The Essential Turing

Seminal Writings in Computing, Logic, Philosophy,
Artificial Intelligence, and Artificial Life
plus The Secrets of Enigma

Edited by B. Jack Copeland

Alan M. Turing

CLARENDON PRESS - OXFORD

32 | jack Copeland

A document written by Woodger in 1947 used the single ‘m’ spelling: ‘A
Program for Version H’3 Woodger recalls: “We used both spellings carelessly
for some vyears until Goodwin (Superintendent of Mathematics Division
from 1951) laid down the rule that the “American” spelling should be used.’s
It is possible that the single ‘m’ spelling first came to the NPL via the American
engineer Huskey, who spent 1947 with the ACE group. Huskey was respon-
sible for “Version H), a scaled-down form of Turing’s design for the ACE (see
Chapter 10).

Like Turing, Eckert and Mauchly, the chief architects of ENIAC, probably
inherited the terms ‘programming’ and ‘program’ from the plug-board calcula-
tor. In 1942, while setting out the idea of a high-speed electronic calculator,
Mauchiy used the term ‘programming device’ (which he sometimes shortened to
‘program device’) to refer to a mechanism whose function was to determine how
and when the various component units of a calculator shall perform.5” In the
summer of 1946 the Moore School organized a series of influential lectures
entitled “Theory and Techniques for Design of Electronic Digital Computers’. In
the course of these, Eckert used the term ‘programming’ in a similar sense when
describing the new idea of storing instructions in high-speed memory: ‘We. .. feed
those pieces of information which relate to programming from the memory.s8
Also in 1946, Burks, Goldstine, and von Neumann (all ex-members of the Moore
School group) were using the verb-form ‘program the machine), and were speak-
ing of ‘program orders’ being stored in memory.5® The modern nominalized form
appears not to have been adopted in the USA until a little later. Huskey says, Tam
pretty certain that no one had written a “program” by the time I left Philadelphia
in June 1946.60

Part Il Computability and Uncomputability

8. Circular and Circle-Free Machines

Turing calls the binary digits ‘0’ and 1” symbols ‘of the first kind’ Any symbols
that a computing machine is able to print apart from the binary digits—such as

35 M. Woodger, ‘A Program for Version H’, handwritten MS, 1947 (in the Woodger Papers, National
Museum of Science and Industry, Kensington, London (catalogue reference N30/37)).

56 Letter from Woodger to Copeland (6 Oct. 2000).

57 J. W. Mauchly, “The Use of High Speed Vacuum Tube Devices for Calculating’ (1942), in Randell, The
Origins of Digital Computers: Selected Papers.

38 J. P. Eckert, ‘A Preview of a Digital Computing Machine’ (15 July 1946), in M. Campbell-Kelly and
M. R. Williams (eds.), The Moore School Lectures (Cambridge, Mass.: MIT Press, 1985), 114,

3% Sections 1.2, 5.3 of Burks, Goldstine, and von Neumann, ‘Preliminary Discussion of the Logical Design
of an Electronic Computing Instrument’ (von Neumann, Collected Works, vol. v, 15, 43).

60 Letter from Huskey to Copeland (3 Feb. 2002).

Computable Numbers: A Guide | 33
2} ', %}, and blank—Turing calls ‘symbols of the second kind’ (p. 60). He also
uses the term ‘figures’ for symbols of the first kind.

A computing machine is said by Turing to be circular if it never prints more
than a finite number of symbols of the first kind. A computing machine that will
print an infinite number of symbols of the first kind is said to be circle-free
(p. 60). For example, a machine operating in accordance with Table 1 is circle-
free. (The terms ‘circular’ and ‘circle-free’ were perhaps poor choices in this
connection, and the terminology has not been followed by others.)

A simple example of a circular machine is one set up to perform a single
calculation whose result is an integer. Once the machine has printed the result (in
binary notation), it prints nothing more.

A circular machine’s scanner need not come to a halt. The scanner may
continue moving along the tape, printing nothing further. Or, after printing a
finite number of binary digits, a circular machine may work on forever, printing
only symbols of the second kind.

Many real-life computing systems are circle-free, for example automated teller
machine networks, air traffic control systems, and nuclear reactor control
systems. Such systems never terminate by design and, barring hardware failures,
power outages, and the like, would continue producing binary digits forever.

In Section 8 of ‘On Computable Numbers’ Turing makes use of the circular/
circle-free distinction in order to formulate a mathematical problem that cannot
be solved by computing machines.

9. Computable and Uncomputable Sequences

The sequence of binary digits printed by a given computing machine on the
F-squares of its tape, starting with a blank tape, is called the sequence computed by
the machine. Where the given machine is circular, the sequence computed by the
machine is finite. The sequence computed by a circle-free machine is infinite.
A sequence of binary digits is said to be a computable sequence if it is the
sequence computed by some circle-free computing machine. For example, the
infinite sequence 010101 ... is a computable sequence.

