
Chapter 1

Syntax: The Grammar of Symbols

The goal of this chapter is to develop the formal language of First-Order Logic from
scratch. At the same time, we introduce some terminology of the so-called meta-
language, which is the language we use when we speak about the formal language
(e.g., when we like to express that two strings of symbols are equal).

Alphabet

Like any other written language, First-Order Logic is based on an alphabet, which
consists of the following symbols:

(a) Variables such as x, y, v0, v1, . . . , which are place holders for objects of the
domain under consideration (which can for example be the elements of a group,
natural numbers, or sets). We use mainly lower case Latin letters (with or without
subscripts) for variables.

(b) logical operators which are “ ” (not), “^” (and ), “_” (or), and “Ñ” (implies).

(c) Logical quantifiers which are the existential quantifier “D” (there is or there
exists) and the universal quantifier “@” ( for all or for each), where quantification
is restricted to objects only and not to formulae or sets of objects (but the objects
themselves may be sets).

(d) Equality symbol ““”, which stands for the particular binary equality relation.

(e) Constant symbols like the number 0 in Peano Arithmetic, or the neutral element
e in Group Theory. Constant symbols stand for fixed individual objects in the
domain.

(f) Function symbols such as ˝ (the operation in Group Theory), or`, ¨ , s (the op-
erations in Peano Arithmetic). Function symbols stand for fixed functions taking
objects as arguments and returning objects as values. With each function symbol
we associate a positive natural number, its co-called “arity” (e.g., “˝” is a 2-ary
or binary function, and the successor operation “s” is a 1-ary or unary function).
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More formally, to each function symbol F we adjoin a fixed F I N I T E string
of place holders x ¨ ¨ ¨ x and write F x ¨ ¨ ¨ x .

(g) Relation symbols or predicate constants (such as P in Set Theory) stand for
fixed relations between (or properties of) objects in the domain. Again we asso-
ciate an “arity” with each relation symbol (e.g., “P” is a binary relation). More
formally, to each relation symbol R we adjoin a fixed F I N I T E string of place
holders x ¨ ¨ ¨ x and write R x ¨ ¨ ¨ x .

The symbols in (a)–(d) form the core of the alphabet and are called logical symbols.
The symbols in (e)–(g) depend on the specific topic we are investigating and are
called non-logical symbols. The set of non-logical symbols which are used in order
to formalise a certain mathematical theory is called the language (or signature) of
this theory, denoted by L , and formulae which are formulated in a language L

are usually called L -formulae. For example if we investigate groups, then the only
non-logical symbols we use are “e” and “˝”, thus, L “ te, ˝u is the language of
Group Theory.

Terms & Formulae

With the symbols of our alphabet we can now start to compose words. In the lan-
guage of First-Order Logic, these words are called called terms.

Terms. A string of symbols is a term, if it results from applying F I N I T E L Y

many times the following rules:

(T0) Each variable is a term.
(T1) Each constant symbol is a term.
(T2) If τ1, . . . , τn are any terms which we have already built and F x ¨ ¨ ¨ x is an n-

ary function symbol, then Fτ1 ¨ ¨ ¨ τn is a term (each place holder x is replaced
with a term).

In order to define rule (T3) we had to use variables for terms, but since the variables
of our alphabet stand just for objects of the domain and not for terms or other objects
of the formal language, we had to introduce new symbols. For these new symbols,
which do not belong to the alphabet of the formal language, we have chosen Greek
letters. In fact, we shall mainly use Greek letters for variables which stand for ob-
jects of the formal language, also to emphasise the distinction between the formal
language and the metalanguage However, we shall use the Latin letters F &R as
variables for function and relation symbols respectively.

To make terms, relations, and other expressions in the formal language easier to
read, it is convenient to introduce some more symbols, like brackets and commas,
to our alphabet. For example we usually write F pτ1, . . . , τnq rather than Fτ1 ¨ ¨ ¨ τn.

To some extent, terms correspond to words, since they denote objects of the do-
main under consideration. Like real words, they are not statements and cannot ex-
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press or describe possible relations between objects. So, the next step is to build
sentences, or more precisely formulae, with these terms.

Formulae. A string of symbols is called a formula, if it results from applying
F I N I T E L Y many times the following rules:

(F0) If τ1 and τ2 are terms, then τ1 “ τ2 is a formula.
(F1) If τ1, . . . , τn are any terms and R x ¨ ¨ ¨ x is any non-logical n-ary relation

symbol, then Rτ1 ¨ ¨ ¨ τn is a formula.
(F2) If ϕ is any formula which we have already built, then  ϕ is a formula.
(F3) If ϕ and ψ are formulae which we have already built, then pϕ^ψq, pϕ_ψq,

and pϕ Ñ ψq are formulae. (To avoid the use of brackets one could write
these formulae for example in Polish notation, i.e., ^ϕψ, _ϕψ, et cetera.)

(F4) If ϕ is a formula which we have already built, and ν is an arbitrary variable,
then Dνϕ and @νϕ are formulae.

Formulae of the form (F0) or (F1) are the most basic expressions we have, and since
every formula is a logical connection or a quantification of these formulae, they are
called atomic formulae.

For binary relations R xx it is convenient to write xRy instead of Rpx, yq. For
example we write x P y instead of Ppx, yq, and we write x R y rather than px P yq.

If a formula ϕ is of the form Dxψ or of the form @xψ (for some formula ψ) and
x occurs in ψ, then we say that x is in the range of a logical quantifier. The variable
x occurring at a particular place in a formula ϕ is either in the range of a logical
quantifier or it is not in the range of any logical quantifier. In the former case this
particular instance of the variable x is bound in ϕ, and in the latter case it is free

in ϕ. Notice that it is possible that a certain variable occurs in a given formula bound
as well as free (e.g., in Dzpx “ zq ^ @xpx “ yq, the variable x is both bound and
free, whereas z is just bound and y is just free). However, one can always rename the
bound variables occurring in a given formula ϕ such that each variable in ϕ is either
bound or free (the rules for this procedure are given later). For a formula ϕ, the set
of variables occurring free in ϕ is denoted by freepϕq. A formula ϕ is a sentence (or
a closed formula) if it contains no free variables (i.e., freepϕq “ H). For example
@xpx “ xq is a sentence but px “ xq is not.

