
Chapter 2

Semantics: Making Sense of the Symbols

There are two different views to a given set of formulae T, namely the syntactical
view and the semantical view.

From the syntactical point of view (presented in the previous chapter), we con-
sider the set T just as a set of well-formed formulae—regardless of their intended
sense or meaning—from which we can prove some formulae. The only thing that
matters is the relationship between the objects, which is given by the axioms (i.e.,
by the formulae of T), and not the objects themselves. So, from a formal point of
view there is no need to assign real objects (what ever this means) to our strings of
symbols.

In contrast to this very formal syntactical view, there is also the semantical point
of view from which we consider the intended meaning of the formulae in T and
then seeking for a model in which all formulae of T become true. For this, we have
to explain some basic notions of Model Theory like structure and interpretation,
which we will do in an natural, informal language. In this language, we will use
words like “or”, “and”, or phrases like “if. . .then”. These words and phrases have
the usual meaning. Furthermore, we assume that in our normal world, which we
describe with our informal language, the basic rules of common logic apply. For
example, a statement ϕ is true or false, and if ϕ is true, then  ϕ is false; and vice
versa. Hence, the statement “ϕ or  ϕ” is always true, which means that we tacitly
assume the L A W O F E X C L U D E D M I D D L E, also known as T E R T I U M

N O N D A T U R, which corresponds to the logical axiom L0. Furthermore, we as-
sume D E M O R G A N ’ S L A W S and we apply M O D U S P O N E N S as
inference rule.

Structures & Interpretations

In order to define structures and interpretations, we have to assume some notions
of N A I V E S E T T H E O R Y like subset, cartesian product, or relation, which
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28 2 Semantics: Making Sense of the Symbols

shall be defined properly in Part IV. On this occasion we also make use of the set
theoretical symbol “P”, which stands for the binary membership relation.

Let L be an arbitrary but fixed language. An L -structure M consists of a non-
empty set A, called the domain of M, together with a mapping which assigns to
each constant symbol c P L an element cM P A, to each n-ary relation symbol
R P L a set of n-tuples RM of elements of A, and to each n-ary function symbol
F P L a functionFM from n-tuples ofA toA. In other word, the constant symbols
become elements of A, n-ary relation symbols become subsets of An (i.e., subsets
of the n-fold cartesian product of A), and n-ary functions symbols become n-ary
functions from An to A.

The interpretation of variables is given by a so-called assignment: An assign-

ment in an L -structure M is a mapping j which assigns to each variable an element
of the domain A.

Finally, an L -interpretation I is a pair pM, jq consisting of an L -structure M
and an assignment j in M. For a variable ν, an element a P A, and an assignment j
in M we define the assignment j a

ν
by stipulating

j a
ν
pν1q “

#
a if ν1 ” ν,

jpν1q otherwise.

For an interpretation I “ pM, jq and an element a P A, let

I
a
ν
:“ pM, j a

ν
q .

We associate with every interpretation I “ pM, jq and every L -term τ an ele-
ment Iptq P A as follows:

• For a variable ν let Ipνq :“ jpνq.
• For a constant symbol c P L let Ipcq :“ cM.
• For an n-ary function symbol F P L and terms τ1, . . . , τn let

I
`
F pτ1, . . . , τnq

˘
:“ FM

`
Ipτ1q, . . . , Ipτnq

˘
.

Now, we are able to define precisely when a formula ϕ becomes true under an
interpretation I “ pM, jq; in which case we write I ( ϕ and say that ϕ is true

in I (or that ϕ holds in I). The definition is by induction on the complexity of the
formula ϕ. By the rules (F0)–(F4), ϕ must be of the form τ1 “ τ2, Rpτ1, . . . , τnq,
 ψ, ψ1 ^ ψ2, ψ1 _ ψ2, ψ1 Ñ ψ2, Dνψ, or @νψ:

