Chapter 3 Soundness & Completeness

In this chapter we investigate the relationship between syntax and semantic. In particular, we investigate the relationship between a formal proof of a formula from a theory T and the truth-value of that formula in a model of T. In this context, two questions arise naturally:

- Is each formula φ, which is provable from some theory T, valid in every model M of T?
- Is every formula φ , which is valid in each model M of T, provable from T?

In the following section we give an answer to the former question; the answer to the latter is postponed to Part II.

Soundness Theorem

A logical calculus is called *sound*, if all what we can prove is valid (*i.e.*, true), which implies that we cannot derive a contradiction. The following theorem shows that First-Order Logic is sound.

THEOREM 3.1 (SOUNDNESS THEOREM). Let T be a set of \mathscr{L} -formulae and M a model of T. Then for every \mathscr{L} -formula φ_0 we have:

$$\mathsf{T} \vdash \varphi_0 \implies \mathsf{M} \models \varphi_0$$

Somewhat shorter we could say:

$$\forall \varphi_0 : \mathsf{T} \vdash \varphi_0 \implies \forall \mathbf{M} (\mathbf{M} \models \mathsf{T} \Longrightarrow \mathbf{M} \models \varphi_0)$$

Proof. First we show that all logical axioms are valid in M. For this we have to define truth-values of composite statements in the metalanguage. In the previous chapter we defined for example:

3 Soundness & Completeness

$$\underbrace{\mathbf{M} \vDash \varphi \land \psi}_{\Theta} \quad \Longleftrightarrow \quad \underbrace{\mathbf{M} \vDash \varphi}_{\Phi} \quad \text{and} \quad \underbrace{\mathbf{M} \vDash \psi}_{\Psi}$$

Thus, in the metalanguage the statement " Θ " is true if and only if the statement " Φ AND Ψ " is true. So, the truth-value of " Θ " depends on the truth-values of " Φ " and " Ψ ". In order to determine truth-values of composite statement like " Φ AND Ψ ", we introduce so called *truth-tables*, in which "1" *stands for* "**true**" and "**0**" *stands for* "**false**":

Φ	Ψ	NOT Φ	Φ and Ψ	Φ or Ψ	IF Φ then Ψ
0	0	1	0	0	1
0	1	1	0	1	1
1	0	0	0	1	0
1	1	0	1	1	1

With these truth-tables one can show that all logical axioms are valid in **M**. As an example we that every instance of L₁ is valid in **M**: For this, let φ_1 be an instance of L₁, *i.e.*, $\varphi_1 \equiv \varphi \rightarrow (\psi \rightarrow \varphi)$ for some \mathscr{L} -formulae $\varphi \& \psi$. Then $\mathbf{M} \models \varphi_1$ *iff* $\mathbf{M} \models \varphi \rightarrow (\psi \rightarrow \varphi)$:

$$\underbrace{\mathbf{M} \models \varphi \rightarrow (\psi \rightarrow \varphi)}_{\Theta} \quad \iff \quad \text{IF} \quad \underbrace{\mathbf{M} \models \varphi}_{\Psi} \quad \text{THEN} \quad \underbrace{\mathbf{M} \models \psi \rightarrow \varphi}_{\Psi} \quad \text{THEN} \quad \underbrace{\mathbf{M} \models \psi}_{\Psi} \quad \text{THEN} \quad \underbrace{\mathbf{M} \models \varphi}_{\Phi}$$

This shows that

 $\Theta \iff$ if Φ then (if Ψ then Φ).

Writing the truth-table of " Θ ", we see that the statement " Θ " is always true in M:

Φ	Ψ	IF Ψ then Φ	IF Φ then (IF Ψ then Φ)
0	0	1	1
0	1	0	1
1	0	1	1
1	1	1	1

Soundness Theorem

Therefore, $\mathbf{M} \models \varphi_1$, and since φ_1 was an arbitrary instance of L_1 , every instance of L_1 is valid in \mathbf{M} .

In order to show that also the logical axioms $L_{11}-L_{17}$ are valid in M, we need somewhat more than just truth-tables:

Let A be the domain of M, let j be an arbitrary assignment, and let I = (M, j) be the corresponding \mathcal{L} -interpretation.