In analogy to this definition we say that a term is a closed term if it contains no
variables. Obviously, the only terms which are closed are the constant symbols and
the function symbols followed by closed terms.

Sometimes it is useful to indicate explicitly which variables occur free in a
given formula ϕ, and for this we usually write ϕpx1, . . . , xnq to indicate that
tx1, . . . , xnu Ď freepϕq.

If ϕ is a formula, and τ a term, then ϕpx{τq is the formula we get after replacing
all free instances of x by τ . A so-called substitution ϕpx{τq is admissible iff no
free occurrence of ν in ϕ is in the range of a quantifier that binds any variable con-
tained in τ (i.e., for each variable ν appearing in τ , no place where ν occurs free in
ϕ is in the range of “Dν” or “@ν”). For example, if x R freepϕq, then ϕpx{τq is ad-
missible for any term τ . In this case, the formulae ϕ and ϕpx{τq are identical which
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we express by ϕ ” ϕpx{τq. In general, we use the symbol “”” in the metalanguage
to denote equality of strings of symbols of the formal language. Furthermore, if ϕ is
a formula and the substitution ϕpx{τq is admissible, then we write just ϕpτq instead
of ϕpx{τq. To express this we write ϕpτq :” ϕpx{τq, where we use “:”” in the
metalanguage to define symbols (or strings of symbols) of the formal language.

So far we have letters, and we can build words and sentences. However, these
sentences are just strings of symbols without any inherent meaning. Later we shall
interpret formulae in the intuitively natural way by giving the symbols the intended
meaning (e.g., “^” meaning “and”, “@x” meaning “for all x”, et cetera). But before
we shall do so, let us stay a little bit longer on the syntactical side—nevertheless,
one should consider the formulae also from a semantical point of view.

Axioms

Below we shall label certain formulae or types of formulae as axioms, which are
used in connection with inference rules in order to derive further formulae. From a
semantical point of view we can think of axioms as “true” statements from which
we deduce or prove further results. We distinguish two types of axiom, namely logi-
cal axioms and non-logical axioms (which will be discussed later). A logical axiom

is a sentence or formula ϕ which is universally valid (i.e., ϕ is true in any possible
universe, no matter how the variables, constants, et cetera, occurring in ϕ are inter-
preted). Usually one takes as logical axioms some minimal set of formulae that is
sufficient for deriving all universally valid formulae (such a set is given below).

If a symbol is involved in an axiom which stands for an arbitrary relation, func-
tion, or even for a first-order formula, then we usually consider the statement as an
axiom schema rather than a single axiom, since each instance of the symbol rep-
resents a single axiom. The following list of axiom schemata is a system of logical
axioms.

Let ϕ, ϕ1, ϕ2, and ψ, be arbitrary first-order formulae:

L0: ϕ_ ϕ,
L1: ϕÑ pψ Ñ ϕq,
L2: pψ Ñ pϕ1 Ñ ϕ2qq Ñ ppψ Ñ ϕ1q Ñ pψ Ñ ϕ2qq,
L3: pϕ^ ψq Ñ ϕ,
L4: pϕ^ ψq Ñ ψ,
L5: ϕÑ pψ Ñ pψ ^ ϕqq,
L6: ϕÑ pϕ_ ψq,
L7: ψ Ñ pϕ_ ψq,
L8: pϕ1 Ñ ϕ3q Ñ ppϕ2 Ñ ϕ3q Ñ ppϕ1 _ ϕ2q Ñ ϕ3qq,
L9: pϕÑ ψq Ñ ppϕÑ  ψq Ñ  ϕq,
L10:  ϕÑ pϕÑ ψq.

If τ is a term, ν a variable, and the substitution ϕpν{τq is admissible, then:



Axioms 13

L11: @νϕpνq Ñ ϕpτq,
L12: ϕpτq Ñ Dνϕpνq.

If ψ is a formula and ν a variable such that ν R freepψq, then:

L13: @νpψ Ñ ϕpνqq Ñ pψ Ñ @νϕpνqq,
L14: @νpϕpνq Ñ ψq Ñ pDνϕpνq Ñ ψq.

What is not covered yet is the symbol ““”, so, let us have a closer look at the
binary equality relation. The defining properties of equality can already be found
in Book VII, Chapter 1 of Aristotle’s Topics [1], where one of the rules to decide
whether two things are the same is as follows: . . . you should look at every possible
predicate of each of the two terms and at the things of which they are predicated and
see whether there is any discrepancy anywhere. For anything which is predicated of
the one ought also to be predicated of the other, and of anything of which the one is
a predicate the other also ought to be a predicate.

In our formal system, the binary equality relation is defined by the following
three axioms.

If τ, τ1, . . . , τn, τ 1

1
, . . . , τ 1

n are any terms, R an n-ary relation symbol (e.g., the
binary relation symbol ““”), and F an n-ary function symbol, then:

L15: τ “ τ ,
L16: pτ1 “ τ 1

1 ^ ¨ ¨ ¨ ^ τn “ τ 1

nq Ñ pRpτ1, . . . , τnq Ñ Rpτ 1

1, . . . , τ
1

nqq,
L17: pτ1 “ τ 1

1
^ ¨ ¨ ¨ ^ τn “ τ 1

nq Ñ pF pτ1, . . . , τnq “ F pτ 1

1
, . . . , τ 1

nqq.

Finally, we define the logical operator “Ø” and the binary relation symbol “‰” by
stipulating

ϕØ ψ :ðñ pϕÑ ψq ^ pψ Ñ ϕq

τ ‰ τ 1
:ðñ  pτ “ τ 1q

where we use “:ðñ” in the metalanguage to define relations between symbols (or
strings of symbols) of the formal language (i.e., “Ø” & “‰” are just abbreviations).

This completes the list of our logical axioms. In addition to these axioms, we
are allowed to state arbitrarily many formulae. In logic, such a (possibly empty) set
of formulae is also called a theory, or, when the signature L is specified, an L -

theory. Usually, a theory consists of arbitrarily many so-called non-logical axioms

which are sentences (i.e., closed formulae). Examples of theories (i.e., of sets of
non-logical axioms) which will be discussed in this book are the axioms of Set
Theory (see Part ??), the axioms of Peano Arithmetic PA (also known as Number
Theory), and the axioms of Group Theory GT, which we discuss first.

