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76 THE SYSTEM § 21

are rejected, then the expression ‘If « and B, then o’ must be
rejected too.! This rule, together with the rules of rejection (c)
and (d) and the axiomatically rejected expression ‘If all C is B
and all 4 is B, then some 4 is C’, enables us to reject any false
expression of the system. Besides, we suppose as given the four
asserted axioms of the syllogistic, the definitions of the E- and

the O-premiss, the rules of inference for asserted expressions, and

the theory of deduction as an auxiliary system. In this way the
problem of decision finds its solution: for any given significant
expression of the system we can decide whether it is true and may
be asserted or whether it is false and must be rejected.

By the solution of this problem the main investigations on
Aristotle’s syllogistic are brought to an end. There remains only
one problem, or rather one mysterious point waiting for an
explanation: in order to reject all the false expressions of the
system it is necessary and sufficient to reject axiomatically only
one false expression, viz. the syllogistic form of the second figure
with universal affirmative premisses and a particular affirmative
conclusion. There exists no other expression suitable for this
purpose. The explanation of this curious logical fact may perhaps
lead to new discoveries in the field of logic.

t J. Stupecki, ‘Z badan nad sylogistyka Arystotelesa’ (Investigation on Aristotle’s

Syllogistic), Travaux de la Sociéié des Sciences et des Lettres de Wrocfaw, Sér. B, No. g,
Wroclaw (1948). See chapter v, devoted to the problem of decision.
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CHAPTER IV

ARISTOTLE’S SYSTEM IN SYMBOLIC
FORM

§ 22. Explanation of the symbolism

This chapter does not belong to the history of logic. Its purpose is
to set out the system of non-modal syllogisms according to the

_requirements of modern formal logic, but in close connexion with

the ideas set forth by Aristotle himself.

Modern formal logic is strictly formalistic. In order to get an
exactly formalized theory it is more convenient to employ a
symbolism invented for this purpose than to make use of ordinary
language which has its own grammatical laws. I have therefore
to start from the explanation of such a symbolism. As the
Aristotelian syllogistic involves the most elementary part of the
propositional logic called theory of deduction, I shall explain
the symbolic notation of both these 98&%?

In both theories there occur variables and constants. Variables
are denoted by small Latin letters, constants by Latin capitals.
By the initial letters of the alphabet q, b, ¢, d, ..., I denote term-
variables of the Aristotelian logic. These term-variables have as
values universal terms, as ‘man’ or ‘animal’. For the constants of
this logic I employ the capital letters 4, E, I, and O, used already
in this sense by the medieval logicians. By means of these two
kinds of letters I form the four functions of the Aristotelian logic,
writing the constants before the variables:.

Aab means All a is b or b belongs to all a,

Eab ,, Noaisbh ,» b belongs to no a,

Iab ,, Someaisb ,»» b belongs to some a,

Oab ,, Someaisnot b ,, b does not belong to some a.

The constants 4, E, I, and O are called functors, a and b their
arguments. All Aristotelian syllogisms are composed of these
four types of function connected with each other by means of
the words ‘if” and ‘and’. These words also denote functors, but

- of a different kind from the Aristotelian constants: their argu-

ments are not term-expressions, i.e. concrete terms or term-
variables, but propositional expressions, i.e. propositions like
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‘All men are animals’, propositional functions like ‘4abd’, or
propositional variables. I denote propositional variables by p,
g, 1, S, ..., the functor ‘if” by C, the functor ‘and’ by K. The
expression Cpg means ‘if p, then ¢’ (‘then’ may be omitted) and
is called ‘implication’ with p as the antecedent and ¢ as the
consequent. C does not belong to the antecedent, it only com-
bines the antecedent with the consequent. The expression Kpq
means ‘p and ¢’ and is called ‘conjunction’. We shall meet in
some proofs a third functor of propositional logic, propositional
negation. This is a functor of one argument and is denoted by
N. It is difficult to render the function Np either in English or
in any other modern language, as there exists no single word
for the propositional negation.* We have to say by circumlocu-
tion ‘it-is-not-true-that p’ or ‘it-is-not-the-case-that p’. For the
sake of brevity I shall use the expression ‘not-p’.

The principle of my notation is to write the functors before
the arguments. In this way I can avoid brackets. This symbol-
ism without brackets, which I invented and have employed in
my logical papers since 1929,% can be applied to mathematics as
well as to logic. The associative law of addition runs in the
ordinary notation thus:

(a+b0)+¢c = a+(b+c),
and cannot be stated without brackets. If you write, however,
the functor + before its arguments, you get:
(a+b)+¢c = ++abc and a+(b+c) = +a-+tbe.
The law of association can be now written without brackets:
~+~+abc = +a-t+be.
Now I shall explain some expressions written down in this

symbolic notation. The symbolic expression of a syllogism is
easy to understand. Take, for instance, the mood Barbara:

Ifall bisc¢and all g is b, then all g is ¢.

It reads in symbols:
CKAbcAabAac.

! The Stoics used for propositional negation the single word ody{.

% See, for instance, Lukasiewicz and Tarski, ‘Untersuchungen iiber den Aus-
sagenkalkiil’, Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie,
xxiii (1930), CL III, pp. 31-2.

§ 22 EXPLANATION OF THE SYMBOLISM qu

The conjunction of the premisses Abc and Aab, viz. KAbcAab, is
the antecedent of the formula, the conclusion Aac is its conse-
quent.

Some expressions of the theory of deduction are more com-
plicated. Take the symbolic expression of the hypothetical
syllogism:

If (if p, then g¢), then [if (if ¢, then r), then (if p, then 7)].

It reads:
CCpqCCqrCpr.
In order to understand the construction of this formula you
must remember that C is a functor of two propositional argu-
ments which follow immediately after C, forming together with
C a new compound propositional expression. Of this kind are
the expressions Cpg, Cqr, and Cpr contained in the formula.
Draw brackets around each of them; you will get the expression:

C(Gpq) C(Cqr) (Cpr).
Now you can easily see that (Cpg) is the antecedent of the whole
formula, and the rest, i.e. C(Cgr) (CGpr), is the consequent, having
(Cgr) as its antecedent and (Cpr) as its consequent.

In the same way we may analyse all the other expressions,
for instance the following, which contains N and X besides C:

CCKpgrCK NrgNp.

Remember that K, like C, is a functor of two arguments, and
that JV is a functor of one argument. By using different kinds of
brackets we get the expression:

CIC(Epg)T{CLE (Nr) g1 (Np)}-
[C(Kpg)r] is here the antecedent of the whole formula while
{C[K(Nr)q](Np)} is its consequent, having the conjunction

[K'(N7)q] as its antecedent and the negation (Np) as its con-
sequeht.

§ 23. Theory of deduction

The most fundamental logical system on which all the other
logical systems are built up is the theory of deduction. As every
logician is bound to know this system, I shall here describe it in
brief.
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The theory of deduction can be axiomatized in several different
ways, according to which functors are chosen as primitive terms.
The simplest way is to follow Frege, who takes as primitive
terms the functors of implication and negation, in our symbol-
ism C and N. There exist many sets of axioms of the C-N-
system; the simplest of them and the one almost universally
accepted was discovered by myself before 1929." It consists of
three axioms: .

T1. CCpqgCCqrCpr
T2. CCNppp
Tg. CpCNpg.

The first axiom is the law of the hypothetical syllogism already
explained in the foregoing section. The second axiom, which
reads in words ‘If (if not-p, then p), then p’, was applied by
Euclid to the proof of a mathematical theorem.? I call it the
law of Clavius, as Clavius (a learned Jesuit living in the second
half of the sixteenth century, ‘one of the constructors of the
Gregorian calendar) first drew attention to this law in his com-
mentary on Euclid. The third axiom, in words ‘If p, then if
not-p, then ¢’, occurs for the first time, as far as I know, in a
commentary on Aristotle ascribed to Duns Scotus; I call it the
law of Duns Scotus.? This law contains the venom usually
imputed to contradiction: if two contradictory sentences, like
« and N, were true together, we could derive from them by
means of this law the arbitrary proposition ¢, i.e. any proposi-
tion whatever. .

There belong to the system two rules of inference: the rule of
substitution and the rule of detachment.

The rule of substitution allows us to deduce new theses from
a thesis asserted in the system by writing instead of a variable a
significant expression, everywhere the same for the same vari-
able. Significant expressions are defined inductively in the fol-
lowing way: (a) any propositional variable is a significant
expression; (b) No is a significant expression provided « is a

! First published in Polish: ‘O znaczeniu i potrzebach logiki matematycznej’
(On the Importance and Requirements of Mathematical Logic), Nauka Polska,
vol. x, Warsaw (1929), pp. 610-12. Cf. also the German contribution quoted in
p. 78, n. 2: Satz 6, p. 35.

2 See above, section 16.
3 Cf. my paper quoted in p. 48, n.
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significant expression; (¢) Cof is a significant expression pro-
vided « and B are significant expressions.

The rule of detachment is the modus ponens of the Stoics
referred to above: if a proposition of the type Caf is asserted
and its antecedent « is asserted too, it is permissible to assert
its consequent f, and detach it from the implication as a new
thesis.

By means of these two rules we can deduce from our set of
axioms all the true theses of the C-N-system. If we want to
have in the system other functors besides C and WV, e.g. K, we
must introduce them by definitions. This can be done in two
different ways, as I shall show on the example of K. The con-
junction ‘¢ and ¢’ means the same as ‘it-is-not-true-that (if p,
then not-¢)’. This connexion between Kpg and NCpNg may be
expressed by the formula:

Kpg = NCpNg,

where the sign = corresponds to the words ‘means the same
as’. This kind of definition requires a special rule of inference
allowing us to replace the definiens by the definiendum and vice
versa. Or we may express the connexion between Kpg and
NCpNg by an equivalence, and as equivalence is not a primitive
term of our system, by two implications converse to each other:

CEKpgNGpNg and  CNCpNgKpg.

In this case a special definition-rule is not needed. I shall use
definitions of the first kind.

Let us now see by an example how new theses can be derived
from the axioms by the help of rules of inference. I shall deduce
from T1-Tg the law of identity Cpp. The deduction requires
two applications of the rule of substitution and two applications
of the rule of detachment; it runs thus:

T1. q/CNpgx CT3-T4
T4. CCCNpgrCpr
T4. q/p, r/p X CT2-T5
Ts. Cpp.
The first line is called the derivational line. It consists of two
parts separated from each other by the sign x. The first part,
T1. g/CNpg, means that in Tt CNpg has to be substituted for

5367 G
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¢g. The thesis produced by this substitution is omitted in order to
save space. It would be of the following form:

(I) CCpCNpgCCCNpgrCpr.

The second part, CT3-T4, shows how this omitted thesis is
constructed, makingitobvious that the rule of detachment may be
applied toit. Thesis (I) begins with C, and then there follow axiom
T4g as antecedent and thesis T4 as consequent. We can therefore
detach T4 as a new thesis. The derivational line before T'5 has
a similar explanation. The stroke (/) is the sign of substitution
and the short rule (-) the sign of detachment. Almost all sub-
sequent deductions are performed in the same manner.

One must be very expert in performing such proofs if one
wants to deduce from the axioms T1-Tg the law of commuta-
tion CCpCqrCqCpr or even the law of simplification CpCgp. 1
shall therefore explain an easy method of verifying expressions
of our system without deducing them from the axioms. This
method, invented by the American logician Charles S. Peirce
about 1885, is based on the so-called principle of bivalence,
which states that every proposition is either true or false, i.e.
that it has one and only one of two possible truth-values: truth
and falsity. This principle must not be mixed up with the law of
the excluded middle, according to which of two contradictory
propositions one must be true. It was stated as the basis of logic
by the Stoics, in particular by Chrysippus.*

All functions of the theory of deduction are truth-functions,
i.e. their truth and falsity depend only upon the truth and
falsity of their arguments. Let us denote a constant false pro-
position by o, and a constant true proposition by r. We may
define negation in the following way:

No =1 and Ni = o.