Now, we show that every instance of L_{11} is valid in **M**. For this, let φ_{11} be an instance of L_{11} , *i.e.*, $\varphi_{11} \equiv \forall \nu \varphi(\nu) \rightarrow \varphi(\tau)$ for some \mathscr{L} -formula φ , where ν is a variable, τ a term, and the substitution $\varphi(\nu/\tau)$ is admissible. We work with **I** and show that $\mathbf{I} \models \varphi_{11}$.

By definition we have:

$$\mathbf{I} \vDash \forall \nu \varphi(\nu) \to \varphi(\tau) \quad \Leftarrow \Longrightarrow \quad \text{if } \mathbf{I} \vDash \forall \nu \varphi(\nu) \quad \text{then} \quad \mathbf{I} \vDash \varphi(\tau)$$

Again by definition we have:

$$\mathbf{I} \models \forall \nu \varphi(\nu) \iff$$
 FOR ALL a in A : $\mathbf{I} \stackrel{a}{=} \varphi$

In particular we get:

$$\mathbf{I} \models \forall \nu \varphi(\nu) \implies \mathbf{I} \frac{I(\tau)}{\nu} \models \varphi$$

Furthermore, by FACT 2.1.(a) we get:

$$\mathbf{I} \models \varphi(\tau) \iff \mathbf{I} \frac{I(\tau)}{\nu} \models \varphi(\nu)$$

Hence, we get

If
$$\mathbf{I} \models \forall \nu \varphi(\nu)$$
 then $\mathbf{I} \models \varphi(\tau)$

which shows that

$$(\mathbf{M}, j) \models \forall \nu \varphi(\nu) \to \varphi(\tau)$$

and since the assignment j was arbitrary, we finally get:

$$\mathbf{M} \models \forall \nu \varphi(\nu) \to \varphi(\tau)$$

Therefore, $\mathbf{M} \models \varphi_{11}$, and since φ_{11} was an arbitrary instance of L_{11} , every instance of L_{11} is valid in \mathbf{M} .

With similar arguments one can show that also every instance of L_{12} , L_{13} , or L_{14} is valid in M (see EXERCISES 4–6).

Zeigen, dass auch $L_{15}-L_{17}$ in M gelten.

Let now M be a model of T and assume that $T \vdash \varphi_0$. We shall show that $M \models \varphi_0$. For this, we notice first the following facts:

- As we have seen above, each instance of a logical axiom is valid in M.
- Since $\mathbf{M} \models \mathsf{T}$, each formula of T is valid in \mathbf{M} .
- By the truth-tables we get

3 Soundness & Completeness

IF
$$(\mathbf{M} \models \varphi \rightarrow \psi \text{ and } \mathbf{M} \models \varphi)$$
 then $\mathbf{M} \models \psi$

and therefore, every application of MODUS PONENS in the proof of φ_0 from T yields a valid formula (if the premisses are valid).

• Since, by FACT 2.2,

 $\mathbf{M} \models \varphi \quad \lll \quad \mathbf{M} \models \forall \nu \varphi(\nu)$

every application of the GENERALISATION in the proof of φ_0 from T yields a valid formula.

From these facts it follows immediately that *each* formula in the proof of φ_0 from T is valid in M. In particular we get

$$\mathbf{M} \models \varphi_0$$

which completes the proof.

The following fact summarises a few consequences of the SOUNDNESS THEO-REM.

Fact 3.2.

(a) Every tautology is valid in each model:

 $\forall \varphi : \vdash \varphi \quad \Longrightarrow \quad \forall \mathbf{M} : \mathbf{M} \vDash \varphi$

(b) If a theory T has a model, then T is consistent:

 $\exists \mathbf{M} : \mathbf{M} \models \mathsf{T} \implies \operatorname{Con}(\mathsf{T})$

(c) The logical axioms are consistent:

 $\operatorname{Con}(L_0-L_{17})$

(d) If a formula φ is not valid in M, where M is a model of T, then φ is not provable from T:

IF
$$(\mathbf{M} \not\models \varphi \text{ and } \mathbf{M} \models \mathsf{T})$$
 then $\mathsf{T} \not\models \varphi$

36

 \neg