GT: The language of Group Theory is LGT “ te, ˝u, where “e” is a constant
symbol and “˝” is a binary function symbol.

GT0: @x@y@zpx˝py˝zq “ px˝yq˝zq (i.e., “˝” is associative)
GT1: @xpe˝x “ xq (i.e., “e” is a left-neutral element)
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GT2: @xDypy˝x “ eq (i.e., every element has a left-inverse)

PA: The language of Peano Arithmetic is LPA “ t0, s,`, ¨ u, where “0” is a con-
stant symbol, “s” is a unary function symbol, and “`” & “ ¨ ” are binary function
symbols.

PA0:  Dxpsx “ 0q
PA1: @x@ypsx “ sy Ñ x “ yq,
PA2: @xpx ` 0 “ xq
PA3: @x@ypx` sy “ spx` yqq
PA4: @xpx ¨ 0 “ 0q
PA5: @x@ypx ¨ sy “ px ¨ yq ` xq

If ϕ is any LPA-formula with x P freepϕq, then:

PA6:
`

ϕp0q ^ @xpϕpxq Ñ ϕpspxqqq
˘

Ñ @xϕpxq

Notice that PA6 is an axiom schema, known as the induction schema, and not just
a single axiom like PA0–PA5.

It is often convenient to add certain defined symbols to a given language so that
the expressions get shorter or at least are easier to read. For example in Peano
Arithmetic—which is an axiomatic system for the natural numbers—we usually
replace for example the expression s0 with 1 and ss0 with 2. More formally, we
define

1 :” s0 and 2 :” ss0 .

Obviously, all that can be expressed in the language LPA Y t1, 2u can also be ex-
pressed in LPA.

Formal Proofs and Tautologies

So far we have a set of logical and non-logical axioms in a certain language and
can define, if we wish, as many new constants, functions, and relations as we like.
However, we are still not able to deduce anything from the given axioms, since until
now, we do not have inference rules which allow us for example to infer a certain
sentence from a given set of axioms.

Surprisingly, just two inference rules are sufficient, namely:

MODUS PONENS (MP):
ϕÑ ψ, ϕ

ψ
and GENERALISATION p@q:

ϕ

@νϕ
.

In the former case we say thatψ is obtained fromϕÑ ψ andϕ by MODUS PONENS,
abbreviated (MP), and in the latter case we say that @νϕ (where ν can be any vari-
able) is obtained from ϕ by GENERALISATION, abbreviated p@q.
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Using these two inference rules, we are now able to define the notion of formal

proof: Let L be a signature (i.e., a possibly empty set of non-logical symbols) and
let T be an L -theory (i.e., a possibly empty set of L -formulae). An L -formula
ψ is provable from T (or provable in T), denoted T $ ψ, if there is a F I N I T E

sequence ϕ0, . . . , ϕn of L -formulae such that ϕn ” ψ (i.e., the formulae ϕn and
ψ are identical), and for all i with i ď n we have:

• ϕi is a logical axiom, or
• ϕi P T, or
• there are j, k ă i such that ϕj ” ϕk Ñ ϕi, or
• there is a j ă i such that ϕi ” @ν ϕj for some variable ν.

If a formula ψ is not provable from T, i.e., if there is no formal proof for ψ which
uses just formulae from T, then we write T & ψ.

Formal proofs, even of very simple statements, can get quite long and tricky.
Nevertheless, we shall give two examples:

Example 1.1. For every formula ϕ we have:

$ ϕÑ ϕ

A formal proof of ϕÑ ϕ is given by

ϕ0: pϕ Ñ ppϕ Ñ ϕq Ñ ϕqq Ñ ppϕ Ñ pϕ Ñ ϕqq Ñ pϕ Ñ ϕqq instance of L2

ϕ1: ϕ Ñ ppϕ Ñ ϕq Ñ ϕq instance of L1

ϕ2: pϕ Ñ pϕ Ñ ϕqq Ñ pϕ Ñ ϕq from ϕ0 and ϕ1 by (MP)

ϕ3: ϕ Ñ pϕ Ñ ϕq instance of L1

ϕ4: ϕ Ñ ϕ from ϕ2 and ϕ3 by (MP)
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Example 1.2. PA $ s0` s0 “ ss0

ϕ0: @x@ypx ` sy “ spx ` yqq instance of PA3

ϕ1: @x@ypx ` sy “ spx ` yqq Ñ @yps0 ` sy “ sps0 ` yqq instance of L11

ϕ2: @yps0 ` sy “ sps0 ` yqq from ϕ1 and ϕ0 by (MP)

ϕ3: @yps0 ` sy “ sps0 ` yqq Ñ s0 ` s0 “ sps0 ` 0q instance of L11

ϕ4: s0 ` s0 “ sps0 ` 0q from ϕ3 and ϕ2 by (MP)

ϕ5: @xpx ` 0 “ xq instance of PA2

ϕ6: @xpx ` 0 “ xq Ñ s0 ` 0 “ s0 instance of L11

ϕ7: s0 ` 0 “ s0 from ϕ6 and ϕ5 by (MP)

ϕ8: s0 ` 0 “ s0 Ñ sps0 ` 0q “ ss0 instance of L17

ϕ9: sps0 ` 0q “ ss0 from ϕ8 and ϕ7 by (MP)

ϕ10: s0 ` s0 “ s0 ` s0 instance of L15

ϕ11: ϕ10 Ñ pϕ9 Ñ pϕ10 ^ ϕ9qq instance of L5

ϕ12: ϕ9 Ñ pϕ10 ^ ϕ9q from ϕ11 and ϕ10 by (MP)

ϕ13: ϕ10 ^ ϕ9 fromϕ12 and ϕ9 by (MP)

ϕ14: pϕ10 ^ ϕ9q Ñ ps0 ` s0 “ sps0 ` 0q Ñ s0 ` s0 “ ss0q instance of L16

ϕ15: s0 ` s0 “ sps0 ` 0q Ñ s0 ` s0 “ ss0 from ϕ14 and ϕ13 by (MP)

ϕ16: s0 ` s0 “ ss0 from ϕ15 and ϕ4 by (MP)

We say that two formulae ϕ and ψ are logically equivalent (or just equivalent),
denoted ϕô ψ, if $ ϕØ ψ. More formally:

ϕô ψ :ÎùùùÏ $ ϕØ ψ

In other words, if ϕô ψ, then—from a logical point of view—ϕ and ψ state exactly
the same, and therefore we could call ϕ Ø ψ a tautology, which means saying the
same thing twice. However, in logic, a formula ϕ is a tautology if $ ϕ. Thus, the
formulae ϕ & ψ are equivalent if and only if ϕØ ψ is a tautology.