This means: the negation of a false proposition means the same
as a true proposition (or, shortly, is true) and the negation of
a true proposition is false. For implication we have the follow-
ing four definitions:

Coo=1, Cor=1, Cro=o0, Crr=1.

! Cicero, Acad. pr. ii. 95 ‘Fundamentum dialecticae est, quidquid enuntietur
(id autem appellant délwpa) aut verum esse aut falsum’; De fato 21 ‘Itaque
contendit omnes nervos Chrysippus ut persuadeat omne dé{wpa aut verum esse aut
falsum.” In the Stoic terminology dé{wpe means ‘proposition’, not ‘axiom’.
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This means: an implication is false only when its antecedent is
true and its consequent false; in all the other cases it is true.
This is the oldest definition of implication, stated by Philon of
Megara and adopted by the Stoics.! For conjunction we have
the four evident equalities:
Koo =0, Kor=o0, Kro=o0, Kir=r.

A conjunction is true only when both its arguments are true;
in all the other cases it is false.

Now if we want to verify a significant expression of the theory
of deduction containing all or some of the functors C, N, and K
we have to substitute for the variables occurring in the expression
the symbols o0 and 7 in all possible permutations, and reduce the
formulae thus obtained on the basis of the equalities given above.
If after the reduction all the formulae give 1 as the final result,
the expression is true or a thesis; if any one of them gives o as
the final result, the expression is false. Let us take as an example
of the first kind the law of transposition CCpgCNgNp; we get:

For p/o, ¢fo: CCooCNoNo = Ci1Cir = Cr1 = 1,
» Plo, g/1: CCorCNi1No = Ci1Cor = Cr1 = 1,
5 plI, glo: CCroCNoNT = CoCro = Coo = 1,
» P/, q/1: CC11CNINT = C1Co0 = Cr1 = 1.

As for all substitutions the final result is 7, the law of trans-
position is a thesis of our system. Let us now take as an example
of the second kind the expression CKpNgq. It suffices to try only
one substitution:

p/1, q/o: CK1Noo = CKr110 = Cr10 = 0.

This substitution gives o as the final result, and therefore the
expression CKpNgq is false. In the same way we may check all
the theses of the theory of deduction employed as auxiliary
premisses in Aristotle’s syllogistic.

§ 24. Quantifiers

Aristotle had no clear idea of quantifiers and did not use them
in his works; consequently we cannot introduce them into his
syllogistic. But, as we have already seen, there are two points in
his system which we can understand better if we explain them

I

' Sextus Empiricus, Adv. math. viii. 113 ¢ pév Pldwv éXeyer aAnbés yiveobar 76
ourmupévoy, Grav py dpynrar dm’ dAnfods kal Mjyy émi yeddos, daTe Tpixds pév

o

yivealar kar’ avrov dAnbés cuvnuuévov, kal’ éva 8¢ Tpémov Yebdos.
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by employing quantifiers. Universal quantifiers are connected
with the so-called ‘syllogistic necessity’, existential or particular
quantifiers with the proofs by ecthesis. I shall now translate into
symbols the proofs with existential quantifiers set down in
section 19, and then the argument dependent on universal
quantifiers mentioned in section 5.

I denote quantifiers by Greek capitals, the universal quanti-
fier by II, and the particular or existential quantifier by 2. IT
may be read ‘for all’, and 2 ‘for some’ or ‘there exists’; e.g.
ZcKAcbAca means in words: ‘There exists a ¢ such that all ¢ is
b and all ¢ is @’, or more briefly: ‘For somec¢, all ¢is b and all ¢
is a.” Every quantified expression, for instance ZcKAcbAca, con-
sists of three parts: part one, in our example 2, is always a
quantifier; part two, here ¢, is always a variable bound by the
preceding quantifier; part three, here KAcbAca, is always a
propositional expression containing the variable just bound by
the quantifier as a free variable. It is by putting Z¢ before
KAcbAca that the free variable ¢ in this last formula becomes
bound. We may put it briefly: = (part one) binds ¢ (part two)
in KAcbAca (part three).

The rules of existential quantifiers have already been set out
in section 19. In derivational lines I denote by 21 the rule al-
lowing us to put 2 before the antecedent, and by X2 the rule
allowing us to put it before the consequent of a true implica-
tion. The following deductions will be easily understood, as they
are translations of the deductions given in words in section 19,
the corresponding theses bearing the same running number and
having corresponding small letters as variables instead of capitals.

Proof of conversion of the I-premiss
Theses assumed as true without proof:

(1) ClabZcKAcbAca
(2) CXcKAcbAcalab

Theses (1) and (2) can be used as a definition of the /-premiss.
(3) CEpgKqp (commutative law of conjunction)

(3) p/Ach, q/Acax (4)
(4) CKAcbAcaK AcaAch

(4) Z2c x (5)
(5) CKAcbAcaZcKAcaAch
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(5) Z1% (6)
(6) CZcKAcbAcaZcKAcaAch

T1. CCpgCCqrCpr (law of the hypothetical syllogism)
T1.p/lab, q/ZcKAcb Aca,r/ZcK AcaAch X C(1)-C(6)—(7)
(7) ClabZcK AcaAch .
(2) b/a, albx (8)
(8) CZcKAcaAcblba

T1. p/lab, g/ZcKAcadch, r/Iba x C(7)-C(8)—(9)
(9) Clablba

The derivational lines show that (4) and (8) result from other
theses by substitution only, and (7) and (9) by substitution and
two detachments. Upon this pattern the reader himself may try
to construct the proof of the mood Darapti, which is easy.

Proof of the mood Bocardo

(The variables P, R, and § used in section 19 must be re-
lettered, as the corresponding small letters p, 7, and s are reserved
to denote propositional variables: write dfor P, a for R, and b for S.)

Thesis assumed without proof:
(15) CObdZcKAcbEcd

Two syllogisms taken as ﬁwnammmmm”
(16) CKAcbAbaAca (Barbara)
(17) CKAcaEcdOad (Felapton)
T6. CCEpgrCCKrstCKKpgst
This is the ‘synthetic theorem’ ascribed to Aristotle.
T6. p/Acb, q/Aba, r/Aca, s|Ecd, t/Oad x C(16)-C(17)—
: (18)
(18) CKKAcbAbaFcdOad
Ty. CCKKpqrsCEprCqs (auxiliary thesis)
T7. p/Ach, g/Aba, 1/Ecd, s/Oad x C(18)—(19)
(19) CKAcbEcdCAbaOad
(19) Z1¢ X (20)
(20) C2ZcKAcbEcdCAbaOad
T1. CCpgCCqrCpr
T1. p/Obd, g/ ZcK AchEcd, r/CAbaOad x C(15)-C(20)-
(21)
(21) CObdCAbaOad
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This is the implicational form of the mood Bocardo. If we wish
to have the usual conjunctional form of this mood, we must
apply to (21) the so-called law of importation:

T8. CCpCqrCKpqr.

We get:
T8. p/0bd, q/Aba, r/0ad x C(21)—(22)

(22) CKObdAbaOad ~ (Bocardo).

By the so-called law of exportation,

Tg. CCKpgrCpCyr,
which is the converse of the law of importation, we can get
the implicational form of the mood Bocardo back from its
conjunctional form.

The rules of universal quantifiers are similar to the rules of
particular quantifiers set out in section 19. The universal
quantifier can be put before the antecedent of a true implica-
tion unconditionally, binding a free variable occurring in the
antecedent, and before the consequent of a true implication
only under the condition that the variable which is to be bound
in the consequent does not occur in the antecedent as a free
variable. I denote the first of these rules by ITr, the second
by Il=.

Two derived rules result from the above primitive rules of
universal quantifiers: first, it is permissible (by rule IT2 and the
law of simplification) to put universal quantifiers in front of a
true expression binding free variables occurring in it; secondly,
it is permissible (by rule IIr and the propositional law of
identity) to drop universal quantifiers standing in front of a true
expression. How these rules may be derived I shall explain by
the example of the law of conversion of the I-premiss.

From the law of conversion
(9) Clablba
there follows the quantified expression

(26) ITalIbClablba,

and from the quantified expression (26) there follows again the
unquantified law of conversion (g).
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First: from (g) follows (26).
Tro. GpCqp (law of simplification)

. Tro. p/Clablba x C(9)—(23)
(23) CqClablba

To this thesis we apply rule IT2 binding 4, and then a, as neither
b nor a occurs in the antecedent:

(28) II2b X (24)
(24) CqlITbClablba

(24) ITza X (25)
(25) CqllalIbClablba

(25) q/CpCqpx CT10—(26)
(26) ITallbClablba

Secondly: from (26) follows (9).
Cpp (law of identity)

Ts. p/Clablba X (27)
(2%7) CCIablbaClablba

To this thesis we apply rule Iz binding b, and then a:
(27) ITrbx (28)
(28) CII6ClablbaClablba
(28) ITrax (29)
(29) CI1allbClablbaClablba

(29) x C(26)—(9)
(9) Clablba

Aristotle asserts: ‘If some a is b, it is necessary that some &
should be a.’ The expression ‘it is necessary that’ can have, in
my opinion, only this meaning: it is impossible to find such
values of the variables @ and & as would verify the antecedent
without verifying the consequent. That means, in other words:
‘For all a, and for all 4, if some a is b, then some 4 is a.” This is
our @cmbﬁmnm thesis Ammv It has been @aoﬁwa that this thesis is
equivalent to the unquantified law of conversion ‘If some @ is b,
then some 4 is &’, which does not contain the sign of necessity.
Since the mwzomazo necessity is equivalent to a universal
quantifier it may be omitted, as a universal quantifier may be
omitted at the head of a true formula.
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§ 25. Fundamentals of the syllogistic

Every axiomatized deductive system is based on three funda-
mental elements: primitive terms, axioms, and rules of inference.
I start from the fundamentals for asserted expressions, the funda-
mental elements for the rejected ones being given later.

As primitive terms I take the constants 4 and I, defining by
them the two other constants, £ and O:

Df 1. Eab = Nlab
Df 2. Oab = NAab.

In order to abbreviate the proofs I shall employ instead of the
above definitions the two following rules of inference:

Rule RE: NI may be everywhere replaced by E and con-
: versely.

Rule RO: N4 may be everywhere replaced by O and con-
versely.

The four theses of the system axiomatically asserted are the
two laws of identity and the moods Barbara and Datisi:

1. Aaa

2. laa

3. CKAbcAabAac (Barbara)
4. CKAbclbalac (Datisi).

Besides the rules RE and RO I accept the two following rules
of inference for the asserted expressions:

(a) Rule of substitution: If « is an asserted expression of the
system, then any expression produced from « by a valid
substitution is also an asserted expression. The only valid
substitution is to put for term-variables a, b, ¢ other term-
variables, e.g. b for a.

(6) Rule of detachment: If Cof and « are asserted expressions
of the system, then B is an asserted expression.

As an auxiliary theory I assume the C—N-system of the theory
of deduction with X as a defined functor. For propositional
variables propositional expressions of the syllogistic may be
substituted, like 4ab, Iac, KEbcAab, etc. In all subsequent proofs
(and also for rejected expressions) I shall employ only the
following fourteen theses denoted by roman numerals:

S bRk
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I. CpCqp (law of simplification)
II. CCqrCCpqCpr (law ofhypothetical syllogism, 2nd form)
III. CCpCqrCqCpr (law of commutation)
IV. CpCNpq (law of Duns Scotus)
V. CCNppp (law of Clavius)
VI. CCpqCNgNp (law of transposition)
VII. CCEpgrCsCqr (law of exportation)
VIII. CpCCEpgrCqr
IX. CCspCCEpgrCKsqr
X. CCKpgrCCsqCKpsr
XI. CCrsCCKpgrCKqps
XII. CCKpgrCEpNrNg
XIII. CCEpgrCENrgNp
XIV. CCEpNgNrCEprq

Thesis VIII is a form of the law of exportation, theses IX-XI
are compound laws of hypothetical syllogism, and XII-XIV
are compound laws of transposition. All of these can be easily
verified by the o-r method explained in section 23. Theses IV
and V give together with IT and III the whole C-N-system, but
IV and V are needed only in proofs for rejected expressions.