Notice that although the finite sequence 010, for example, is the sequence
computed by some machine, this sequence is not a computable sequence,
according to Turing’s definition. This is because, being finite, 010 is not the
sequence computed by any circle-free machine. According to Turing’s definition,
no finite sequence is a computable sequence. Modern writers usually define
‘computable’ in such a way that every finite sequence is a computable sequence,
since each of them can be computed (e.g. by means of an instruction table that

simply prints the desired sequence). Turing, however, was not much interested in
finite sequences.

34 | Jack Copeland

The focus of Turing’s discussion is his discovery that not every infinite
sequence of binary digits is a computable sequence. That this is so is shown by
what mathematicians call a diagonal argament.

The diagonal argument

Imagine that all the computable sequences are listed one under another. GJ.?W
order in which they are listed does not matter.) The list stretches away to infinity
both downwards and to the right. The top left-hand corner might look like this:

011001010110001001011010010001 11101 . ..
01011101001110001111111111111110111 ...
11010000011011016100000110010000011 . ..

Let’s say that this list was drawn up in the following way (by an infinite mmw&\v
perhaps). The first sequence on the list is the sequence computed by the machine
with a description number that is smaller than any description number of any
other circle-free machine. The second sequence on the list is the one computed
by the circle-free machine with the next smallest description :Eﬁ@mb. mwm $o on.
Every computable sequence appears somewhere on this list. (Some will in fact be
listed twice, since sometimes different description numbers correspond to the
same sequence.)

To prove that not all infinite binary sequences are computable, it is enough to
describe one that does not appear on this list. To this end, consider the infinite
binary sequence formed by moving diagonally down and across the list, starting

at the top left:

01100...
01011 ...
11010. ..

The twist is to transform this sequence into a different one by switching each ‘0’
lying on the diagonal to ‘I’ and each ‘1’ to 0" So the first digit of this new
sequence is formed by switching the first digit of the first sequence on .Em list
(producing 1); the second digit of the sequence is formed by méﬂﬂnrwcm .&m
seconid digit of the second sequence on the list (producing 0); the third digit is
formed by switching the third digit of the third sequence on the list (producing 1);
and so on. Turing calls this sequence ‘B’ (p. 72).

Computable Numbers: A Guide | 35

A moment’s reflection shows that B cannot itself be one of the listed se-
quences, since it has been constructed in such a way that it differs from each
of these. It differs from the first sequence on the list at the first digit. It differs
from the second sequence on the list at the second digit. And so on. Therefore,
since every computable sequence appears somewhere on this list, § is not among
the computable sequences.

Why the computable sequences are listable

A sceptic might challenge this reasoning, saying: ‘Perhaps the computable
sequences cannot be listed. In assuming that the computable sequences can be
listed, one, two, three, and so on, you are assuming in effect that each comput-
able sequence can be paired off with an integer (no two sequences being paired
with the same integer). But what if the computable sequences cannot be paired
off like this with the integers? Suppose that there are just too many computable
sequences for this to be possible. If this challenge were successful, it would pull
the rug out from under the diagonal argument.

The response to the challenge is this. Each circle-free Turing machine produces
just one computable sequence. So there cannot be more computable sequences
than there are circle-free Turing machines. But there certainly cannot be more
circle-free Turing machines than there are integers. This is because every Turing
machine has a description number, which is an integer, and this number is not
shared by any other Turing machine.

This reasoning shows that each computable sequence can be paired off with an
integer, one sequence per integer. As Turing puts this, the computable sequences
are ‘enumerable’ (p. 68).

The totality of infinite binary sequences, however, is non-enumerable. Not all
the sequences can be paired off with integers in such a way that no integer is
allocated more than one sequence. This is because, once every integer has had an
infinite binary sequence allocated to it, one can ‘diagonalize’ in the above way
and produce an extra sequence.

Starting with a blank tape

Incidentally, notice the significance, in Turing’s definition of sequence computed
by the machine, of the qualification ‘starting with a blank tape’. If the comput-
ing machine were allowed to make use of a tape that had already had an
infinite sequence of figures printed on it by some means, then the concept of
a computable sequence would be trivialized. Every infinite binary sequence
would become computable, simply because any sequence of digits whatever—
e.g. P—could be present on the tape before the computing machine starts
printing.

The following trivial programme causes a machine to run along the tape
printing the figures that are already there!

36 | Jack Copeland

a 1 PI1L R a
a 0 P[0}, R a
a - P[-I, R a

(The third line is required to deal with blank E-squares, if any.)

10. Computable and Uncomputable Numbers

Prefacing a binary sequence by ‘0’ produces a real number expressed in the form
of a binary decimal. For example, prefacing the binary sequence 010101 ... pro-
duces 0.010101 ... (the binary form of the ordinary decimal 0.363636...). If Bis
the sequence of binary digits printed by a given computing machine, then 0.B is
called the number computed by the machine.

Where the given machine is circular, the number computed by the machine is
always a rational number. A circle-free machine may compute an irrational
number (1, for example).

A number computed by a circle-free machine is said to be a computable
number. Turing also allows that any number ‘that differs by an integer’ from
a number computed by a circle-free machine is a computable number (p. 61).
So if B is the infinite sequence of binary digits printed by some circle-free
machine, then the number computed by the machine, 0.B, is a comput-
able number, as are ail the numbers that differ from 0.B by an integer: 1.B,
10.B, etc.

