others the pleasure of discovery.
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