The system of axioms 1—4 is consistent, i.e. non-contradictory.
The easiest proof of non-contradiction is effected by regarding
term-variables as proposition-variables, and by defining the
functions 4 and I as always true, i.e. by putting dab = Iab =
KCaaChb. The axioms 1—4 are then true as theses of the theory
of deduction, and as it is known that the theory of deduction is
non-contradictory, the syllogistic is non-contradictory too.,

All the axioms of our system are independent of each other.
The proofs of this may be given by interpretation in the field of
the theory of deduction. In the subsequent interpretations the
term-variables are treated as propositional variables.

Independence of axiom 1: Take K for 4, and C for I. Axiom 1
is not verified, for Aaa = Kaa, and Kaa gives o for a/o. The other
axioms are verified, as can be seen by the o-1 method.

Independence of axiom 2: Take C for 4, and K for 1. Axiom 2
is not verified, for Jaa = Kaa. The other axioms are verified.

Independence of axiom 4: Take C for 4 and 1. Axiom 4 is
not verified, for CKAbclbalac = CKCbcCbaCac gives o for bjo,
a/1, c/o. The rest are verified.



90 ARISTOTLE’S SYSTEM IN SYMBOLIC FORM § 25

Independence of axiom 3: it is impossible to prove the inde-
pendence of this axiom on the ground of a theory of deduction
with only two truth-values, 0 and 1. We must introduce a third
truth-value, let us say 2, which may be regarded as another
symbol for truth, i.e. for 7. To the equivalences given for C, N,
and K in section 23, we have to add the following formulae:

Co2 = Cr2 = C21 = G22 = 1, C20 = o, Nz = o,
Koz = K20 = o, K12 = K21 = K22 = 1.

It can easily be shown that under these conditions all the theses
of the C-N-system are verified. Let us now define Jab as a func-
tion always true, i.e. Jab = 1 for all values of a and b, and Aab
as a function with the values

Aaa = 1, Aor = A12 = 1, and Ao2 = o (the rest is ir-
relevant).

Axioms 1, 2, and 4 are verified, but from 3 we get by the sub-
stitutions b/1, ¢/2, ajo: CKAr24orAo2 = CK110 = Cro = o.

It is also possible to give proofs of independence by inter-
pretation in the field of natural numbers. If we want, for in-
stance, to prove that axiom g is independent of the remaining
axioms, we can define Aab as a+1 b, and lab as a+b = b+-a.
Iab is always true, and therefore axioms 2 and 4 are verified.
Axiom 1 is also verified, for a+1 is always different from a. But
axiom 3, i.e. ‘If b+r1 £ ¢ and a+1 # b, then a+1 % ¢, is not
verified. Take g for a, 2 for b, and 4 for ¢: the premisses will be
true and the conclusion false.

It results from the above proofs of independence that there
exists no single axiom or ‘principle’ of the syllogistic. The four
axioms I—4 may be mechanically conjoined by the word ‘and’
into one proposition, but they remain distinct in this inorganic
conjunction without representing one single idea.

§ 26. Deduction of syllogistic theses

From axioms 1—4 we can derive all the theses of the Aristotel-

ian logic by means of our rules of inference and by the help of

the theory of deduction. I hope that the subsequent proofs will

be quite intelligible after the explanations given in the fore-

going sections. In all syllogistical moods the major term is

denoted by ¢; the middle term by &, and the minor term U%mﬂ.
2 ;

§ 26 DEDUCTION OF SYLLOGISTIC THESES g1

The major premiss is stated first, so that it is easy to compare
the formulae with the traditional names of the moods.!

A. Tue Laws oF CONVERSION
VIL. p/Abc, q/Iba, r/Iacx C4—5
5. CAbcClbalac
5. bla, c/a, alb x C1-6
6. Clablba (law of conversion of the /-premiss)
II1. p/Abe, g/1ba, r]/lac X C5—7
7. ClIbaCAbclac
7. bla, c/b x C2-8
8. CAablab (law of subordination for affirmative pre-
misses)
I1. g/1ab, r/Iba x C6—9
9. CCplabCplba
9. p/Aabx C8-10

10. CAablba (law of conversion of the 4-premiss)
6. alb, blax 11
11. Clbalab

VL. p/Iba, q/lab x C11-12
12. CNlabNIba
12. REX 13
13. CEabEba (law of conversion of the E-premiss)
VI. p/Aab, g/lab x C8-14
14. CNIabNAab
14. RE, RO X 15
15. CEabOab (law of subordination for negative premisses)

B. THe AFFIRMATIVE MooODs

X. plAbe, q/1ba, r/lac X C4—16
16. CCsIbaCKAbcslac

16. s/lab x C6-17
17. CKAbclablac (Darii)

' In my Polish text-book, Elements of Mathematical Logic, published in 1929 (see
P- 46, n. 3), I showed for the first time how the known theses of the syllogistic may
be formally deduced from axioms 1—4 (pp. 180-90). The method expounded in
the above text-book is accepted with some modifications by I. M. Bocherski, O.P.,
Mu rwwnounnmvcmob" On the Categorical Syllogism, Dominican Studies, vol. i, Oxford

1948).
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16. s/Aab x C10-18
18. CKAbcAablac

8. a/b, blax 19
19. CAbalba

16. s/Aba x C1g—20
20. CKAbcAbalac

XI. r/Iba, s/Iab x C11—21
21. CCKpqlbaCKqplab

4. ¢la, ajc X 22
22. CKAbalbclca

21. p/Aba, q/Ibc, bjc X C22—23
23. CKIbcAbalac .

17. ¢fa, ajc X 24
24. CKAbalchIca

21. p/Aba, g/lch, bjc X C24—25
25. CKIchAbalac

18 ¢/a, ajc X 26

26. CKAbaAcblca

21. p/Aba, q/Ach, bjc x C26~27
27. GKAcbAbalac

(Barbari)

(Darapti)

(Disamis)

(Dimaris)

(Bramantip)

C. Tue NEcaTivE Moobs

XIII. p/Ibe, q/Aba, r/lac x C23—28
28. CKNlacAbaNlIbc

28. RE x 29
29. CKEacAbaFEbc

29. a/b, blax g0

30. CKEbcAabEac (Celarent)
IX. s/Eab, p/Eba x C13-31
31."CCKEbagrCK Eabgr
31. afc, q/Aab, r/Eac X C30-32
32. CKEcbAabEac (Cesare)

XI. r/Eab, s/Eba x C13-33
33. CCKpqEabCKqpEba

32. ¢/a, ajc X 34
34. CKEabAcbEca

" §26

§ 26
35
36.

37

39-
40.
41.
42.
43.
44.
45.
46.

47-

49.
50.
5I.

52
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33. p/Eab, q/Ach, ajc, bjax (34-35
CKAcbEabEac

30. ¢/a, ajc X 36
CKEbaAcbEca

33. p/Eba, g/Acb, aje, blax C36-37
CKAcbEbaFEac

I1. g/Eab, r/Oab x C15-38

. CCpEabCpOab

38. p/KEbcAab, bjc x C30-39
CKEbcAabOac

38. p/KEcbAab, bjc x C32—40
CKEcbAabOac

38. p/KAcbEab, bjc X C35—41
CKAcbEabOac

38. p/KAcbEba, bjc X C37—42
CKAcbEbaOac

XIII1. p/Abe, g/1ba, r/Iac X C4—43
CKNlaclbaNAbc

43. RE, RO x 44
CKEaclbaObc

44. afb, blax 45
CKEbclabOac

31. aje, g/lab, r/Oac X C45-46
CKEcblabOac

X. p/Ebe, g/lab, r[Oac X C45—47
CCslabCK EbcsOac

47. s/Ibax C11-48

. CKEbcIbaOac

31. ajc, q/1ba, r/Oac X C48—49
CKEcbIbaOac

10. a/b, bla X 50
CAbalab

47. s/Aba x Cro-51
CKEbcAbaOac

31. ajc, g/Aba, r/Oac X Cr1-52

. CKEcbAbaOac

(Camestres)

(Camenes)

(Celaront)
(Cesaro)
(CGamestrop)

(Camenop)

(Ferio)

(Festino)

(Ferison)

(Fresison)

(Felapton)

(Fesapo)
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As a result of all these deductions one remarkable fact de-
serves our attention: it was possible to deduce twenty syllo-
gistic moods without employing axiom g, the mood Barbara.
Even Barbari could be proved without Barbara. Axiom g is the
most important thesis of the syllogistic, for it is the only syllo-
gism that yields a universal affirmative conclusion, but in the
system of simple syllogisms it has an inferior rank, being neces-
sary to prove only two syllogistic moods, Baroco and Bocardo.
Here are these two proofs:

XII. p/Abc, q/Aab, r|Aac X C3-53
53. CKAbcNAacNAab

53. RO X 54

54. CKAbcOacOab
54- bJe, ¢[b X 55

55. CKAcbOabOac : (Baroco)
XIII. p/Abc, g/Aab, r|Aac x C3—56

56. CKNAacAabNAbe

56. RO x 57
57. CKOacAabObc
57. a/b, bjax 58
58. CKObcAbaOac (Bocardo)

§ 277. Axioms and rules for rejected expressions

Of two intellectual acts, to assert a proposition and to reject
it,* only the first has been taken into account in modern formal
logic. Gottlob Frege introduced into logic the idea of assertion,
and the sign of assertion (I), accepted afterwards by the authors
of Principia Mathematica. The idea of rejection, however, so far
as I know, has been neglected up to the present day.

We assert true propositions and reject false ones. Only true
propositions can be asserted, for it would be an error to assert
a proposition that was not true. An analogous property cannot
be asserted of rejection: it is not only false propositions that
have to be rejected. It is true, of course, that every proposition
is either true or false, but there exist propositional expressions
that are neither true nor false. Of this kind are the so-called
propositional functions, i.e. expressions containing free variables

! T owe this distinction to Franz Brentano, who describes the acts of believing as
anerkennen and verwerfen.
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and becoming true for some of their values, and false for others.
Take, for instance, p, the propositional variable: itis neither true
nor false, because for p/r it becomes true, and for p/o it becomes
false. Now, of two contradictory propositions, « and N, one
must be true and the other false, one therefore must be asserted
and the other rejected. But neither of the two contradictory
propositional functions, p and Np, can be asserted, because
neither of them is true: they both have to be rejected.

The syllogistic forms rejected by Aristotle are not propositions
but propositional functions. Let us take an example: Aristotle
says that no syllogism arises in the first figure, when the first
term belongs to all the middle, but to none of the last. The
syllogistic form therefore:

(i) CKAbcEabla

1s not asserted by him as a valid syllogism, but rejected.
Aristotle himself gives concrete terms disproving the above
form: take for b ‘man’, for ¢ ‘animal’, and for a ‘stone’. But there
are other values for which the formula (i) can be verified: by
identifying the variables ¢ and ¢ we get a true implication
CKAbaFablaa, for its antecedent is false and its consequent true.
The negation of the formula (z):

(j) NCKAbcEablac

must therefore be rejected too, because for ¢/a it is false.

By introducing quantifiers into the system we could dispense
with rejection. Instead of rejecting the form (i) we could assert
the thesis:

(k) ZaZbZeNCKAbcEablac.

This means: there exist terms a, 4, and ¢ that verify the negation
of (z). The form (i), therefore, is not true for all a, b, and ¢, and
cannot be a valid syllogism. In the same way instead of rejecting
the expression (j) we might assert the thesis:

() ZaZbZcCKAbcEablac.