In Section 10 of ‘On Computable Numbers, Turing gives examples of large
classes of numbers that are computable. In particular, he proves that the import-
ant numbers w and ¢ are computable.

Not all real numbers are computable, however. This follows immediately from
the above proof that not all infinite binary sequences are computable. If S is an
infinite binary sequence that is uncomputable, then 0. is an uncomputable
number.

11. The Satisfactoriness Problem

Int Section 8 of ‘On Computable Numbers' Turing describes two mathematical
problems that cannot be solved by computing machines. The first will be referred
to as the satisfactoriness problem.

Satisfactory descriptions and numbers

A standard description is said to be safisfactory if the machine it describes is
circle-free. (Turing’s choice of terminology might be considered awkward, since
there need be nothing at all unsatisfactory, in the usual sense of the word, about a
circular machine.)

Computable Numbers: A Guide | 37

A number is satisfactory if it is a description number of a circle-free machine.
A number is unsatisfactory if either it is a description number of a circular
machine, or it is not a description number at all.

The satisfactoriness problem is this: decide, of any arbitrarily selected standard
description—or, equivalently, any arbitrarily selected description number—
whether or not it is satisfactory. The decision must be arrived at in a finite
number of steps.

The diagonal argument revisited

Turing approaches the satisfactoriness problem by reconsidering the above proof
that not every binary sequence is computable.

Imagine someone objecting to the diagonal argument: ‘Look, there must be
something wrong with your argument, because B evidently is computable. In the
course of the argument, you have in effect given instructions for computing
each digit of B, in terms of counting out digits and switching the relevant
ones. Let me try to describe how a Turing machine could compute B. I'll
call this Turing machine BETA. BETA is similar to the universal machine in
that it is able to simulate the activity of any Turing machine that one wishes.
First, BETA simulates the circle-free machine with the smallest description
number. BETA keeps up the simulation just as far as is necessary in order to
discover the first digit of the sequence computed by this machine. BETA then
switches this digit, producing the first digit of . Next, BETA simulates the circle-
free machine with the next smallest description number, keeping up the simula-
tion until it finds the second digit of the sequence computed by this machine.
And so on’

The objector continues: ‘T can make my description of BETA specific. BETA
uses only the E-squares of its tape to do its simulations, erasing its rough work
each time it begins a new simulation. It prints out the digits of 8 on successive F-
squares. I need to take account of the restriction that, in order for it to be said
that B is the sequence computed by BETA, BETA must produce the digits of
Bstarting from a blank tape. What BETA will do first of all, starting from a blank
tape, is find the smallest description number that corresponds to a circle-free
machine. It does this by checking through the integers, one by one, starting at 1.
As'BETA generates the integers one by one, it checks each to see whether it is a
description number. If the integer is not a description number, then BETA moves
on to the next. If the integer is a description number, then BETA checks whether
the number is satisfactory. Once BETA finds the first integer to describe a circle-
free machine, it uses the instructions contained in the description number in
order to simulate the machine. This is how BETA finds the first digit of B. Then
BETA continues its search through the integers, until it finds the next smallest
description number that is satisfactory. This enables BETA to calculate the
second digit of 3. And so on.

38 | jack Copeland

Turing tackles this objection head on, proving that no computing machine can
possibly do what BETA is supposed to do. It suffices for this proof to consider a
slightly simplified version of BETA, which Turing calls &. & is just like BETA
except that & does not switch the digits of the list’s ‘diagonal’ sequence. & is
supposed to write out (on the F-squares) the successive digits not of § but of the
‘diagonal’ sequence itself: the sequence whose first digit is the first digit of the
first sequence on the list, whose second digit is the second digit of the second
sequence on the list, and so on. Turing calls this sequence #'. If no computing
machine can compute ', then there is no such computing machine as BETA—
because if there were, a machine that computes ' could be obtained from it,
simply by deleting the instructions to switch each of the digits of the diagonal
sequence.

What happens when & meets itself?

Turing asks: what happens when, as & searches through the integers one by one,
it encounters a number describing & itself? Call this description number K.

must first check whether K is a description number. Having ascertained that
it is, & must test whether K is satisfactory. Since & is supposed to be computing
the endless binary sequence ', # itself must be circle-free. So & must pronounce
K to be satisfactory.

In order to find the next digit of B/, # must now simulate the behaviour of the
machine described by K. Since & is that machine, # must simulate its own
behaviour, starting with iis very first action. There is nothing wrong with the
idea of a machine starting to simulate its own previous behaviour (just as a
person might act out some episode {rom their own past). & first simulates (on its
E-squares) the series of actions that it performed up to and including writing
down the first digit of §/, then its actions up to and including writing down the
second digit of B, and so on.

Eventually, however, &’s simulation of its own past reaches the point where ¥
began to simulate the behaviour of the machine described by K. What must & do
now? & must simulate the series of actions that it performed when simulating the
series of actions that culminated in its writing down the first digit of ', and then
simulate the series of actions that it performed when simulating the series of
actions that culminated in its writing down the second digit of §, and so on! & is
doomed to relive its past forever.