Example 1.3. For every formula ϕ we have:

ϕô ϕ

This follows from Example 1.1 and the method of proof pÑq which will be intro-
duced in the next section.

Example 1.4. Commutativity and associativity of^ and_ are tautological, i.e. ϕ^
ψ ô ψ ^ ϕ and ϕ^ pψ ^ χq ô pϕ^ ψq ^ χ; and similarly for_. Again, we omit
the proof since it will be trivial once we have proved the DEDUCTION THEOREM

(Theorem 1.1) and Proposition 1.2. This legitimizes the notations ϕ0 ^ ¨ ¨ ¨ ^ ϕn

resp. ϕ0 _ ¨ ¨ ¨ϕn for ϕ0 ^ pϕ1 ^ p. . .^ ϕnq . . .q resp. ϕ0 _ pϕ1 _ p. . ._ ϕnq . . .q.

In Appendix A there is a list of tautologies which will be frequently used in
formal proofs.
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The Art of Proof

In Example 1.2 we gave a proof of s0 ` s0 “ ss0 in 17 (!) proof steps. At that
point you may have probably asked yourself that if it takes that much effort to prove
such a simple statement, how can one ever prove any non-trivial mathematical result
using formal proofs. This objection is of course justified; however we will show in
this section how one can simplify formal proofs using some methods of proof such
as proofs by cases or by contradiction. It is crucial to note that the next results are
not theorems of a formal theory but theorems about formal proofs, i.e. they show
how - under certain conditions - a formal proof can be transformed into another.

One of the most useful methods is the so-called DEDUCTION THEOREM:

THEOREM 1.1 (DEDUCTION THEOREM). If T is a theory and TYtψu $ ϕ, where
in the proof of ϕ from TY tψu the rule of GENERALISATION is not applied to the
free variables of ψ, then T $ ψ Ñ ϕ; and vice versa, if T $ ψ Ñ ϕ, then
TY tψu $ ϕ:

TY tψu $ ϕ ÎùùùÏ T $ ψ Ñ ϕ (DT)

Proof. It is clear that T $ ψ Ñ ϕ implies T Y tψu $ ϕ. Conversely, suppose that
TYtψu $ ϕ holds and let the sequence ϕ0, . . . , ϕn with ϕn ” ϕ be a formal proof
for ϕ from TYtψu. For each i ď n we will replace the formulaϕi by a sequence of
formulae which ends with ψ Ñ ϕi. Let i ď n and assume T $ ψ Ñ ϕj for every
j ă i.

• If ϕi is a logical axiom or ϕi P T, we have

ϕi,0: ϕi ϕi P T or ϕi is a logical axiom
ϕi,1: ϕi Ñ pψ Ñ ϕiq instance of L1

ϕi,2: ψ Ñ ϕi from ϕi,1 and ϕi,0 by (MP)

• The case ϕi ” ψ follows directly from Example 1.1.
• If ϕi is obtained by MODUS PONENS from ϕj and ϕk ” pϕj Ñ ϕiq for some
j ă k ă i, we have

ϕi,0: ψ Ñ ϕj since j ă i

ϕi,1: ψ Ñ pϕj Ñ ϕiq since k ă i

ϕi,2: ϕi,1 Ñ ppψ Ñ ϕjq Ñ pψ Ñ ϕiqq instance of L2

ϕi,3: pψ Ñ ϕjq Ñ pψ Ñ ϕiq from ϕi,2 and ϕi,1 by (MP)

ϕi,4: ψ Ñ ϕi from ϕi,3 and ϕi,0 by (MP)

• If ϕi ” @xϕj with j ă i and x R freepψq, the claim follows from

ϕi,0: ψ Ñ ϕj since j ă i

ϕi,1: @xpψ Ñ ϕjq from ϕi,0 by p@q
ϕi,2: @xpψ Ñ ϕjq Ñ pψ Ñ ϕiq instance of L13

ϕi,3: ψ Ñ ϕi from ϕi,2 and ϕi,1 by (MP)

%
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As an application of the DEDUCTION THEOREM, we show that the equality re-
lation is symmetric, which is (??). We first work with the empty theory and show
that tx “ yu $ y “ x:

ϕ0: px “ y ^ x “ xq Ñ px “ x Ñ y “ xq instance of L17

ϕ1: x “ x instance of L16

ϕ2: x “ y x “ y belongs to tx “ yu

ϕ3: x “ x Ñ px “ y Ñ px “ y ^ x “ xqq instance of L5

ϕ4: x “ y Ñ px “ y ^ x “ xq from ϕ3 and ϕ1 by (MP)

ϕ5: x “ y ^ x “ x from ϕ4 and ϕ2 by (MP)

ϕ6: x “ x Ñ y “ x from ϕ0 and ϕ5 by (MP)

ϕ7: y “ x from ϕ6 and ϕ1 by (MP)

Thus, we have tx “ yu $ y “ x, and by the Deduction Theorem 1.1 we see that
$ x “ y Ñ y “ x, and finally, by GENERALISATION we get

$ @x@ypx “ y Ñ y “ xq.

We leave it as an exercise to the reader to show that the equality relation is also
transitive (see EXERCISE 1).