But Aristotle knows nothing of quantifiers; instead of adding to
his system new theses with quantifiers he uses rejection. As
rejection seems to be a simpler idea than quantification, let us
follow in Aristotle’s steps.
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Aristotle rejects most invalid syllogistic forms by exemplifica-
tion through concrete terms. This is the only point where we
cannot follow him, because we cannot introduce into logic such
concrete terms as ‘man’ or ‘animal’. Some forms must be
rejected axiomatically. I have found! that if we reject axioma-
tically the two following forms of the second figure:

CKAcbAablac
CKEcbEablac,

all the other invalid syllogistic forms may be rejected by means
of two rules of rejection:

(¢) Rule of H,Qoocoz by detachment: if the _Bwromﬁoz n: o,
then B is asserted, but the consequent B is rejected, then
the antecedent o must be rejected too.

(d) Rule of rejection by substitution: if B is a substitution of
a, and B is rejected, then « must be rejected too.

Both rules are perfectly evident.

The number of syllogistic forms is 4 X 4 = 256; 24 forms are
valid syllogisms, 2 forms are rejected axiomatically. It would be
tedious to prove that the remaining 230 invalid forms may be
rejected by means of our axioms and rules. I shall only show,
by the example of the forms of the first figure with premisses
Abc and Eab, how our rules of rejection work on the basis of
the first axiom of H&moﬁoz

Rejected expressions I denote by an asterisk wcﬂ before their
serial number. Thus we have:

*59. CKAcbAablac
*50a. CKEcbEablac
1. p/lac, g/ KAcbAab x 60
60. ClacCKAcbAablac
6o x C*61-*59
*61. lac.

(Axiom)

Here for the first time is applied the rule of rejection by
detachment. The asserted implication 6o has a rejected con-
sequent, *59; thereforeits antecedent, *61, must be rejected too.
In this same way I get the rejected expressions *64, *67, *71,

*74, and *77.

I See section 20.
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V. p/lac X 62
62. CCNlaclaclac

62. RE x 63
63. CCEaclaclac

63 X C*64-*61

*64. CEaclac

I. afc X 65

65. Acc

VIII. p/Acc, g/Eac, r/Iac x C65-66
66. CCKAccEaclacCEaclac
66 X C*67-*64
*67. CKAccEaclac
*67 X *68. bjc
*68. CKAbcEablac

Here the rule of rejection by substitution is applied. mﬁugmme
*68 must be rejected,because by the substitution of b for ¢in *68 we
get the rejected expression *67. The same ruleis used to get* 75,

I1. g/Aab, r/1ab x C8-69
69. CCpAabCplab

69. p/KAbcEab, bjc X 70
70. CCKAbcEabAacCKAbcEablac

70 X C*71-%68
. CKAbcEabAac

XIV. p/Acb, q/Iac, r|Aab X 72
72. CCKAcbNIacNAabCK AcbAablac

72. RE, RO x 73
73. CCKAcbEacOabCKAcbAablac

73 X C*74-*59

*74. CKAcbEacOab
*74 X *75. blc, c[b

*95. CKAbcEabOac

38. p/KAbcEab, bjc x 76 ’

76. CCEAbcEabEacCKAbcEabOac

76 X C*77-*75

*79. CKAbcEabEac

-

*7

The rejected expressions *68, *71, *75, and *77 are the four
5367 H
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possible forms of the first figure having as premisses Abc and
Eab. From these premisses no valid conclusion can be drawn in
the first figure. We can prove in the same way on the basis of
the two axiomatically rejected forms that all the other invalid
syllogistic forms in all the four figures must be rejected too.

§ 28. Insufficiency of our axioms and rules

Although it is possible to prove all the known theses of the
Aristotelian logic by means of our axioms and rules of assertion,
and to disprove all the invalid syllogistic forms by means of our
axioms and rules of rejection, the result is far from being satis-
factory. The reason is that besides the syllogistic forms there
exist many other significant expressions in the Aristotelian logic,
indeed an infinity of them, so that we cannot be sure whether
from our system of axioms and rules all the true expressions of
the syllogistic can be deduced or not, and whether all the false
expressions can be rejected or not. In fact, it is easy to find false
expressions that cannot be rejected by means of our axioms and
rules of rejection. Such, for instance, is the expression:

(F1) ClabCNAabAba.

It means: ‘If some a is b, then if it is not true that all a is b, all
b is a.” This expression is not true in the Aristotelian logic, and
cannot be proved by the axioms of assertion, but it is consistent
with them and added to the axioms does net entail any invalid
syllogistic form. It is worth while to consider the system of the
syllogistic as thus extended.

From the laws of the Aristotelian logic:

8. CAablab and
50. CAbalab

and the law Aom the theory of deduction:
(m) CCprCCqrCCNpgr
we can derive the following new thesis 78:

(m) p/Aab, q/Aba, r/lab x C8-Cr0- Y\.m
78. CCNAabAbalab.

This thesis is a converse implication with regard to (F1), mbm
together with (F1) gives an equivalence. On the ground of this
equivalence we may define the functor I by the functor 4:

(Fe) Iab = CNAabAba.
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This definition reads: ¢ “Some a is 5’ means the same as “If it
is not true that all ¢ is b, then all b is a”.” As the expression ‘If
not-p, then ¢’ is equivalent to the alternation ‘Either p or ¢’, we
can also say: * “Some a is 5 means the same as “Either all a is
borall bisa”.’ It is now easy to find an interpretation of this
extended system in the so-called Eulerian circles. The terms a,

b, ¢ are represented by circles, as in the usual interpretation,

U:H on the condition that no two circles shall intersect each
other. Axioms 1—4 are verified, and the forms *59 CKAcbAablac
and *59a CK'EcbEablac are rejected, becauseit is possible to draw
two circles lying outside each other and included in a third
circle, which refutes the form CKAcbAablac, and to draw three
circles each excluding the two others, which refutes the form
CKEcbEablac. Consequently all the laws of the Aristotelian
logic are verified, and all the invalid syllogistic forms are re-
Jjected. The system, however, is different from the Aristotelian
syllogistic, because the formula (F1) is false, as we can see from
the following example: it is true that ‘Some even numbers are
divisible by §’, but it is true neither that ‘All even numbers are
divisible by 3’ nor that ‘All numbers divisible by 3 are even’.

It results from this consideration that our system of axioms
and rules is not categorical, i.e. not all interpretations of our
system verify and falsify the same formulae or are isomorphic.
The interpretation just expounded verifies the formula (Fr)
which is not verified by the Aristotelian logic. The system of our
axioms and rules, therefore, is not sufficient to give a full and
exact description of the >§88§5 syllogistic.

In order to remove this difficulty we could reject the expres-
sion (F1) axiomatically. But it is doubtfuil whether this remedy
would be effective; there may be other formulae of the same
kind as (F1), perhaps even an infinite number of such formulae.
The problem is to find a system of axioms and rules for the
Aristotelian syllogistic on which we could decide whether any
given significant expression of this system has to be asserted or
rejected. To this most important problem of decision the next
chapter is devoted.



132 THE PROBLEM OF DECISION § 35

of some famous but fantastic philosophical speculations. Kant
divided all propositions (he calls them ‘judgements’) into analy-
tic and synthetic according to the relation of the predicate of a
proposition to its subject. His Critigue of Pure Reason is chiefly an
attempt to explain the problem how true synthetic a prior:
propositions are possible. Now some Peripatetics, for instance
Alexander, were apparently already aware that there exists
a large class of propositions having no subject and no predi-
cate, such as implications, disjunctions, conjunctions, and so
on.” All these may be called functorial propositions, since in all
of them there occurs a propositional functor, like ‘if—then’, ‘or’,
‘and’. These functorial propositions are the main stock of every
scientific theory, and to them neither Kant’s distinction of ana-
lytic and synthetic judgements nor the usual criterion of truth
is applicable, for propositions without a subject or predicate
cannot be immediately compared with facts. Kant’s problem
loses its importance and must be replaced by a much more
important problem: How are true functorial propositions pos-
sible? It seems to me that here lies the starting-point for a new
philosophy as well as for a new logic.

' In connexion with Aristotle’s definition of the mpdracis Alexander writes,
Wi oy e ¢ o , > AN o Eohon \ ,
I1. 17: elol 8¢ ofroL of Spor mpoTdoews ob mdons dAAA Tis dmAis 7€ Kai kalovuévns
katnyopuxis: 76 ydp Tu katd Twos Exew kal T6 kabBddov 1) év péper 7§ adidpiaTov idia
il e s sy . , , AN & drotovbia B wdym 73
TavTs* 1) yap vmoberiicr) odk év 7@ Ti katd Twos Myeobar AN’ év drodovbia G pdyy 76
dAnbes 7 76 eddos Exer.

|

CHAPTER VI

ARISTOTLE’S MODAL LOGIC OF
PROPOSITIONS

§ 36. Introduction

THERE are two reasons why Aristotle’s modal logic is so little
known. The first is due to the author himself: in contrast to the
assertoric syllogistic which is perfectly clear and nearly free of
errors, Aristotle’s modal syllogistic is almost incomprehensible
because of its many faults and inconsistencies. He devoted to this
subject some interesting chapters of De Interpretatione, but the
system of his modal syllogistic is expounded in Book I, chapters
3 and 8-22 of the Prior Analytics. Gohlke! suggested that these
chapters were probably later insertions, because chapter 23
was obviously an immediate continuation of chapter 4. If he is
right, the modal syllogistic was Aristotle’s last logical work and
should be regarded as a first version not finally elaborated by the
author. This would explain the faults of the system as well as the
corrections of Theophrastus and Eudemus, made perhaps in
the light of hints given by the master himself.

The second reason is that modern logicians have not as yet been
able to construct a universally acceptable system of modal logic
which would yield a solid basis for the interpretation and appre-
ciation of Aristotle’s work. I have tried to construct such a
system, different from those hitherto known, and built up upon
Aristotle’s ideas.? The present monograph on Aristotle’s modal
logic is written from the standpoint of this system.

A modal logic of terms presupposes a modal logic of proposi-
tions. This was not clearly seen by Aristotle whose modal syllo-
gistic is a logic of terms; nevertheless it is possible to speak of an
Aristotelian modal logic of propositions, as some of his theorems
are general enough to comprise all kinds of proposition, and some
others are expressly formulated by him with propositional vari-
ables. I shall begin with Aristotle’s modal logic of propositions,

' Paul Gohlke, Die Entstehung der Aristotelischen Logik, Berlin (1936), pp. 88-94.
* Jan Lukasiewicz, ‘A System of Modal Logic’, The Journal of Computing Systems,
vol. i, St. Paul (1953), pp. 111-49. A summary of this paper appeared under the
same title in the Proceedings of the XIth International Congress of Philosophy, vol. xiv,
Brussels (1953), pp. 82-87. A short description of the system is given below in § 49.
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which is logically and philosophically far more important than
his modal syllogistic of terms.

§ 37. Modal functions and their interrelations

There are four modal terms used by Aristotle: avayxator—
‘necessary’, advvaror— ‘impossible’, Suvardv— " possible’, and évde-
xSpevor—‘contingent’. This last term is ambiguous: in the De
Interpretatione it means the same as Svvardv, in the Prior Analytics it
has besides a more complicated meaning which I shall discuss
later.

According to Aristotle, only propositions are necessary, im-
possible, possible, or contingent. Instead of saying: “I'he pro-
position “‘p” is necessary’, where ““p”” is the name of the proposition
p, I shall use the expression: ‘It is necessary that p’, where pis a
proposition. So, for instance, instead of saying: “The proposition
““man is an animal” is necessary’, I shall say : ‘It is necessary that
man should be an animal.’ I shall express the other modalities in
a similar way. Expressions like: ‘It is necessary that p’, denoted
here by Lp, or ‘It is possible that p’, denoted by Mp, I call ‘modal
functions’ ; L and M, which respectively correspond to the words
‘it is necessary that’ and ‘it is possible that’, are ‘modal functors’,
p is their ‘argument’. As modal functions are propositions, I say
that L and M are proposition-forming functors of one propositional
argument. Propositions beginning with L or their equivalents are
called ‘apodeictic’, those beginning with M or their equivalents
‘problematic’. Non-modal propositions are called ‘assertoric’.
This modern terminology and symbolism will help us to give.a
clear exposition of Aristotle’s propositional modal logic.