From the point when it began simulating itself, # writes only on the E-squares
of its tape and never adds another digit to the sequence on its F-squares.
Therefore, & does not compute 3. # computes some finite number of digits of
B’ and then sticks.

The problem lies with the glib assumption that # and BETA are able to
determine whether each description number is satisfactory.

Computable Numbers: A Guide | 39

No computing machine can solve the satisfactoriness problem

Since, as has just been shown, no computing machine can possibly do what &
was introduced to do, one of the various tasks that & is supposed to carry out
must be impossible for a computing machine. But all the things that & is
supposed to do apart from checking for satisfactoriness—decide whether a
number is a description number, extract instructions from a description number,
simulate a machine that follows those instructions, and so on—are demonstrably
things that can be done by the universal machine.

By a process of elimination, then, the task that it is impossible for a computing
machine to carry out must be that of determining whether each description
number is satisfactory or not.

12. The Printing and Halting Problems

The printing problem

Some Turing-machine programmes print ‘0’ at some stage in their computation;
all the remaining programmes never print ‘0> Consider the problem of deciding,
given any arbitrarily selected programme, into which of these two categories it
falls. This is an example of the printing problem.

The printing problem (p. 73) is the problem of determining whether or not
the machine described by any arbitrarily selected standard description (or,
equivalently, any arbitrarily selected description number) ever prints a certain
symbol (‘0 for example). Turing proves that if the printing problem were
solvable by some computing machine, then the satisfactoriness problem would
be too. Therefore neither is.

The halting problem

Another example of a problem that cannot be solved by computing machines,
and a close relative of the printing problem, is the halting problem. This is the
problem of determining whether or not the machine described by any arbitrarily
selected standard description eventually halts—i.e. ceases moving altogether—
when started on a given tape (e.g. a blank tape).

The machine shown in Table 1 is rather obviously one of those that never
halt—but in other cases it is not at all obvious from a machine’s table whether or
not it halts. Simply watching the machine run (or a simulation of the machine) is
of little help, for what can be concluded if after a week or a year the machine has
not halted? If the machine does eventually halt, a watching human—or Turing
machine<—will sooner or later find this out; but in the case of a machine that has
not yet halted, there is no systematic method for deciding whether or not it is
going to halt.

40 1 Jack Copeland

The halting problem was so named (and, it appears, first stated) by Martin
Davis.6t The proposition that the halting problem cannot be solved by computing
machine is known as the ‘halting theorer’62 (It is often said that Turing stated and
proved the halting theorem in ‘On Computable Numbers’, but strictly this is not
true.)

13. The Church-Turing Thesis

Human computers

When Turing wrote ‘On Computable Numbers, a computer was not a machine
at all, but a human being. A computer—sometimes also spelt ‘computor’'—was a
mathematical assistant who calculated by rote, in accordance with a systematic
method. The method was supplied by an overseer prior to the calculation. Many
thousands of human computers were employed in business, government, and
research establishments, doing some of the sorts of calculating work that now-
adays is performed by electronic computers. Like filing clerks, computers might
have little detailed knowledge of the end to which their work was directed.

The term ‘computing machine’ was used to refer to small calculating machines
that mechanized elements of the human computer’s work. These were somewhat
like today’s non-programmable hand-calculators: they were not automatic, and
each step—each addition, division, and so on—was initiated manually by the
human operator. A computing machine was in effect a homunculus, calculating
more quickly than an unassisted human computer, but doing nothing that could
not in principle be done by a human clerk working by rote. For a complex
calculation, several dozen human computers might be required, each equipped
with a desk-top computing machine.

In the late 1940s and early 1950s, with the advent of electronic computing
machines, the phrase ‘computing machine’ gave way gradually to ‘computer’.
During the brief period in which the old and new meanings of ‘computer’
coexisted, the prefix ‘electronic’ or ‘digital’ would usually be used in order to
distinguish machine from human. As Turing stated, the new electronic machines
were ‘intended to carry out any definite rule of thumb process which could have
been done by a human operator working in a disciplined but unintelligent
manner.5 Main-frames, laptops, pocket calculators, palm-pilots—all carry out

1 See M. Davis, Computability and Unsolvability (New York: McGraw-Hill, 1958), 70. Davis thinks it
likely that he first used the term ‘halting problem’ in a series of lectures that he gave at the Control Systems
Laboratory at the University of Ilinois in 1952 (letter from Davis to Copeland, 12 Dec. 2001).

62 Tt is interesting that if one lifts the restriction that the determination must be carried out in a finite
number of steps, then Turing machines are able to solve the halting and printing problems, and moreover in
a finite time. See B. J. Copeland, ‘Super Turing-Machines, Complexity, 4 (1998), 30-2, and ‘Accelerating
Turing Machines, Minds and Machines, 12 (2002), 281-301.

8 Turing’s Programmers’ Handbook for Manchester Electronic Computer, 1.

Computable Numbers: A Guide | 41

work that a human rote-worker could do, if he or she worked long enough, and
had a plentiful enough supply of paper and pencils.