PROPOSITION 1.2. Let T be an L -theory, and ϕ&ψ any two L -formulae. Then
we have:

T $ ϕ and T $ ψ ÎùùùÏ T $ ϕ^ ψ p^q

Proof. First we assume T $ ϕ and T $ ψ, and show T $ ϕ^ ψ:

ϕ0: ψ Ñ
`

ϕÑ pϕ^ ψq
˘

instance of L5

ϕ1: ψ provable from T by assumption
ϕ2: ϕÑ pϕ^ ψq from ϕ0 and ϕ1 by (MP)

ϕ3: ϕ provable from T by assumption
ϕ4: ϕ^ ψ from ϕ2 and ϕ3 by (MP)

Now we assume T $ ϕ^ ψ, and show T $ ϕ (T $ ψ is similar):

ϕ0: pϕ^ ψq Ñ ϕ instance of L3

ϕ1: ϕ^ ψ provable from T by assumption
ϕ2: ϕ from ϕ0 and ϕ1 by (MP)

%

As an immediate consequence of the definition of “Ø” and PROPOSITION 1.2
we get:

T $ ϕÑ ψ and T $ ψ Ñ ϕ ÎùùùÏ T $ ϕØ ψ pØq

PROPOSITION 1.3 (Ex falso quodlibet). Let T be an L -theory and ϕ an arbitrary
L -formula. Then for every L -formula ψ we have:
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T $ ϕ^ ϕ ùùùÏ T $ ψ p�q

Proof. Let ψ be any L -formula and assume that T $ ϕ^ ϕ for some L -formula
ϕ. By p^q we clearly have T $ ϕ and T $  ϕ. Now the instance  ϕÑ pϕÑ ψq
of the logical axiom L10 and two applications of MODUS PONENS imply T $ ψ. %

Notice that PROPOSITION 1.3 implies that if we can derive a contradiction from
T, we can derive every formula we like, even the impossible, which shall be denoted
by

T $ � .

PROPOSITION 1.4 (Proof by Cases). Let T be an L -theory and ϕ, ψ, and α some
L -formulae. Then the following four statements hold:

T $ ϕ_ ψ and TY tϕu $ α and TY tψu $ α ùùùÏ T $ α (_0)

TY tϕu $ α and TY t ϕu $ α ùùùÏ T $ α (_1)

where p@q is not applied to any of the free variables of ϕ or ψ in the proof of α
from TY tϕu,TY tψu or TY t ϕu respectively. Furthermore, we have

T $ ϕ_ ψ ùùùÏ TY t ϕu $ ψ (_2)

T $ ϕ_ ψ and TY tϕu $ � ùùùÏ T $ ψ (_3)

where p@q is not applied to any of the free variables of ϕ in the proof of � from
TY tϕu.

Proof. For (_0) we assume T $ ϕ_ ψ, TY tϕu $ α and TY tψu $ α.

ϕ0: ϕÑ α from TY tϕu $ α by (DT)

ϕ1: ψ Ñ α from TY tψu $ α by (DT)

ϕ2: pϕÑ ψq Ñ ppψ Ñ ψq Ñ ppϕ_ ψq Ñ ψqq instance of L8

ϕ3: pψ Ñ αq Ñ ppϕ_ ψq Ñ αq from ϕ2 and ϕ0 by (MP)

ϕ4: pϕ_ ψq Ñ α from ϕ3 and ϕ1 by (MP)

ϕ4: ϕ_ ψ by assumption
ϕ5: α from ϕ4 and ϕ5 by (MP)

(_1) is a special case of (_0), since T $ ϕ _  ϕ by L0. For (_2) suppose T $
ϕ _ ψ and put T1 “ T Y t ϕu. By (_0) it suffices to prove T

1 Y tϕu $ ψ and
T

1 Y tψu $ ψ. The first statement follows from p^q and Proposition 1.3 and the
second one is trivial. For (_3) observe that (_1) reduces the claim T Y tϕu $ ψ

and TY t ϕu $ ψ which are direct consequences of p�q and (_2) respectively.%

COROLLARY 1.5 (Generalised Proof by Cases). Let T be an L -theory and ψ0, . . . , ψn, ϕ

some L -formulae. Then we have:

T $ ψ0 _ ¨ ¨ ¨ _ ψn and TY tψiu $ ϕ for all i ď n ùùùÏ T $ ϕ,
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where p@q is not applied to any of the free variables of ψi in the proof of ϕ from
TY tψiu.

Since Corollary 1.5 is just a generalization of p_1q, we will also denote all in-
stance of this form by p_1q.

Proof of Corollary 1.5. We proceed by induction on n ě 1. For n “ 1 the statement
is exactly (_0). Now assume that T $ ψ0_ . . ._ψn_ψn`1 and TYtψiu $ ϕ for
all i ď n`1. Let T1 :” TYtψ0_. . ._ψnu and observe that T1 $ ψ0_. . ._ψn and
T

1Ytψiu $ ϕ, so by induction hypothesis T1 $ ϕ. By the DEDUCTION THEOREM

this implies T $ ψ0 _ . . ._ ψn Ñ ϕ. Moreover, by another application of (DT) we
also have T $ ψn`1 Ñ ϕ. Using L8 and twice (DT) we obtain T $ ψ0_ . . ._ψn_
ψn`1 Ñ ϕ, hence (DT) yields the claim.

%

COROLLARY 1.6 (Proof by contradiction). Let T be a theory, and ϕ be an arbitrary
formula. Then the following statements hold:

TY t ϕu $ � ùùùÏ T $ ϕ, respectively

TY tϕu $ � ùùùÏ T $  ϕ.

Proof. We consider only the first statement, since both proofs are similar. By (_1)
it is enough to check TYtϕu $ ϕ and TYt ϕu $ ϕ. The first condition is clearly
satisfied and the second one follows directly from (^) and p�). %

PROPOSITION 1.7 (Contrapositon). Let T be an L -theory and ϕ&ψ two arbitrary
L -formulae. Then we have:

TY t ψu $  ϕ ùùùÏ TY tϕu $ ψ (CP)

Proof. By (_2) it suffices to show TYtϕ, ψu $ ψ and TYtϕ, ψu $ ψ. The first
statement is obvious and for the second one note that T Y tϕ, ψu $ ϕ ^  ϕ by
p^q and thus by Proposition 1.3 TY tϕ, ψu $ ψ. %

PROPOSITION 1.8 (D´Introduction). Let T be a set of formulae, ϕpxq a formula
with x P freepϕq and ψ an arbitary formula. Then:

TY tϕpxqu $ ψ ùùùÏ TY tDxϕpxqu $ ψ. (D)

Proof. Using the DEDUCTION THEOREM we obtain T $ ϕpxq Ñ ψ. Then the
following formal proof implies the claim:

ϕ0: ϕpxq Ñ ψ since T $ ϕpxq Ñ ψ

ϕ1: @xpϕpxq Ñ ψ from ϕ0 by p@q
ϕ2: @xpϕpxq Ñ ψq Ñ pDxϕpxq Ñ ψq instance of L14

ϕ3: Dxϕpxq Ñ ψ from ϕ2 and ϕ1 by (MP)

%
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THEOREM 1.9 (DEMORGAN’S LAWS). If ϕ0, . . . , ϕn are formulae, then:

(a)  pϕ0 ^ ¨ ¨ ¨ ^ ϕnq ô p ϕ1 _ ¨ ¨ ¨ _  ϕnq

(b)  pϕ0 _ ¨ ¨ ¨ _ ϕnq ô p ϕ1 ^ ¨ ¨ ¨ ^  ϕnq

(c) ϕ0 Ñ
`

ϕ1 Ñ p¨ ¨ ¨ Ñ ϕnq ¨ ¨ ¨
˘

ô  pϕ0 ^ ¨ ¨ ¨ ^ ϕnq

Proof. %

THEOREM 1.10 (GENERALISED DEDUCTION THEOREM). If T is any theory and
T Y tψ1, . . . , ψnu $ ϕ, where in the proof of ϕ from T Y tψ1, . . . , ψnu the rule
of GENERALISATION is not applied to any of the free variables of ψ1, . . . , ψn, then
T $ pψ1 ^ ¨ ¨ ¨ ^ ψnq Ñ ϕ; and vice versa:

TY tψ1, . . . , ψnu $ ϕ ðñ T $ pψ1 ^ ¨ ¨ ¨ ^ ψnq Ñ ϕ (GDT)

Proof. Follows immediately from the DEDUCTION THEOREM and from part (c) of
DEMORGAN’S LAWS. %

THEOREM 1.11 (3-SYMBOLS). For every each ϕ there is an equivalent formula ψ
which contains only “ ” and “^” as logical operators and “D” as quantifier.

Proof. %

Definition of Prenex Normal Form, abbreviated PNF.

THEOREM 1.12 (PRENEX NORMAL FORM THEOREM). For every formula ϕ there
is an equivalent formula ψ which is in PNF.

Proof. %

THEOREM 1.13 (VARIABLE SUBSTITUTION THEOREM). For every formula ϕ

there is an equivalent formula ψ which contains just variables among v0, v1, . . .

Proof. %

Consistency & Compactness

Let T be a set of L -formulae. We say that T is consistent, denoted ConpTq, if there
is no L -formula ϕ such that T $ pϕ ^  ϕq, otherwise T is called inconsistent,
denoted  ConpTq.

PROPOSITION 1.14. Let T be a set of L -formulae.

(a) If  ConpTq, then for all L -formulae ψ we have T $ ψ.
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(b) If ConpTq and T $ ϕ for some L -formula ϕ, then T &  ϕ.

(c) If  ConpT ` ϕq, for some L -formula ϕ, then T $  ϕ.

(d) If T $  ϕ, for some L -formula ϕ, then  ConpT` ϕq.

Proof. (a) This is just PROPOSITION 1.3.

(b) Assume that T $ ϕ and T $  ϕ. Then T $ pϕ^ ϕq, i.e.,  ConpTq:

ϕ1: ϕ provable from T by assumption
ϕ2:  ϕ provable from T by assumption
ϕ3: ϕÑ p ϕÑ pϕ^ ϕqq instance of L5

ϕ4:  ϕÑ pϕ^ ϕq from ϕ3 and ϕ1 by MODUS PONENS

ϕ5: ϕ^ ϕ from ϕ4 and ϕ2 by MODUS PONENS

(c) Assume that for some L -formula ϕ we have  ConpT ` ϕq. By (b) we get
T ` ϕ $ ψ for every L -formula ψ. In particular we get T ` ϕ $  ϕ and by the
DEDUCTION THEOREM we get T $ ϕÑ  ϕ:

T $ ϕÑ  ϕ consequence of assumption
T $ ϕÑ ϕ TAUTOLOGY (A.1)
T $ pϕÑ ϕq Ñ ppϕÑ  ϕq Ñ  ϕq L9

T $ pϕÑ  ϕq Ñ  ϕ by MODUS PONENS

T $  ϕ by MODUS PONENS

(d) Assume that for some L -formula ϕ we have T $  ϕ. By extending T, we also
have T` ϕ $  ϕ:

T` ϕ $  ϕ consequence of assumption
T` ϕ $ ϕ ϕ belongs to T` ϕ
T` ϕ $ ϕ^ ϕ TAUTOLOGY (B)

Hence, T` ϕ is inconsistent, i.e.,  ConpT ` ϕq. %

If we design a theory T (e.g., a set of axioms), we have to make sure that T is
consistent. However, as we shall see later, in many cases this task is impossible.

We conclude this chapter with the COMPACTNESS THEOREM, which is a pow-
erful tool in order to construct non-standard models of Peano Arithmetic or of Set
Theory. On the one hand, it is just a consequence of the fact that formal proofs are
F I N I T E sequences of formulae. On the other hand, the COMPACTNESS THEO-
REM is the main tool to prove that a given set of sentences is consistent with some
given theory.

THEOREM 1.15 (COMPACTNESS THEOREM). Let T be an arbitrary set of for-
mulae. Then T is consistent if and only if every finite subset T1 of T is consistent.

Proof. Obviously, if T is consistent, then every finite subset T1 of T must be con-
sistent. On the other hand, if T is inconsistent, then there is a formula ϕ such that
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T $ ϕ^ ϕ. In other words, there is a proof of ϕ^ ϕ from T. Now, since every
proof is finite, there are only finitely many formulae of T involved in this proof, and
if T1 is this finite set of formulae, then T

1 $ ϕ ^  ϕ, which shows that T1, a finite
subset of T, is inconsistent. %

Semi-formal Proofs

Previously we have shown that formal proofs can be simplified by applying methods
of proof such as case distinctions, proofs by contradiction or contraposition. How-
ever, to make proofs even more natural, it is useful to use natural language in order
to describe a proof step as in an “informal” mathematical proof.

Example 1.1 We want to prove the tautology $ ϕ Ñ   ϕ. Instead of writing out
the whole formal proof which is quite tedious, we can apply our methods of proof
introduced above.