Two of the modal terms, ‘necessary’ and ‘possible’, and their
interrelations, are of fundamental importance. In the De Inter-
pretatione Aristotle mistakenly asserts that possibility implies non-
necessity, i.e. in our terminology :

(a) If it is possible that p, it is not necessary that p.* He later sees
that this cannot be right, because he accepts that necessity implies
possibility, i.e.:

(b) If it is necessary that p, it is possible that p, and from (b) and
(a) there would follow by the hypothetical syllogism that

I Deint. 13, 22215 74 pév- yap dwvard elvar 70 évdéyeofar elvar (dxolovlet), wal

A ALy 3 ’ v ¥ A5 5 [ w3 ~ £
TOUTO mxm:\@ Q—xﬂrﬂﬂ.bMﬁMnu Kat 70 Q7 aovvaTov €LvaL Katr 7o 1] AVayKa Loy €Lvat.
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(c) If it is necessary that p, it is not necessary that p, which is ab-
surd.! After a further examination of the problem Aristotle rightly
states that

(d) Ifit is possible that p, it is not necessary that not p,2 but does not
correct-his former mistake in the text of De Interpretatione. This
correction is given in the Prior Analytics where the relation of
possibility to necessity has the form of an equivalence:

(e) It is possible that p—if and only if—it is not necessary that
not p.3
I gather from this that the other relation, that of necessity to
possibility, which is stated in the De Interpretatione as an implica-
tion,* is also meant as an equivalence and should be given the
form:

(f) It is necessary that p—if and only if—it is not possible that not p.

If we denote the functor ‘if and only if” by Q5 putting it
before its arguments, and ‘not’ by N, we can symbolically express
the relations (¢) and (f) thus: .

1. QMpNLN, i.e. Mp—if and only if—NLNp,
2. QLANMAN, i.e. Lp—if and only if—NMANp.

The above formulae are fundamental to any system of modal
logic.

§ 38. Basic modal logic

Two famous scholastic principles of modal logic: 4b oportere ad
esse valet consequentia, and Ab esse ad posse valet consequentia, were
known to Aristotle without being formulated by him explicitly.
The first principle runs in our symbolic notation (C is the sign of
the functor ‘if-then’):

3. CLpp, i.e. If it is necessary that p, then p.
The second reads:

I Ibid. 22P11 76 pév yap dvaykaiov elvac Suvardv elvar . . . 14 dAAa piv TG ye .
Suvardy efvar T6 otk dSUvarov elvar drodovlet, TovTw 8¢ T6 uv dvaykaiov elvav dare
ovpBalver 76 dvaryraiov elvar pv dvaykaiov elvat, Smep dromov.

2 Thid. 22P22 Aelmerar Tolvoy 76 obk dvayraiov pi) elvar drodovleiv & duvaTov elvac.

3 An. pr.i. 13, 32225 75 ‘&8éxerar tmdpyen’ Kal ‘odk dvvaTov Smdpyew’ xai ‘odx
dvdykn pn Smdpxew’, fro. Tadra otar 4 drodovfodvra aANjAots.

4 Deint. 13,22220 7@ 8¢ pa) Suvard p1) elvar kai py evdexouéve pn elvou 76 dvayraiov
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5 T usually denote equivalence by E, but as this letter has already another
meaning in the syllogistic, I have introduced (p. 108) the letter Q for equivalence.
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4. CpMp, i.e. If p, it is possible that p.

According to a passage of the Prior Analytics® Aristotle knows
that from the assertoric negative conclusion ‘Not p’, i.e. Np, there
,Rm::m the problematic consequence ‘It is possible that not p’,
Le. .g.,\,@. We have therefore CNpMNp. Alexander, commenting
on H.Fm.wmmm.mmnv states as a general rule that existence implies
possibility, i.e. GpMp, but not conversely, i.e. CMpp should be

rejected.2 If we denote rejected expressions by an asterisk, we get
the formula :3

*5. CMpp, i.e. If it is possible that p, then p—rejected.

The corresponding formulae for necessity are also stated by
Alexander who says that necessity implies existence, i.e. CLpp, but

not conversely, i.e. GpLp should be rejected.* We get thus another
rejected expression :

*6. CpLp, i.e. If p, it is necessary that p—rejected.

Formulae 1-6 are accepted by the traditional logic, and so far
as I know, by all the modern logicians. They are, however, in-
sufficient to characterize Mp and Lp as modal functions, because
all the above formulae are satisfied if we interpret Mp as always
true, ie. as ‘verum of p’, and Lp as always false, i.e. as “falsum
of p’. With this interpretation a system built up on the formulae
1-6 s.\o:E cease to be a modal logic. We cannot therefore assert
Mp, i.e. accept that all problematic propositions are true, or
assert VLp, i.e. accept that all apodeictic propositions are false ;
both expressions should be rejected, for any expression which

cannot be asserted should be rejected. We get thus two additional
rejected formulae: .

*7. Mp, i.e. It is possible that p—rejected, and
*8. NLp, i.e. It is not necessary that p—rejected.

Both formulae may be called Aristotelian, as they are conse-
quences of the presumption admitted by Aristotle that there exist

I 3 o )
An. pr. i. ~m,v 36215 davepdv &8’ 67u ral Tob vdéyeafar ) Smdpyew ylyverar suldo-
7 .
yiopds, elmep kai Tod i) bmdpxew. — évdéyeofar means here the ‘possible’, not the
contingent’.
: , e oy o
Zo,xmaw&nm 209. 2 70 u&v yap dmdpyov kal évdexduevor dAnbes elmeiv, 76 & dvdexd-
pevov od mdvTws ral Smdpyov.
3 amonﬂoﬂ expressions are marked throughout the Chapters VI-VIII by arabic
numerals without asterisks.

4 = .
Alexander 152. 32 76 ydp dvaykaiov kal Smdpyov, odér 8¢ 6 imdpyov dvaykaiov.
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asserted apodeictic propositions. For, if L« is asserted, then
LNNa must be asserted too, and from the principle of Duns
Scotus CpCNpg we get by substitution and detachment the
asserted formulae CNLap and CNLNNap. As p is rejected, NLa
and VLNNa are rejected too, and consequently NLp and NLNp,
i.e. Mp, must be rejected.

I call a system ‘basic modal logic’ if and only if it satisfies
the formulae 1-8. I have shown that basic modal logic can be
axiomatized on the basis of the classical calculus of propositions.!
Of the two modal functors, M and L, one may be taken as the
primitive term, and the other can be defined. Taking M as the
primitive term and formula 2 as the definition of L, we get
the following independent set of axioms of the basic modal logic:

4. CpMp  *s5. CMpp  *7. Mp 9. QMpMNND,
where g is deductively equivalent to formula 1 on the ground of
the definition 2 and the calculus of propositions. Taking L as the
primitive term and formula 1 as the definition of M, we get a
corresponding set of axioms:

3. CLpp  *6. CpLp  *8. NLp  10. QLPLNNpD,
where 10 is deductively equivalent to formula 2 on the ground
of the definition 1 and the calculus of propositions. The derived
formulae g and 10 are indispensable as axioms.

Basic modal logic is the foundation of any system of modal
logic and must always be included in any such system. Formulae
1-8 agree with Aristotle’s intuitions and are at the roots of our
concepts of necessity and possibility ; but they do not exhaust the
whole stock of accepted modal laws. For instance, we believe that
if a conjunction is possible, each of its factors should be possible,
i.e. in symbols:

11. CMEpgMp  and  12. CMKpgMy,

and if a conjunction is necessary, each of its factors should be
necessary, i.e. in symbols:
13. CLKpgLlp and  14. CLEpglq.
None of these formulae can be deduced from the laws 1-8. Basic
modal logic is an incomplete modal system and requires the
addition of some new axioms. Let us see how it was supplemented
by Aristotle himself.
I See pp. 114-17 of my paper on modal logic.
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§ 39. Laws of extensionality

Aristotle’s most important and—as I see it—most successful
attempt to go beyond basic modal logic consisted in his accepting
certain principles which may be called ‘laws of extensionality for
modal functors’. These principles are to be found in Book I,
chapter 15 of the Prior Analytics, and are formulated in three
passages. We read at the beginning of the chapter:

‘First it has to be said that if (if « is, 8 must be), then (if « is
possible, B must be possible too).’t

A few lines further Aristotle says referring to his syllogisms:

‘If one should denote the premisses by «, and the conclusion
by B, it would not only result that if « is necessary, then g is
necessary, but also that if « is possible, then g is possible.’2

And at the end of the section he repeats:

‘It has been proved that if (if « is, f is), then (if « is possible,
then B is possible).”

Let us first analyse these modal laws beginning with the second
passage, which refers to syllogisms.

All Aristotelian syllogisms are implications of the form Cof
where « is the conjunction of the two premisses and 8 the con-
clusion. Take as example the mood Barbara:

15. CKAbaAchAca.

N— ——

« B

According to the second passage we get two modal theorems, in
‘the form of implications taking Caf as the antecedent and CLaLB
or CMaMB as the consequent, in symbols:

16. CCoBCLaLf and  17. CCoBCMaMp.

The letters « and B stand here for the premisses and the conclu-
sion of an Aristotelian syllogism. As in the final passage there is

L An. pr. 1. 15, 345 mpdrov 8¢ Aexréov 6Ti €l Tod A Svros dvdykn 76 B elvai, kal
Suvarod ovros 706 A Svvarov éoTar kai T B é¢ dvdykns.

2 Thid. 34222 €i 7is Oein 76 pév A Tds mpordaes, 76 8¢ B 76 quumépacua, cuuBaivo
dv od pdvov dvarykalov Tob A Svros dua rai 70 B elvar dvaykaiov, dAAa kal SuvaTod
M,—\Vpﬂc\w\.

3 Ibid. 34229 8édeucrar 7 €k Tod A Svros 76 B éari, kal duvaTod Gvros Tob A éoTar
76 B Suvardy.
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no reference to syllogisms, we may treat these theorems as special
cases of general principles which we get by replacing the Greek
letters by propositional variables:

18. CCpgCLpLg and  19. CGpeCMpMy.

Both formulae may be called in a wider sense ‘laws of extension-
ality’, the first for L, the second for M. The words ‘in a wider
sense’ require an explanation.

The general law of extensionality, taken sensu stricto, is a
formula of the classical calculus of propositions enlarged by the
introduction of variable functors, and has the form:

20. CQ pqCépdq.

This means roughly speaking : If p is equivalent to ¢, then if 8 of
p, 8 of g, where 8 is any proposition-forming functor of one pro-
positional argument, e.g. N. Accordingly, the strict laws of
extensionality for L and M will have the form:

21. CQpqCLpLg and  22. CQ pqCMpMg.

These two formulae have stronger antecedents than formulae 18
and 19, and are easily deducible from them, 21 from 18, and 22
from 19, by means of the thesis CQ pgCpg and the principle of the
hypothetical syllogism. It can be proved, however, on the ground
of the calculus of propositions and the basic modal logic that con-
versely 18 is deducible from 21, and 19 from 22. I give here the
full deduction of the L-formula:

The premisses:

2g. CCQ pgrCpCCpar
24. CCpqgCCqrCpr
25. CCpCqCprCaCpr
3. CLpp.

The deduction:
23. r/CLpLgx C21-26
26. CpCCpqCLpLq
24. p/Lp, q/p, 1/CCpgCLpLg < C3-C26-27
27. CLpCCpqCLpLq
25. p/Lp, q/Cpq, r/Lqx C27-18
18. CCpgCLpLyg.
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In a similar way 19 is deducible from 22 by means of the pre-
misses CCQ pgrCNgCCpqr, CCpgCCqrCpr, CCNpCqCrpCqCrp, and
the transposition CNMpNp of the modal thesis CpMp.