It must be borne in mind when reading ‘On Computable Numbers’ that
Turing there used the word ‘computer’ in this now archaic sense. Thus he says,
for example, ‘Computing is normally done by writing certain symbols on paper’
(p- 75) and ‘The behaviour of the computer at any moment is determined by the
symbols which he is observing, and his “state of mind”’ (p. 75).

The Turing machine is an idealization of the human computer (p. 59):
‘We may compare a man in the process of computing a real number to a
machine which is only capable of a finite number of conditions...called
“m-configurations”. The machine is supplied with a “tape” ...’ Wittgenstein
put the point in a striking way: ‘Turing’s “Machines”. These machines are
humans who calculate.64

In the primary sense, a computable number is a real number that can be
calculated by a human computer—or in other words, a real number that a
human being can calculate by means of a systematic method. When Turing
asserts that ‘the “computable” numbers include all numbers which would natur-
ally be regarded as computable’ (p. 74), he means that each number that is
computable in this primary sense is also computable in the technical sense
defined in Section 2 of ‘On Computable Numbers’ (see Section 10 of this
introduction).

The thesis
Turing’s thesis, that

the ‘computable’ numbers include all numbers which would naturally be
regarded as computable,

is now known as the Church~Turing thesis.
Some other ways of expressing the thesis are:

1. The universal Turing machine can perform any calculation that any human
computer can carry out.

2. Any systematic method can be carried out by the universal Turing machine.

The Church-Turing thesis is sometimes heard in the strengthened form:

Anything that can be made completely precise can be programmed for a
universal digital computer.

However, this strengthened form of the thesis is false.55 The printing, halting,
and satisfactoriness problems are completely precise, but of course cannot be
programmed for a universal computing machine.

$¢-L.-Wittgenstein, Remarks on the Philosophy of Psychology, vol. i (Oxford: Blackwell, 1980), § 1096.
%" As Martin Davis emphasized long ago in his Computability and Unsolvability, p. vii.

42 | Jack Copeland

Systematic methods

A systematic method—sometimes also called an effective method and a mechan-
ical method—is any mathematical method of which all the following are true:

¢ the method can, in practice or in principle, be carried out by a human
computer working with paper and pencil;

¢ the method can be given to the human computer in the form of a finite
number of instructions;

¢ the method demands neither insight nor ingenuity on the part of the human
being carrying it out;

* the method will definitely work if carried out without error;

* the method produces the desired result in a finite number of steps; or, if the
desired result is some infinite sequence of symbols (e.g. the decimal expan-
sion of), then the method produces each individual symbol in the
sequence in some finite number of steps.

The term ‘systematic’ and its synonyms ‘effective’ and ‘mechanical’ are terms
of art in mathematics and logic. They do not carry their everyday meanings. For
example: if some type of machine were able to solve the satisfactoriness problem,
the method it used would not be systematic or mechanical in this sense. (Turing
1s sometimes said to have proved that no machine can solve the satisfactoriness
problem. This is not so. He demonstrates only that his idealized human com-
puters—Turing machines—cannot solve the satisfactoriness problem. This does
not in itself rule out the possibility that some other type of machine might be
able to solve the problem.ss)

Turing sometimes used the expression rule of thumbin place of ‘systematic’. If this
expression is employed, the Church—Turing thesis becomes (Chapter 10, p. 414):

LCMs can do anything that could be described as ‘rule of thumb’ or ‘purely

mechanical’

‘LCM’ stands for ‘logical computing machine) a term that Turing seems to have
preferred to the (then current) “Turing machine’

Section 9 of ‘On Computable Numbers’ contains a bouquet of arguments for
Turing’s thesis. The arguments are persuasive, but do not offer the certainty
of mathematical proof. As Turing says wryly of a related thesis in Chapter 17
(p. 588): “The statement is... one which one does not attempt to prove. Propa-
ganda is more appropriate to it than proof’

Additional arguments and other forms of evidence for the thesis amassed.
These, too, left matters short of absolute certainty. Nevertheless, before long it
was, as Turing put it, ‘agreed amongst logicians’ that his proposal gives the

% See R. Gandy, ‘Church’s Thesis and Principles for Mechanisms, in J. Barwise, H.]. Keisler, and K.
Kunen (eds.), The Kleene Symposium (Amsterdam: North-Holland, 1980).

Computable Numbers: A Guide | 43

‘correct accurate rendering’ of talk about systematic methods (Chapter 10,
p. 414).57 There have, however, been occasional dissenting voices over the years
(for example, Kalmér and Péter).s8

The converse of the thesis
The converse of the Church-Turing thesis is:

Any number, or binary sequence, that can be computed by the universal
Turing machine can be calculated by means of a systematic method.

This is self-evidently true—the instruction table on the universal machine’s tape
is itself a specification of a systematic method for calculating the number
or sequence in question. In principle, a human being equipped with paper
and pencil could work through the instructions in the table and write out the
digits of the number, or sequence, without at any time exercising ingenuity or
insight (‘in principle’ because we have to assume that the human does not throw

in the towel from boredom, die of old age, or use up every sheet of paper in the

universe).

Application of the thesis

The concept of a systematic method is an informal one. Attempts—such as the
above—to explain what counts as a systematic method are not rigorous, since the
requirement that the method demand neither insight nor ingenuity is left
unexplicated.