The first modification we make is to use (DT) to obtain the new goal

tϕu $   ϕ.

This seems like a target which can easily be shown using a proof by contradiction:
We apply � and get the goal

tϕ, ϕu $ �

which by (^) is again a consequence of the tautological goals

tϕ, ϕu $ ϕ and tϕ, ϕu $  ϕ.

To sum up, this procedure can actually be transformed back into a formal proof, so
it suffices as a proof of $ ϕ Ñ   ϕ. Now this is still not completely satisfactory,
since we would like to write the proof in natural language. A possible translation
could thus be

Proof. We want to prove that ϕ implies   ϕ. Assume ϕ. Suppose for a contradic-
tion that  ϕ. But then we have ϕ and  ϕ. Contradiction. %

We will now show in a systematic way how formal proofs can - in principal - be
replaced by semi-formal proofs, which make use of a controlled natural language,
i.e., a limited vocabulary consisting of natural language phrases such as “assume
that” which are often used in mathematical proof texts. This language is controlled
in the sense that its allowed vocabulary is only a subset of the entire English vocab-
ulary and that every word resp. phrase has a unique precisely defined interpretation.
However, for the sake of a nice proof style, we will not always stick to this limited
vocabulary. Moreover, this section should be considered as a hint of how formal
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proofs can be formulated using a controlled natural language as well as a justifica-
tion for working with natural language proofs rather than formal ones.

Every statement we would like to prove formally is of the form Γ $ ϕ, where Γ
is a set of formulae, denoted the set of premises, and ϕ is the formula to be verified,
named target. The whole statement Γ $ ϕ (which we will describe as a goal) states
that there is a formal proof of ϕ from the logical axioms L0-L17 and the premises as
non-logical axioms using the inference rules (MP) and p@q. Now instead of listing a
formal proof, we can step by step reduce our current goal to a simpler one using the
methods of proof from before; the idea is to follow this procedure until the target is
tautological as in the case of Example 1.1.

Methods of proof can be considered as operations on the premises and the tar-
gets. the proof by contraposition for example adds the negation of the target to the
premises and replaces the original target by the negation of the premise from which
it shall be derived:

If we want to show
Γ Y tψu $ ϕ,

we can prove instead
Γ Y t ϕu $  ψ.

A slightly different example is the proof of a conjunction

Γ $ ϕ^ ψ,

which is usually split into the two goals given by

Γ $ ϕ and Γ $ ψ.

Thus we have to revise our first attempt and interpret methods of proof as operations
on F I N I T E lists of goals consisting of premises and targets.

In the following we will list some of the most common methods and assign them
their (respectively one possible) natural language meaning:

Operations on targets (Backward reasoning)

• Targets are often of the universal conditional form @νpϕpνq Ñ ψpνqq, where
ν is a F I N I T E sequence of variables. In particular, this pattern includes
the purely universal formulae @νψpνq by taking ϕ to be J as well as sim-
ple conditionals of the form ϕ Ñ ψ. Now the usual procedure is to reduce
Γ $ @νpϕpνq Ñ ψpνqq to Γ Y tϕpνqu $ ψpνq using p@q various times and
(DT). This can be rephrased as

Assume ϕpνq. Then ... This shows ψpνq.



Semi-formal Proofs 25

• As already mentioned above, if the target is a conjunction ϕ ^ ψ, one can show
them separately using p^q. This step is usually executed without mentioning it
explicitly.

• If the target is a negation  ϕ, one often uses a proof by contradiction or by
contraposition: In the first case we transform Γ $  ϕ to Γ Y tϕu $ � and use
the natural language notation

Suppose for a contradiction that ϕ. Then ... Contradiction.

In the latter case, we want to go from Γ Y t ψu $  ϕ to Γ Y tϕu $ ψ resp.
in its positive version from Γ Y tψu $  ϕ to Γ Y tϕu $  ψ. In both cases we
can mark this with the keyword contraposition, e.g. as

We proceed by contraposition... This shows  ϕ.

• If the target is an existential formula Dxϕ, then by L12 and (MP) it suffices to find
a witness τ such that Γ $ ϕpτq.

• In order to prove a disjunction ϕ_ψ, by L5 and L6 and (MP) it is enough to prove
either Γ $ ϕ or Γ $ ψ.

Observe that the last two operations are usually performed in the very end after
many operations on the premises such as adding further premises and splitting goals
into subgoals.

Operations on premises (Forwards reasoning)

• By (^), conjunctive premises ϕ ^ ψ can be split into two premises ϕ, ψ; i.e.
Γ Y tϕ^ ψu $ χ can be reduced to Γ Y tϕ, ψu $ χ.

• Disjunctive premises are used
• Intermediate proof steps: Often we want to prove first some intermediate state-

ment which shall then be applied to resolve the target. Formally this means that
we want to show Γ $ ϕ by showing first Γ $ ψ and then we add ψ to the list of
premises and check Γ Ytψu $ ϕ. Clearly, if we have Γ $ ψ and Γ Ytψu $ ϕ,
using (DT) and (MP) we obtain that Γ $ ϕ. In a semi-formal proof this can be
described by

We show first ψ... This proves ψ.

Note that it is important to mark when the proof of the intermediate statement ψ
ends, because from this point on, ψ can be used as a new premise.

Observe that in any case, once a goal Γ $ ϕ is reduced to a tautology, it can be
removed from the list of goals. This should be marked by a phrase like

This shows/proves ϕ

so that it is clear that we go on to the next goal. The proof is complete as soon as no
unresolved goals remain.
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What is the use of such a formalized natural proof language? First of all, it in-
creases readibility for the audience. Secondly, by giving some of the common nat-
ural language phrases appearing in proof texts a precise formal definition, we show
how - in principal - one could write formal proofs with a controlled natural language
input. This input could then be parsed into a formal proof and then be verified by a
proof checking system.

We would like to emphasize that this section should only be considered a moti-
vation rather than a precise description of how formal proofs can be translated into
semi-formal ones and vice versa. Nevertheless, it suffices to understand that and how
this can theoretically be achieved. Therefore, in subsubsequent chapters, especially
in Chapters ?? and ??, we will often present semi-formal proofs.