We see from the above that, given the calculus of propositions
and basic modal logic, formula 18 is deductively equivalent to
the strict law of extensionality 21, and formula 19 to the strict law
of extensionality 22. We are right, therefore, to call those formulae
‘laws of extensionality in a wider sense’. Logically, of course, it
makes no difference whether we complete the L-system of basic
modal logic by the addition of CCpgCLpLq or by the addition of
CQ pgCLpLg; the same holds for the alternative additions to the
M-system of CCpgCMpMgq or CQ pgCMpMyq. Intuitively, however,
the difference is great. Formulae 18 and 19 are not so evident as
formulae 21 and 22. If p implies ¢ but is not equivalent to it, it is
not always true that if 6 of p, & of ¢; e.g. CNpNg does not follow
from Cpgq. But if p is equivalent to ¢, then always if § of p, 8 of ¢,
i.e. if p is true, ¢ is true, and if p is false, ¢ is false; similarly if p is
necessary, ¢ is necessary, and if p is possible, ¢ is possible. This
seems to be perfectly evident, unless modal functions are regarded
as intensional functions, i.e. as functions whose truth-values do
not depend solely on the truth-values of their arguments. But
what in this case the necessary and the possible would mean, is
for me a mystery as yet.

§ 40. Aristotle’s proof of the M-law of extensionality

In the last passage quoted above Aristotle says that he has
proved the law of extensionality for possibility. He argues in
substance thus: If « is possible and 8 impossible, then when «
came to be, 8 would not come to be, and therefore o would be
without B8, which is against the premiss that if « is, 8 is.! It is
difficult to recast this argument into a logical formula, as the
term ‘to come to be’ has an ontological rather than a logical
meaning. The comment, however, given on this argument by
Alexander deserves a careful examination.

Aristotle defines the contingent as that which is not necessary
and the supposed existence of which implies nothing impossible.2

L An. pr. 1. 15, 3428 € odv 76 pév Suvatdy, 6Te SuvaTov eivar, yévorr’ dv, 76 8’ ddvvarov,

5 Ay B 008 €l 7o A \ Lo Base yor g

67’ advvarov, odk dv yévoiro, dua &’ € To A duvarov kal 16 B ddvvatov, évdéxorr’ dv To
) s QL s X

A yevéobBar dvev Tob B, €l 8¢ yevéalar, Kal elvar. 2 See below, p. 154, n. 3.
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Alexander assimilates this Aristotelian definition of contingency to
that of possibility by omitting the words ‘which is not necessary’.
He says ‘that a 8 which is impossible cannot follow from an «
which is possible may also be proved from the definition of
possibility : that is possible, the supposed existence of which m-
plies nothing impossible’.r The words ‘impossible’ and ,uow?.bmv
here require a cautious interpretation. We cannot 58%:&.&5-
possible’ as ‘not possible’, because the definition would be circu-
lar ; we must either take ‘impossible’ as a primitive term or, taking
‘necessary’ as primitive, define the expression ‘impossible that
£’ by ‘necessary that not p’. I prefer the second way and shall
discuss the new definition on the ground of the L-basic modal
logic. The word ‘nothing’ should be rendered by a universal
quantifier, as otherwise the definition would not be correct. We
get thus the equivalence:

28. QMpIIqCCpgNLNg.

That means in words: ‘It is possible that p—if and only if—for
all ¢, if (if p, then g), it is not necessary that not ¢’ This B&%m-
lence has to be added to the L-basic modal logic as the definition
of Mp instead of the equivalence 1 which must now be proved as
a theorem. _

The equivalence 28 consists of two implications:

29. CMpITgCCpgNLNg ~ and  30. CIIgCCpgNLNgMp.

From 29 we get by the theorem CITgCCpgNLNgCCpgNLNg and
the hypothetical syllogism the consequence:

31. CMpCCpgNLNg,

and from 31 there easily results by the substitution g/p, Cpp, com-
mutation and detachment the implication CMpNLNp. The con-
verse implication CNLNpMp which, when combined with the
original implication, would give the equivalence 1, cannot be
proved otherwise than by means of the law of extensionality .mou.
L: CCpgCLpLq. As this proof is rather complicated, I shall give
it in full.

1y’ o~ 4 s
1 Alexander 177. 11 Seucwiorro 8 v, 67u i) oldv 7e dwward Gvr 74 A pmc-ﬁNg
~ ~ ~ ~ ! 3 », C /.
Ereofar 76 B, Kkal éx Tob Spiopod Tod SvvaTod . . . Suvatdy éoTw, of vmoTefévros elvar
008¢év advvarov oupBaivel dua TodTo.
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The premisses :

18. CCpgCLpLq

24. CCpgCCqrCpr

30. CIIgCCpgNLNgMp
32. CCpgCNgNp

33. CCpCqrCqCpr.

The deduction:

18. p|Ng, g/ Npx 34
34. CCNgNpCLNgLNp

24. p|Cpg, g/CNgNp, r/CLNGLNp x C32-C34-35
'35. COpgCLNgLNp

32. p/LNg, g/LNpx 36
36. CCLNgLNpCNLNpNLNg

24. p/Cpg, g/CLNgLNp, r/CNLNpNLNgx C35-C36-37
37. CCpgCNLNpNLNg

33- p/Cpq, g/ NLNp, r/[NLNgx C37-38
38. CNLNpCCpgNLNg

38. I12g% 39
39. CNLNpITgCCpgNLNg

24. p|NLNp, q/11gCCpgNLNg, r|Mp x C39-C30-40
40. CNLNpMp.

We can now prove the law of extensionality for M, which was
the purpose of Alexander’s argument. This law easily results from
the equivalence 1 and thesis 37. We see besides that the proof by
means of the definition with quantifiers is unnecessarily com-
plicated. It suffices to retain definition 1 and to add to the L-
system the L-law of extensionality in order to get the M-law of
extensionality. In the same way we may get the L-law of exten-
sionality, if we add the M-law of extensionality to the M-system
and definition 2. The L-system is deductively equivalent to the
M-system with the laws of extensionality as well as without them.

It 1, of course, highly improbable that an ancient logician
could have invented such an exact proof as that given above. But
the fact that the proof is correct throws an interesting light on
Aristotle’s ideas of possibility. I suppose that he intuitively saw
what may be shortly expressed thus: what is possible today, say
a sea-fight, may become existent or actual tomorrow ; but what is
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impossible, can never become actual. This idea seems to lie at the
bottom of Aristotle’s proof and of Alexander’s.

§ 41. Necessary connexions of propositions

The L-law of extensionality was formulated by Aristotle only
once, together with the M-law, in the passage where he refers to
syllogisms.*

According to Aristotle there exists a necessary connexion be-
tween the premisses « of a valid syllogism and its conclusion f.
It would seem therefore that the laws of extensionality formulated
above in the form:

16. CCofCLaLf  and  17. CCoBCMaMB,

should be expressed with necessary antecedents:

41. CLCoBCLxLpB and  4e. CLCoBCMoMB,

and the corresponding general laws of extensionality should run:
43. CLCpgCLpLg and  44. CLCpgCMpMy.

This is corroborated for the M-law by the first passage quoted
above where we read : ‘If (if a is, B must be), then (if « is possible,
B is possible).’

Formulae 43 and 44 are weaker than the corresponding formu-
lae with assertoric antecedents, 18 and 19, and can be got from
them by the axiom CLpp and the hypothetical syllogism 24. It is
not, however, possible to derive the stronger formulae conversely
from the weaker. The problem is whether we should reject the
stronger formulae 18 and 19, and replace them by the weaker
formulae 43 and 44. To solve this problem we have to inquire
into the Aristotelian concept of necessity.

Aristotle accepts that some necessary, i.e. apodeictic, pro-
positions are true and should be asserted. Two kinds of asserted
apodeictic proposition can be found in the Analytics: to the one
kind there belong necessary connexions of propositions, to the
other necessary connexions of terms. As example of the first kind
any valid syllogism may be taken, for instance the mood Barbara:

(g) If every b is an a, and every ¢ is a b, then it is necessary that every
¢ should be an a.

Here the ‘necessary’ does not mean that the conclusion is an
I See p. 138, n. 2.



144 ARISTOTLE’S MODAL LOGIC OF PROPOSITIONS ' § 41

apodeictic proposition, but denotes a necessary connexion be-
tween the premisses of the syllogism and its assertoric conclusion.
This is the so called ‘syllogistic necessity’. Aristotle sees very well
that there is a difference between syllogistic necessity and an
apodeictic conclusion when he says, discussing a syllogism with an
assertoric conclusion, that this conclusion is not ‘simply’ (amAds)
necessary, i.e. necessary in itself, but is necessary ‘on condition’,
i.e. with respect to its premisses (rodrwyv évrwv).! There are
passages where he puts two marks of necessity into the conclusion
saying, for instance, that from the premisses: ‘It is necessary that
every b should be an q, and some ¢ is a 4, there follows the con-
clusion: ‘It is necessary that some ¢ should be necessarily an 4.’
The first ‘necessary’ refers to the syllogistic connexion, the second
denotes that the conclusion is an apodeictic proposition.

By the way, a curious mistake of Aristotle should be noted : he
says that nothing follows necessarily from a single premiss, but only
from at least two, as in the syllogism.3 In the Posterior Analytics he
asserts that this has been proved,* but not even an attempt of
proof is given anywhere. On the contrary, Aristotle himself states
that ‘If some & is an g, it is necessary that some a should be a &’,
drawing thus a necessary conclusion from only one premiss.s

I have shown that syllogistic necessity can be reduced to uni-
versal quantifiers.6 When we say that in a valid syllogism the
conclusion necessarily follows from the premisses, we want to
state that the syllogism is valid for any matter, i.e. for all values of
the variables occurring in it. This explanation, as I have found
afterwards, is corroborated by Alexander who asserts that: ‘syllo-
gistic combinations are those from which something necessarily
follows, and such are those in which for all matter the same comes
to be’.7'Syllogistic necessity reduced to universal quantifiers can

I An. pr. i. 10, 3032 76 cvumépaoua ovk éoTw dvaykaiov dmAds, dANd ToYTwY
SvTwy dvaykaiov.
2 Ibid. 9, 30237 76 pév A mavri 7® B dmapyxérw é dvdykns, 76 6¢ B rwi 7@ I'
e tvov dvdvicn 55 78 A Tt 7@ I dmrd ¢ Gvd
UTapXETW pnovov*® avaykmn omn To TWL TQW UTTAPXELY €C AVAYKTS.
: . \ ..
3 Ibid. 15, 34217 od ydp éorw ovdév € dvdyxms évds Twos Svros, dANG dvoiv
laxiorow ,olov GTav af mpordaoeis ovTws Exwaw ws éAéxln kata Tov cuAdoyLoudy.
s $ X xXvn : ©
. ¢\ P v s
4 An. post. i. 3, 7327 évos pdv odv reypévov 8édewktar 5Tu 0V8émor’ dvdyrm T elvar
- S T R S P 6 R 5 , T e
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X
5 An. pr. i. 2, 25220 € yap 70 A Twi 7& B, kal 76 B twi 7@ A dvdykn dmdpyew.
6 See § 5.
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Towabrar 8¢, év als émi mdoms HAys ylverar 76 adrd.
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be eliminated from syllogistic laws, as will appear from the fol-
lowing consideration.

The syllogism (g) correctly translated into symbols would have
the form:

(k) LCKAbaAcbAca,

which means in words:

(i) It is necessary that (if every b is an a, and every ¢ is a b, then every
¢ should be an a).

The sign of necessity in front of the syllogism shows that not
the conclusion, but the connexion between the premisses and
the conclusion is necessary. Aristotle would have asserted (/).
Formula v

(j) CKAbaAcbLAca,

which literally corresponds to the verbal expression (g), is wrong.
Aristotle would have rejected it, as he rejects a formula with
stronger premisses, Viz.