One of the most significant achievements of ‘On Computable Numbers’—and
this was a large step in the development of the mathematical theory of compu-
tation—was to propose a rigorously defined expression with which the informal
expression ‘by means of a systematic method’ might be replaced. The rigorously
defined expression is, of course, ‘by means of a Turing machine’.

The importance of Turing’s proposal is this. If the proposal is correct—i.e. if
the:Church—Turing thesis is true—then talk about the existence or non-existence
of systematic methods can be replaced throughout mathematics and logic by talk
about the existence or non-existence of Turing-machine programmes. For in-
stance, one can establish that there is no systematic method at all for doing such-
and-such a thing by proving that no Turing machine can do the thing in
question. This is precisely Turing’s strategy with the Entscheidungsproblem, as
explained in the next section.

7 There is a survey of the evidence in chapters 12 and 13 of S. C. Kleene, Introduction to Metamathe-
matics (Amsterdam: North-Holland, 1952).

8 L. Kalmar, ‘An Argument against the Plausibility of Church’s Thesis, R. Péter, ‘Rekursivitit und
Konstruktivitat’; both in A. Heyting (ed.), Constructivity in Mathematics (Amsterdam: North-Holland,
1959).

44 1 Jack Copeland

Church’s contribution

In 1935, on the other side of the Atlantic, Church had independently proposed a
different way of replacing talk about systematic methods with formally precise
language (in a lecture given in April of that year and published in 1936).6? Turing
learned of Church’s work in the spring of 1936, just as ‘On Computable
Numbers’ was nearing completion (see the introduction to Chapter 4).

Where Turing spoke of numbers and sequences, Church spoke of mathemat-
ical functions. (x* and x + y are examples of mathematical functions. 4 is said to
be the value of the function x* for x = 2.) Corresponding to each computable
sequence S is a computable function fx (and vice versa). The value of fx for x = 1
is the first digit of S, for x = 2, the second digit of S, and so on. In ‘On
Computable Numbers’ Turing said (p. 58): ‘Although the subject of this paper
is ostensibly the computable numbers, it is almost equally easy to define and
investigate computable functions...I have chosen the computable numbers for
explicit freatment as involving the least cumbrous technique

Church’s analysis was in terms of his and Stephen Kleene’s concept of a
lambda-definable function. A function of positive integers is said to be lambda-
definable if the values of the function can be calculated by a process of repeated
substitution.

Thus we have alongside Turing’s thesis

Church’s thesis: every function of positive integers whose values can be calcu-
lated by a systermnatic method is lambda-definable.

Although Turing’s and Church’s approaches are different, they are nevertheless
equivalent, in the sense that every lambda-definable function is computable by
the universal machine and every function (or sequence) computable by the
universal machine is lambda-definable.”¢ Turing proved this in the Appendix
to ‘On Computable Numbers’ (added in August 1936).

The name ‘Church-Turing thesis, now standard, seems to have been intro-
duced by Kleene, with a flourish of bias in favour of his mentor Church: ‘So
Turing’s and Churclt’s theses are equivalent. We shall usually refer to them both
as Church’s thesis, or in connection with that one of its...versions which deals
with “Turing machines” as the Church-Turing thesis)71

Although Turing’s and Church’s theses are equivalent in the logical sense, there
is nevertheless good reason to prefer Turing’s formulation. As Turing wrote in
1937: “The identification of “effectively calculable” functions with computable

59 Church, ‘An Unsolvable Problem of Elementary Number Theory’.

70 Equivalent, that is, if the computable functions are restricted to functions of positive integers. Taring’s
conicerns were rather more general than Church’s, in that whereas Church considered only functions of
positive integers, Turing described his work as encompassing ‘computable functions of an integral variable
or a real or computable variable, computable predicates, and so forth’ (p. 58, below). Turing intended to
pursue the theory of computable functions of a real variable in a subsequent paper, but in fact did not do so.

7t S. C. Kleene, Mathematical Logic (New York: Wiley, 1967), 232.

Computable Numbers: A Guide | 45

functions is possibly more convincing than an identification with the \-definable

[lambda-definable] or general recursive functions’7’2 Church acknowledged the
point:

As a matter of fact, there is... equivalence of three different notions: computability by a
Turing machine, general recursiveness in the sense of Herbrand-Gédel—Kleene, and
A-definability in the sense of Kleene and [myself]. Of these, the first has the advantage
of making the identification with effectiveness in the ordinary (not explicitly defined)

sense evident immediately. .. The second and third have the advantage of suitability for
embodiment in a system of symbolic logic.7?

The great Kurt Gédel, it seems, was unpersuaded by Church’s thesis until he
saw Turing’s formulation. Kleene wrote:

According to a November 29, 1935, letter from Church to me, Godel ‘regarded as
thoroughly unsatisfactory’ Church’s proposal to use A-definability as a definition of

effective calculability...It seems that only after Turing’s formulation appeared did
Godel accept Church’s thesis.74

Hao Wang reports Godel as saying: ‘We had not perceived the sharp concept of
mechanical procedures sharply before Turing, who brought us to the right
perspective.’?s

Godel described Turing’s analysis of computability as ‘most satisfactory’ and
‘correct ... beyond any doubt’” He also said: ‘the great importance of . .. Turing’s
computability. .. seems to me...largely due to the fact that with this concept

one has for the first time succeeded in giving an absolute definition of an
interesting epistemological notion.””