EXERCISES

0. Something with terms.

1. The equality relation is transitive.
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Tautologies

In this section we give a list of some of the most important tautologies. Many of
them have been used explicitly and implicitly in several formal proofs.

(A.1) $ ϕÑ ϕ

(A.0) $ ϕØ ϕ

(B) tψ, ϕu $ ϕ^ ψ

(C) $ pψ Ñ ϕq Ñ pψ Ñ @νϕq [for ν R freepψq]

(D.1) tϕ0 Ñ ϕ1, ϕ1 Ñ ϕ2u $ ϕ0 Ñ ϕ2

(D.2) tϕ0 Ñ ψ, ϕ1 Ñ ψu $ pϕ0 _ ϕ1q Ñ ψ

(D.3) tψ Ñ ϕ0, ψ Ñ ϕ1u $ ψ Ñ pϕ0 ^ ϕ1q

(E) $ ϕÑ
`

ψ Ñ pϕ^ ψq
˘

(F.1) $ ϕÑ   ϕ
(F.2) $   ϕÑ ϕ

(F.0) $ ϕØ   ϕ

(G.1) $ pϕÑ ψq Ñ p ψ Ñ  ϕq
(G.2) $ p ψ Ñ  ϕq Ñ pϕÑ ψq
(G.0) $ pϕÑ ψq Ø p ψ Ñ  ϕq

(H.0) tϕØ ψu $  ϕØ  ψ
(H.1) tϕØ ϕ1, ψ Ø ψ1u $ pϕÑ ψq Ø pϕ1 Ñ ψ1q
(H.2) tϕØ ϕ1, ψ Ø ψ1u $ pϕ_ ψq Ø pϕ1 _ ψ1q
(H.3) tϕØ ϕ1, ψ Ø ψ1u $ pϕ^ ψq Ø pϕ1 ^ ψ1q

27



28 A Tautologies

(I.1) $ pϕ1 ^ ϕ2q Ø pϕ2 ^ ϕ1q
(I.2) $ pϕ1 ^ ϕ2q ^ ϕ3 Ø ϕ1 ^ pϕ2 ^ ϕ3q

(J.1) $ pϕ1 _ ϕ2q Ø pϕ2 _ ϕ1q
(J.2) $ pϕ1 _ ϕ2q _ ϕ3 Ø ϕ1 _ pϕ2 _ ϕ3q

(K.1) $ p ϕ_ ψq Ñ pϕÑ ψq
(K.2) $ pϕÑ ψq Ñ p ϕ_ ψq
(K.0) $ pϕÑ ψq Ø p ϕ_ ψq

(L.1) $ p ϕ_ ψq Ñ  pϕ^ ψq
(L.2) $  pϕ^ ψq Ñ p ϕ_ ψq
(L.0) $  pϕ^ ψq Ø p ϕ_ ψq

(M.1) $
`

ϕ1 Ñ pϕ2 Ñ ϕ3q
˘

Ø
`

pϕ1 ^ ϕ2q Ñ ϕ3

˘

(M.2) $  pϕ_ ψq Ø p ϕ^ ψq

(N.1) $ pϕ1 ^ ϕ2q _ ϕ3 Ñ pϕ1 _ ϕ3q ^ pϕ2 _ ϕ3q
(N.2) $ pϕ1 _ ϕ3q ^ pϕ2 _ ϕ3q Ñ pϕ1 ^ ϕ2q _ ϕ3

(N.0) $ pϕ1 ^ ϕ2q _ ϕ3 Ø pϕ1 _ ϕ3q ^ pϕ2 _ ϕ3q

(O) $ pϕ1 _ ϕ2q ^ ϕ3 Ø pϕ1 ^ ϕ3q _ pϕ2 ^ ϕ3q

(P.1) $ x “ y Ø y “ x

(P.2) $ px “ y ^ y “ zq Ñ x “ z

(Q.1) $ ϕpνq Ø ϕpν1q [if ν1 does not appear in ϕpνq]
(Q.2) $ Dνϕpνq Ø Dν1ϕpν1q [if ν1 does not appear in ϕpxq]
(Q.3) $ @νϕpνq Ø @yϕpν1q [if ν1 does not appear in ϕpνq]

(R.1) tϕØ ψu $ @νϕØ @νψ
(R.2) tϕØ ψu $ DνϕØ Dνψ

(S.1) $  DνϕÑ @ν ϕ
(S.2) $  @ν ϕÑ Dνϕ
(S.3) $ DνϕÑ  @ν ϕ
(S.0) $ DνϕØ  @ν ϕ

(T) $ @νϕØ  Dν ϕ
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(U.1) $ DxDyϕØ DyDxϕ
(U.2) $ DxDxϕØ Dxϕ
(U.3) $ @xDxϕØ Dxϕ
(U.4) $ Dx@xϕØ @xϕ

(V.1) $
`

Dxϕ^ Dyψ
˘

Ø
`

DxDypϕ^ ψq
˘

[for x R freepψq, y R freepϕq]
(V.2) $

`

@xϕ^ @yψ
˘

Ø
`

@x@ypϕ ^ ψq
˘

[for x R freepψq, y R freepϕq]
(V.3) $

`

Dxϕ^ @yψ
˘

Ø
`

Dx@ypϕ^ ψq
˘

[for x R freepψq, y R freepϕq]
(V.4) $

`

Dxϕ^ ψ
˘

Ø
`

Dxpϕ^ ψq
˘

[for x R freepψq]
(V.5) $

`

@xϕ^ ψ
˘

Ø
`

@xpϕ^ ψq
˘

[for x R freepψq]

(W.1) $
`

Dxϕ_ Dyψ
˘

Ø
`

DxDypϕ_ ψq
˘

[for x R freepψq, y R freepϕq]
(W.2) $

`

@xϕ_ @yψ
˘

Ø
`

@x@ypϕ _ ψq
˘

[for x R freepψq, y R freepϕq]
(W.3) $

`

Dxϕ_ @yψ
˘

Ø
`

Dx@ypϕ_ ψq
˘

[for x R freepψq, y R freepϕq]
(W.4) $

`

Dxϕ_ ψ
˘

Ø
`

Dxpϕ_ ψq
˘

[for x R freepψq]
(W.5) $

`

@xϕ_ ψ
˘

Ø
`

@xpϕ_ ψq
˘

[for x R freepψq]
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