(k) CKAbaLAcbLAca,

i.e. If every b is an a and it is necessary that every ¢ should be a b, 1t is
necessary that every ¢ should be an a.’*

By the reduction of necessity to universal quantifiers formula
(k) can be transformed into the expression:

(I) IalIbIIcCKAbaAcbAca,

i.e. ‘Forall g, for all b, for all ¢ (if every bis an a and every cis a b,
then every ¢ is an a).” This last expression is equivalent to the
mood Barbara without quantifiers:

(m) CKAbaAcbAca,

since a universal quantifier may be omitted when it stands at the
head of an asserted formula.

Formulae (%) and (m) are not equivalent. It is obvious that (m)
can be deduced from (&) by the principle CLpp, but the converse
deduction is not possible without the reduction of necessity to
universal quantifiers. This, however, cannot be done at all, if the
above formulae are applied to concrete terms. Put, for instance,

* An. pr. i. 9, 30°23 €& 8¢ 76 puév AB u3) éoTw dvaykaiov, 76 8¢ BI' dvayraiov, otk
éotar T6 ovpmépacpa dvaykaiov.
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in (k) ‘bird’ for b, ‘crow’ for g, and ‘animal’ for ¢; we get the
apodeictic proposition :
(n) It is necessary that (if every bird is a crow and every animal is
a bird, then every animal should be a crow).

From () results the syllogism (o) :

(o) If every bird is a crow and every animal is a bird, then every
animal 1s a crow,

but from (0) we cannot get (z) by the transformation of necessity
into quantifiers, as (n) does not contain variables which could be
quantified.

And here we meet the first difficulty. It is easy to understand
the meaning of necessity when the functor L is attached to the
front of an asserted proposition containing free variables. In this
case we have a general law, and we may say : this law we regard
as necessary, because it is true of all objects of a certain kind, and
does not allow of exception. But how should we interpret neces-
sity, when we have a necessary proposition without free variables,
and in particular, when this proposition is an implication con-
sisting of false antecedents and of a false consequent, as in our
example (n) ? I see only one reasonable answer : we could say that
whoever accepts the premisses of this syllogism is necessarily com-
pelled to acceptits conclusion. But this would be a kind of psycho-
logical necessity which is quite alien from logic. Besides it is
extremely doubtful that anybody would accept evidently false
propositions as true.

I know no better remedy for removing this difficulty than to
drop everywhere the L-functor standing in front of an asserted
implication. This procedure was already adopted by Aristotle
who sometimes omits the sign of necessity in valid syllogistical
moods.!

§ 42. ‘Material’ or ‘strict’ implication ?

According to Philo of Megara the implication ‘If p, then ¢’,
i.e. Gpg, is true if and only if it does not begin with a true ante-
cedent and end with a false consequent.z This is the so-called
‘material’ implication now universally accepted in the classical
calculus of propositions. ‘Strict’ implication: ‘It is necessary that

* See p. 10, 1. 5. 2 See p. 83, n. 1.
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if p, then ¢’, i.e. LUpg, is a necessary material implication and was
introduced into symbolic logic by C. I. Lewis. By means of this
terminology the problem we are discussing may be stated thus:
Should we interpret the antecedent of the Aristotelian laws of
extensionality as material, or asstrict implication ? In other words,
should we accept the stronger formulae 18 and 19 (I call this the
‘strong interpretation’), or should we reject them accepting the
weaker formulae 43 and 44 (weak interpretation) ?

Aristotle was certainly not aware of the difference between
these two interpretations and of their importance for modal logic.
He could not know Philo’s definition of the material implication.
But his commentator Alexander was very well acquainted with
the logic of the Stoic—-Megaric school and with the heated con-
troversies about the meaning of the implication amidst the fol-
lowers of this school. Let us then see his comments on our
problem.

Commenting on the Aristotelian passage ‘If (if « is, B must
be), then (if « is possible, B must be possible)’ Alexander em-
phasizes the necessary character of the premiss ‘If « is, B must
be’. It seems therefore that he would accept the weaker inter-
pretation CLCoBCMaMB and the weaker M-law of extensionality
CLCpgCMpMyq. But what he means by a necessary implication is
different from strict implication in the sense of Lewis. He says
that in a necessary implication the consequent should always,
i.e. at any time, follow from the antecedent, so that the pro-
position ‘If Alexander is, he is so and so many years old’ is not a
true implication, even if Alexander were in fact so many years
old at the time when this proposition is uttered.! We miay say that
this proposition is not exactly expressed, and requires the addition
of a temporal qualification in order to be always true. A true
material implication must be, of course, always true, and if it
contains variables, must be true for all values of the variables.
Alexander’s comment is not incompatible with the strong inter-
pretation ; it does not throw light on our problem.

Some more light is thrown on it, if we replace in Alexander’s
proof of the M-law of extensionality expounded in § 40 the
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material implication Cpg by the strict implication L(pg. Trans-
forming thus the formula

31. CMpCCpgNLNg,

we get:
45. CMpCLCpgNLNg.

From g1 we can easily derive CMpNLNp by the substitution g/p
getting CMpCCppNLNp, from which our proposition results by
commutation and detachment, for Gpp is an asserted implication.
The same procedure, however, cannot be applied to 45. We get
CMpCLCppNLNp, but if we want to detach CMpNLNp we must
assert the apodeictic implication LCpp. And here we encounter
the same difficulty, as described in the foregoing section. What is
the meaning of LCpp? This expression may be interpreted as a
general law concerning all propositions, if we transform it into
ITpCpp ; but such a transformation becomes impossible, if we
apply LCpp to concrete terms, e.g. to the proposition “Twice two
is five’. The assertoric implication ‘If twice two is five, then twice
two is five’ is comprehensible and true being a consequence of the
law of identity Cpp; but what is the meaning of the apodeictic
implication ‘It is necessary that if twice two is five, then twice
two should be five’? This queer expression is not a general law
concerning all numbers; it may be at most a consequence of
an apodeictic law, but it is not true that a consequence of an
apodeictic proposition must be apodeictic too. Gpp is a conse-
quence of LCpp according to CLCppCpp, a substitution of CLpp,
but is not apodeictic.

It follows from the above that it is certainly simpler to interpret
Alexander’s proof by taking the word ovppaive: of his text in the
sense of material rather than strict implication. Nevertheless our
problem is not yet definitively solved. Let us therefore turn to the
other kind of asserted apodeictic proposition accepted by Aris-
totle, that is to necessary connexions of terms.

§ 43. Analytic propositions

Aristotle asserts the proposition: ‘It is necessary that man
should be an animal.’* He states here a necessary connexion
between the subject ‘man’ and the predicate ‘animal’, i.e. a

I An. pr. i. 9, 30230 {Gov pév yap ¢ dvBpwmos é¢ dvdyxns éari.
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necessary connexion between terms. He apparently regards it as
obvious that the proposition ‘Man is an animal’, or better ‘Every
man is an animal’, must be an apodeictic one, because he defines
‘man’ as an ‘animal’, so that the predicate ‘animal’ is contained
in the subject ‘man’. Propositions in which the predicate is con-
tained in the subject are called ‘analytic’, and we shall probably
be right in supposing that Aristotle would have regarded all
analytic propositions based on definitions as apodeictic, since he
says in the Posterior Analytics that essential predicates belong to
things necessarily,! and essential predicates result from definitions.
~ The most conspicuous examples of analytic propositions are
those in which the subject is identical with the predicate. If it is
necessary that every man should be an animal, it is, -a fortiors,
necessary that every man should be a man. The law of identity
‘Every a is an &’ is an analytic proposition, and consequently an
apodeictic one. We get thus the formula:

(p) LAaa, i.e. It is necessary that every a should be an a.

Aristotle does not state the law of identity Aaa as a principle of
his assertoric syllogistic; there is only one passage, found by Ivo
Thomas, where in passing he uses this law in a demonstration.2
We cannot expect, therefore, that he has known the modal thesis
LAaa.

The Aristotelian law of identity 4aa, where 4 means ‘every-is’
and ¢ is a variable universal term, is different from the principle
of identity Fxx, where 7 means ‘is identical with’ and x is a
variable individuyal term. The latter principle belongs to the
theory of identity which can be established on the following
axioms :

(¢) Fxx, 1.e. x 15 identical with x,

(r) CFxyCéxy, i.e. If x is identical with p, then if x satisfies ¢,
y satisfies &,
where ¢ is a variable proposition-forming functor of one indi-
vidual argument. Now, if all analytic propositions are necessary,
so also is (¢), and we get the apodeictic principle:

(s) LJxx, i.e. It ts necessary that x should be identical with x.
T An. post. 1. 6, 746 Ta 8¢ kaf’adra Smdpyovra dvaykala Tols mpdypaciv.

2 Ivo Thomas, O.P., ‘Farrago Logica’, Dominican Studies, vol. iv (1951), p. 71.
The passage reads (An. pr. ii. 22, 68219) karyyopeitar 8¢ 76 B kal adto avrod.
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It has been observed by W. V. Quine that the principle (s), if
asserted, leads to awkward consequences.! For if L Jxx is asserted,
we can derive (¢) from (r) by the substitution ¢/L 7x—L jx works
here like a proposition-forming functor of one argument:

(#) CFxyCLJxxLFxy,
and by commutation

(u) CLFxxCFxpLiy,
from which there follows the proposition :

(v) CFyLTx.

That means, any two individuals are necessarily identical, if they
are identical at all.

The relation of equality is usually treated by mathematicians
as identity and is based on the same axioms (g) and (r). We may
therefore interpret ¥ as equality, x and y as individual numbers
and say that equality holds necessarily if it holds at all.

Formula (v) is obviously false. Quine gives an example to show
its falsity. Let x denote the number of planets, and y the number
9. It is a factual truth that the number of (major) planets is equal
to g, but it is not necessary that it should be equal to 9. Quine
tries to meet this difficulty by raising objections to the substitution
of such singular terms for the variables. In my opinion, however,
his objections are without foundation.

There is another awkward consequence of the formula (v) not
mentioned by Quine. From (v) we get by the definition of L and
the law of transposition the consequence:

(w) CMN FxyNxp.

That means: ‘If it is possible that x is not equal to y, then x is
(actually) not equal to ».” The falsity of this consequence may be
seen in the following example: Let us suppose that a number x
has been thrown with a die. It is possible that the number y next
thrown with the die will be different from x. But if it is possible
that x will be different from , i.e. not equal to y, then according
to (w) x will actually be different from y. This consequence is
obviously wrong, as it is possible to throw the same number twice.

* W. V. Quine, ‘Three Grades of Modal Involvement’, Proceedings of the XIth

International Congress -of Philosophy, vol. xiv, Brussels (1953). For the following
argumentation I am alone responsible.
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There is, in my opinion, only one way to solve the above diffi-
culties: we must not allow that formula L jxx should be asserted,
i.e. that the principle of identity Fxx is necessary. As jxx is a
typical analytic proposition, and as there is no reason to treat this
principle in a different way from other analytic propositions, we
are compelled to assume that no analytic proposition is necessary.

Before dealing with this important topic let us bring to an end
our investigation of Aristotle’s concepts of modalities.

§ 44. An Aristotelian paradox

There is a principle of necessity set forth by Aristotle which is
highly controversial. He says in the De Interpretatione that ‘any-
thing existent is necessary when it exists, and anything non-
existent is impossible when it does not exist’. This does not mean,
he adds, that whatever exists is necessary, and whatever does not
exist is impossible: for it is not the same to say that anything
existent is necessary when it does exist, and to say that it is simply
necessary.” It should be noted that the temporal ‘when’ (6rav) is
used in this passage instead of the conditional if’. A similar thesis
is set forth by Theophrastus. He says, when defining the kinds of
things that are necessary, that the third kind (we do not know
what the first two are) is ‘the existent, for when it exists, then it is
impossible that it should not exist’.? Here again we find the
temporal particles ‘when’ (6r¢) and ‘then’ (ré7e). No doubt an
analogous principle occurs in medieval logic and scholars could
find it there. There is a formulation quoted by Leibniz in his
Theodicee running thus : Unumquodque, quando est, oportet esse.> Note
again in this sentence the temporal guando.