14. The Entscheidungsproblem

In Section 11 of ‘On Computable Numbers), Turing turns to the Entscheidungs-

problem, or decision problem. Church gave the following definition of the
Entscheidungsproblem:

By the Entscheidungsproblem of a system of symbolic logic is here understood the problem
to find an effective method by which, given any expression Q in the notation of the system,
it can be determined whether or not Q is provable in the system.”s

72 Turing, ‘Computability and A-Definability, Journal of Symbolic Logic, 2 (1937), 153-63 (153).

7 Churclis review of ‘On Computable Numbers’ in Journal of Symbolic Logic, 43.

74 8. C. Kleene, ‘Origins of Recursive Function Theory’, Annals of the History of Computing, 3 (1981),
52-67 (59, 61).

7> H. Wang, From Mathematics to Philosophy (New York: Humanities Press, 1974), 85.

76 K. Godel, Collected Works, ed. S. Feferman et al., vol. iii (Oxford: Oxford University Press, 1995), 304,
168.

77 Ibid., vol. ii. (Oxford: Oxford University Press, 1990), 150.
78 Church, ‘A Note on the Entscheidungsproblem), 41.

46 1 Jack Copeland

The decision problem was brought to the fore of mathematics by the German
mathematician David Hilbert {who in a lecture given in Paris in 1900 set the
agenda for much of twentieth-century mathematics). In 1928 Hilbert described
the decision problem as ‘the main problem of mathematical logic) saying that
‘the discovery of a general decision procedure is a very difficult problem which is
as yet unsolved, and that the ‘solution of the decision problem is of fundamental
importance’.’?

The Hilbert programme

Hilbert and his followers held that mathematicians should seek to express
mathematics in the form of a complete, consistent, decidable formal system—a
system expressing ‘the whole thought content of mathematics in a uniform
way.80 Hilbert drew an analogy between such a system and ‘a court of arbitra-
tion, a supreme tribunal to decide fundamental questions—on a concrete basis
on which everyone can agree and where every statement can be controlled’8!
Such a system would banish ignorance from mathematics: given any mathemat-
ical statement, one would be able to tell whether the statement is true or false by
determining whether or not it is provable in the system. As Hilbert famously
declared in his Paris lecture: ‘in mathematics there is no ignorabimus (there is no
we shall not know).82

It is important that the system expressing the ‘whole thought content of
mathematics’ be consistent. An inconsistent system—a system containing con-
tradictions—is worthless, since any statement whatsoever, true or false, can be
derived from a contradiction by simple logical steps.8> So in an inconsistent

7 D. Hilbert and W. Ackermann, Grundziige der Theoretischen Logik [Principles of Mathematical Logic]
(Berlin: Julius Springer, 1928), 73, 77.

8¢ D. Hilbert, “The Foundations of Mathematics’ (English translation of a lecture given in Hamburg in
1927, entitled ‘Die Grundlagen der Mathematik’), in J. van Heijenoort (ed.), From Frege to Godel: A Source
Book in Mathematical Logic, 1879-1931 (Cambridge, Mass.: Harvard University Press, 1967), 475.

st D, Hilbert, ‘Uber das Unendliche’ {On the Infinite], Mathematische Annalen, 95 (1926), 161-90 (180);
English translation by E. Putnam and G. Massey in R. L. Epstein and W. A. Carnielli, Computability: Computable
Functions, Logic, and the Foundations of Mathematics (2nd edn. Belmont, Calif.: Wadsworth, 2000).

32 D. Hilbert, ‘Mathematical Problems: Lecture Delivered before the International Congress of Mathem-
aticians at Paris in 1900, Bulletin of the American Mathematical Society, 8 (1902), 437-79 (445).

8 To prove an arbitrary statement from a contradiction P & not B, one may use the following rules of
inference (see further pp. 49-52, below):

(a) not P + not (P & X)
(b) P & not (P & X) F not X.

Rule (a) says: from the statement that it is not the case that B it can be inferred that not both Pand X are the
case—i.e. inferred that one at least of P and X is not the case—where X is any statement that you please.
Rule (b) says: given that P is the case and that not both Pand X are the case, it can be inferred that X is not
the case. Via (a), the contradiction ‘P & not P’ leads to ‘not (P & X)’; and since the contradiction also offers
us B we may then move, via (b), to ‘not X’ So we have deduced an arbitrary statement, ‘not X, from the
coniradiction. (To deduce simply X, replace X in (a) and (b) by ‘not X, and at the last step use the rule saying
that two negations ‘cancel out’: not not X b X.)

Computable Numbers: A Guide | 47

system, absurdities such as 0 = 1 and 6 # 6 are provable. An inconsistent system
would indeed contain all true mathematical statements—would be complete,
in other words—but would in addition also contain all false mathematical
statements!