I ( τ1 “ τ2 :ÎùùùÏ Ipτ1q IS THE SAME OBJECT AS Ipτ2q

I ( Rpτ1, . . . , τnq :ÎùùùÏ
@
Ipτ1q, . . . , Ipτnq

D
BELONGS TO RM

I (  ψ :ÎùùùÏ NOT I ( ψ

I ( ψ1 ^ ψ2 :ÎùùùÏ I ( ψ1 AND I ( ψ2
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I ( ψ1 _ ψ2 :ÎùùùÏ I ( ψ1 OR I ( ψ2

I ( ψ1 Ñ ψ2 :ÎùùùÏ IF I ( ψ1 THEN I ( ψ2

I ( Dνψ :ÎùùùÏ IT EXISTS a IN A : I
a
ν
( ψ

I ( @νψ :ÎùùùÏ FOR ALL a IN A : I
a
ν
( ψ

Notice that by the logical rules in our informal language, for every L -formulaϕ we
have either I ( ϕ or I (  ϕ. So, every L -formula is either true or false in I.

The following fact summarises a few immediate consequences of the definitions
above:

FACT 2.1. (a) If ϕ is a formula and ν R freepϕq, then:

I
a
ν
( ϕ if and only if I ( ϕ

(b) If ϕpνq is a formula and the substitution ϕpν{τq is admissible, then:

I
Ipτq
ν
( ϕpνq if and only if I ( ϕpτq

Models

Let T be an arbitrary set of L -formulae. Then an L -structure M is a model of T

if for every assignment j and for each formula ϕ P T we have pM, jq ( ϕ, i.e., ϕ
is true in the L -interpretation I “ pM, jq. Instead of saying “M is a model of T ”
we just write M ( T. If ϕ fails in M, then we write M * ϕ, which is equivalent to
M (  ϕ, because for any L -formula ϕ we have either M ( ϕ or M (  ϕ.

Example 2.1. Beispiel

As an immediate consequence of the definition of models we get:

FACT 2.2. If ϕ is an L -formula, ν a variable, and M a model of some L -theory,
then M ( ϕ if and only if M ( @νϕ.

This leads to the following definition: Let xν0, . . . , νny be the sequence of vari-
ables which appear free in the L -formula ϕ, where the variables appear in the
sequence as they appear in ϕ if one reads ϕ from left to right. Then the universal

closure of ϕ, denoted ϕ, is defined by stipulating

ϕ :” @ν0 ¨ ¨ ¨ @νn ϕ .

As a generalisation of FACT 2.2 we get:
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FACT 2.3. If ϕ is an L -formula and M a model of some L -theory, then:

M ( ϕ ÎùùùÏ M ( ϕ

Basic Notions of Model Theory

Let L be a signature, i.e., a possibly empty set of constant symbols c, n-ary function
symbols F , and n-ary relation symbolsR. Two L -structures M&N with domains
A&B are isomorphic, denoted M – N, if there is a bijection f : A Ñ B such
that

f
`
cM

˘
“ cN (for all c P L )

and for all a1, . . . , an P A:

f
`
FMpa1, . . . , anq

˘
“ FN

`
fpa1q, . . . , fpanq

˘
(for all F P L )

xa1, . . . , any P R
M ô

@
fpa1q, . . . , fpanq

D
P RN (for all R P L )

FACT 2.4. (a) If M&N are isomorphic L -structures and σ is an L -sentence,
then:

M ( σ ÎùùùÏ N ( σ

(b) If M&N are isomorphic models of some L -theory and ϕ is an L -formula,
then:

M ( ϕ ÎùùùÏ N ( ϕ

It may happen that although two L -structures M&N are not isomorphic there
is no L -sentence that can distinguish between them. In this case we say that M&N

are elementarily equivalent. More formally, we say that M is elementarily equiva-

lent to N, denoted M ” N, if each L -sentence σ true in M is also true in N. The
following lemma shows that “”” is symmetric:

LEMMA 2.5. If M andN are L -structures and M ”N, then for each L -sentence
σ we have:

M ( σ ÎùùùÏ N ( σ

Proof. One direction is immediate from the definition. For the other direction, as-
sume that σ is not true in M, i.e., M * σ. Then M (  σ, which implies N (  σ,
and hence, σ is not true in N. %