What does this principle mean? It is, in my opinion, ambigu-
ous. Its first meaning seems to be akin to syllogistic necessity,
which is a necessary connexion not of terms, but of propositions.
Alexander commenting on the Aristotelian distinction between
simple and conditional necessity,* says that Aristotle was himself

' De int. 9. 19223 76 pév odv elvar 76 8v, STav ), kai 76 uy Ov uy elvar, Stav i g,
Gvdykn® od uiy ovre T6 8v dmav dvdykr elvar ovre To uy 6v u7 elvar. OV yap Tabrdy
éori 70 Ov dmrav elvar é¢ dvdykns 6Te éaTi, kal T0 amAds elvar €€ dvdykms.

2 Alexander 156. 29 ¢ yoiv @edppaoTos év 78 mpdTew T@v Iporépwy avadurikdv
Mywv mepl T&v w6 10D dvaykalov auawouévwy obTws ypdper ‘Tpiroy TS mdpyor
S7e yap vmdpyet, TOTE 00X 0LV Te uy vmdpyew.’

3 Philosophische Schriften, ed. Gerhardt, vol. vi, p. 131.

4 See p. 144, n. I.
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aware of this distinction, which was explicitly made by his
friends (that is, by Theophrastus and Eudemus), and quotes as
a further argument the passage of the De Interpretatione above
referred to. He is aware that this passage is formulated by
Aristotle in connexion with singular propositions about future
events, and calls the necessity involved ‘hypothetical necessity’
(avarykaioy €€ vmobéoews).!

This hypothetical necessity does not differ from conditional
necessity, except that it is applied not to syllogisms, but to singular
propositions about events. Such propositions always contain a
temporal qualification. But if we include this qualification in the
content of the proposition, we can replace the temporal particle
by the conditional. So, for instance, instead of saying indefinitely :
‘Itis necessary that a sea-fight should be, when it is’, we may say :
‘It is necessary that a sea-fight should be tomorrow, if it will be
tomorrow.” Keeping in mind that hypothetical necessity is a
necessary connexion of propositions, we may interpret this latter
implication as equivalent to the proposition: ‘It is necessary that
if a sea-fight will be tomorrow, it should be tomorrow’ which is
a substitution of the formula LCpp.

The principle of necessity we are discussing would lead to no
controversy, if it had only the meaning explained above. But it
may have still another meaning: we may interpret the necessity
involved in it as a necessary connexion not of propositions, but of
terms. This other meaning seems to be what Aristotle himself has
in mind, when he expounds the determinist argument that all
future events are necessary. In this connexion a general statement
given by him deserves our attention. We read in the De Inter-
pretatione: ‘If it is true to say that something is white or not white,
it is necessary that it should be white or not white.’? It seems that
here a necessary connexion is stated between a ‘thing’ as subject
and ‘white’ as predicate. Using a propositional variable instead
of the sentence ‘Something is white’ we get the formula: ‘Ifit is

I Alexander 141. 1 dpa 8¢ xal Ty Tod dvaykaiov Siaipeow 67i kai abrds oldev, v
ol éraipor adrob memoimyrar, Sedfdwre did Tis mpoabirns (scil. ‘TovTan’ SvTwy’), fv
dldaas 70 ral év v Ilepi épumrelas 8édeuyev, év ols mepl Tijs els Tov uéddovra xpovov
Aeyopévns dvripdocws mepl 7@V kal Exaatov elpnuévwy Myer ‘16 pév odv elvar T b,
orav .mw Kal 76 py dv pi) elvar, Stav py §, dvdyxn’. 16 yap €& vmobéocws dvayraiov

el ;
ToL00TGY éaTt.
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true that p, it is necessary that p’. I do not know whether Aristotle
would have accepted this formula or not, but in any case it is
interesting to draw some consequences from it.

In two-valued logic any proposition is either true or false.
Hence the expression ‘It is true that ¢’ is equivalent to p’. Apply-
ing this equivalence to our case we see that the formula ‘If it is
true that p, it is necessary that p° would be equivalent to this
simpler expression: ‘If p, it is necessary that p’ which reads in
symbols: CpLp. We know, however, that this formula has been
rejected by Alexander, and certainly by Aristotle himself. It must
be rejected, for propositional modal logic would collapse, if it
were asserted. Any assertoric proposition p would be equivalent
to its apodeictic correspondent Lp, as both formulae, CLpp and
CpLp, would be valid, and it could be proved that any assertoric
proposition p was equivalent also to its problematic correspondent
Mp. Under these conditions it would be useless to construct a
propositional modal logic.

But it is possible to express in symbolic form the idea implied
by the formula ‘Ifit is true that p, it is necessary that $’: we need
only replace the words ‘It is true that 4’ by the expression ‘ is
asserted’. These two expressions do not mean the same. We can
put forward for consideration not only true, but also false pro-
positions without being in error. But it would be an error to assert
a proposition which was not true. It is therefore not sufficient to
say ‘p is true’, if we want to impart the idea that p is really true;
p may be false, and ‘p is true’ is false with it. We must say ‘e is
asserted’ changing ‘¢’ into ‘e, as ‘¢’ being a substitution-variable
cannot be asserted, whereas ‘@’ may be interpreted as a true
proposition. We can now state, not indeed a theorem, but a rule:

(%) a— Lo
In words: ‘a, therefore it is necessary that o’. The arrow means
‘therefore’, and the formula (x) is a rule of inference valid only
when « is asserted. Such a rule restricted to ‘tautologous’ pro-
positions is accepted by some modern logicians.

From rule (x) and the asserted principle of identity Fxx there
follows the asserted apodeictic formula L jxx which leads, as we
have seen, to awkward consequences. The rule seems to be doubt-
ful, even if restricted to logical theorems or to analytic proposi-

I See, e.g. G. H. von Wright, A: Essay in Modal Logic, Amsterdam (1951),
Pp. 14-15.
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tions. Without this restriction rule (x) would yield, as appears
from the example given by Aristotle, apodeictic assertions of
merely factual truths, a result contrary to intuition. For this
reason this Aristotelian principle fully deserves the name of a
paradox.

§ 45. Contingency in Aristotle

I have already mentioned that the Aristotelian term evdexo-
pevov 1s ambiguous. In the De Interpretatione, and sometimes in the
Prior Analytics, it means the same as duvvatdy, but sometimes it has
another more complicated meaning which following Sir David
Ross I shall translate by ‘contingent’.’ The merit of having
pointed out this ambiguity is due to A. Becker.>

Aristotle’s definition of contingency runs thus: ‘By “‘con-
tingent” I mean that which is not necessary and the supposed
existence of which implies nothing impossible.’”> We can see at
once that Alexander’s definition of possibility results from Aris-
totle’s definition of contingency by omission of the words ‘which
1s not necessary’. If we add, therefore, the symbols of these words
to our formula 28 and denote the new functor by ‘T”, we get the
following definition :

46. QTpKNLpITgCChaNLNG.

This definition can be abbreviated, as ITgCCpgNLNy is equivalent
to NLNp. The implication :

39. CNLNpIIgCCpgNLNg

has been already proved; the converse implication

47. CITqCCpaNLNgNLNp

nmmzx anwczm from the thesis CIIqCCpgNLNgCCpgNLNg by the
mcvmﬁgﬂcﬁpow q/p, commutation, Cpp, and detachment. By putting
in 46 the simpler expression NLNp for IIqCCpgNLNg we get :

48. QTpENLpNLNp.

This means in words: ‘It is contingent that p—if and only if—it

' W. D. Ross, loc. cit., p. 296.

2 See > wnmwﬂ., b.% Aristotelische  Theorie der Miglichkeitsschliisse, Berlin (1933).
I agree with Sir David Ross (loc. cit., Preface) that Becker’s book is ‘very acute’
but I do not agree with Becker’s conclusions. ’
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is not necessary that p and it is not necessary that not p.” As the
phrase ‘not necessary that not p” means the same as ‘not impos-
sible that p’, we may say roughly speaking: ‘Something is con-
tingent if and only if it is not necessary and not impossible.’
Alexander shortly says: ‘“The contingent is neither necessary nor
impossible.’t

We get another definition of 7p, if we transform NLNp ac-
cording to our definition 1 into Mp, and NLp into MNp:

49. QTpEMNpMp or 50. QTpKMpMNp.

Formula 50 reads: ‘It is contingent that p—if and only if—it is
possible that p and it is possible that not p.” This defines con-
tingency as ‘ambivalent possibility’, i.e. as a possibility which can
indeed be the case, but can also not be the case. We shall see that
the consequences of this definition, together with other of
Aristotle’s agsertions about contingency, raise a new major
difficulty.

In a famous discussion about future contingent events Aristotle
tries to defend the indeterministic point of view. He assumes that
things which are not always in act have likewise the possibility of
being or not being. For instance, this gown may be cut into
pieces, and likewise it may not be cut.? Similarly a sea-fight may
happen tomorrow, and equally it may not happen. He says that
‘Of two contradictory propositions about such things one must
be true and the other false, but not this one or that one, only
whichever may chance (to be fulfilled), one of them may be
more true than the other, but neither of them is as yet true, or as
yet false.’?

These arguments, though not quite clearly expressed or fully
thought out, contain an important and most fruitful idea. Let us
take the example of the sea-fight, and suppose that nothing is
decided today about this fight. I mean that there is nothing that
is real today and that would cause there to be a sea-fight tomorrow,
nor yet anything that would cause there not to be one. Hence, if

I Alexander 158. 20 otire yap dvaykatov olite dddvarov 76 évdexduevov.
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truth rests on conformity of thought with reality, the proposition
“The sea-fight will happen tomorrow’ is today neither true nor
false. It is in this sense that I understand the words ‘not yet true
or false’ in Aristotle. But this would lead to the conclusion that it
is today neither necessary nor impossible that there will be a sea-
fight tomorrow; in other words, that the propositions ‘It is
possible that there will be a sea-fight tomorrow’ and ‘It is
possible that there will not be a sea-fight tomorrow’ are today
both true, and this future event is contingent.

It follows from the above that according to Aristotle there exist
true contingent propositions, i.e. that the formula 7p and its
equivalent KMpMANp are true for some value of p, say a. For ex-
ample, if « means “There will be a sea-fight tomorrow’, both
Mo and MNoa would be accepted by Aristotle as true, so that
he would have asserted the conjunction :

(A) KMaMNa.

There exists, however, in the classical calculus of propositions
enlarged by the variable functor §, the following thesis due to
Lesniewski’s protothetic:

51. C8pCSNpdq.

In words: ‘If § of p, then if 8 of not p, § of ¢, or roughly speaking :
‘If something is true of the proposition p, and also true of the
negation of p, it is true of an arbitrary proposition ¢.” Thesis 51 is
equivalent to

52. CK8pSNpSq

on the ground of the laws of importation and exportation
CCpCqrCEpgr and CCKpgrCpCqr. From (A) and 52 we get the
consequence :

52 /M, pla, q/p x C(A)—(B)
(B) Mp.

Thus, if there is any contingent proposition that we accept as
true, we are bound to admit of any proposition whatever that
it is possible. But this would cause a collapse of modal logic;
Mp must be rejected, and consequently KMo MNa cannot be
asserted.

We are at the end of our analysis of Aristotle’s propositional
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modal logic. This analysis has led us to two major difficulties:
the first difficulty is connected with Aristotle’s acceptance of true
apodeictic propositions, the second with his acceptance of true
contingent propositions. Both difficulties will reappear in >ﬁm-
totle’s modal syllogistic, the first in his theory of syllogisms with
one assertoric and one apodeictic premiss, the second in his theory
of contingent syllogisms. If we want to meet these Q.x.mo:_&om and
to explain as well as to appreciate his modal syllogistic, we must
first establish a secure and consequent system of modal logic.