Hilbert’s requirement that the system expressing the whole content of math-
ematics be decidable amounts to this: there must be a systematic method for
telling, of each mathematical statement, whether or not the statement is provable
in'the system. If the system is to banish ignorance totally from mathematics then
it must be decidable. Only then could we be confident of always being able to tell
whether or not any given statement is provable. An undecidable system might
sometimes leave us in ignorance.

The project of expressing mathematics in the form of a complete, consistent,
decidable formal system became known as ‘proof theory’ and as the ‘Hilbert
programme’. In 1928, in a lecture delivered in the Italian city of Bologna,
Hilbert said:

In a series of presentations in the course of the last years I have...embarked upon a new
way of dealing with fundamental questions. With this new foundation of mathematics,
which one can conveniently call proof theory, I believe the fundamental questions in
mathematics are finally eliminated, by making every mathematical statement a concretely
demonstrable and strictly derivable formula. ..

[I]n mathematics there is no ignorabimus, rather we are always able to answer meaningful
questions; and it is established, as Aristotle perhaps anticipated, that our reason involves
no mysterious arts of any kind: rather it proceeds according to formulable rules that are
completely definite—and are as well the guarantee of the absolute objectivity of its
judgement.84

Unfortunately for the Hilbert programme, however, it was soon to become
clear that most interesting mathematical systems are, if consistent, incomplete
and undecidable.

In 1931, Godel showed that Hilbert’s ideal is impossible to satisfy, even in the
case of simple arithmetic.85 He proved that the formal system of arithmetic set
out by Whitehead and Russell in their seminal Principia Mathematicasé is, if
consistent, incomplete. That is to say: if the system is consistent, there are true

8 . Hilbert, ‘Probleme der Grundlegung der Mathematik’ [Problems Concerning the Foundation of
Mathematics], Mathematische Annalen, 102 (1930}, 1-9 (3, 9). Translation by Elisabeth Norcliffe.

85 K. Godel, ‘Uber formal unentscheidbare Sitze der Principia Mathematica und verwandter Systeme 17
[On Formally Undecidable Propositions of Principia Mathematica and Related Systems 1}, Monatshefte fiir
Mathematik und Physik, 38 (1931), 173-98. English translation in M. Davis (ed.), The Undecidable: Basic
Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions (New York: Raven,
1965), 5-38.

86 A. N. Whitehead and B. Russell, Principia Mathematica, vols. i—iii (Cambridge: Cambridge University
Press, 1910-13).

48 | jack Copeland

statements of arithmetic that are not provable in the system—the formal system
fails to capture the ‘whole thought content’ of arithmetic. This is known as
Godel’s first incompleteness theorem.

Godel later generalized this result, pointing out that ‘due to A. M. Turing’s
work, a precise and unquestionably adequate definition of the general concept
of formal system can now be given, with the consequence that incomplete-
ness can ‘be proved rigorously for every consistent formal system containing a
certain amount of finitary number theory’®” The definition made possible
by Turing’s work is this (in Godel's words): ‘A formal system can simply be
defined to be any mechanical procedure for producing formulas, called provable

formulas.88
In his incompleteness theorem, Gidel had shown that no matter how hard
mathematicians might try to construct the all-encompassing formal

system envisaged by Hilbert, the product of their labours would, if consistent,
inevitably be incomplete. As Hermann Weyl—one of Hilbert’s greatest pupils—
observed, this was nothing less than ‘a catastrophe’ for the Hilbert pro-
gramme.?’

Decidability
Godel’s theorem left the question of decidability open. As Newman summarized
matters:

The Hilbert decision-programme of the 1920’s and 30’s had for its objective the discovery
of a general process ... for deciding ... truth or falsehood... A first blow was dealt at the
prospects of finding this new philosopher’s stone by Gédel’s incompleteness theorem
(1931), which made it clear that truth or falschood of A could not be equated to
provability of A or not-A in any finitely based logic, chosen once for all; but there still
remained in principle the possibility of finding 2 mechanical process for deciding whether
A, or not-A, or neither, was formally provable in a given system.%®

The question of decidability was tackled head on by Turing and, independently,
by Church.

On p. 84 of ‘On Computable Numbers’ Turing pointed out—by way of a
preliminary—a fact that Hilbertians appear to have overlooked: if a system is
complete then it follows that it is also decidable. Bernays, Hilbert’s close collabor-
ator, had said: ‘One observes that [the] requirement of deductive completeness

87 Godel, “Postscriptumy, in Davis, The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable
Problems and Computable Functions, 71~3 (71); the Postscriptum, dated 1964, is to Godel’s 1934 paper ‘On
Undecidable Propositions of Formal Mathematical Systems’ (ibid. 41-71).

8 Ibid. 72.

8 H. Weyl, ‘David Hilbert and his Mathematical Work’, Bulletin of the American Mathematical Society, 50
(1944), 612-54 (644).

% M. H. A. Newman, ‘Alan Mathison Turing, 19121954, Biographical Memoirs of Fellows of the Royal
Society, 1 (1955), 253-63 (256).

i

Computable Numbers: A Guide | 49

does not go as far as the requirement of decidability.s1 Turing’s simple argument
on p. 84 shows that there is no conceptual room for the distinction that Bernays
is claiming.

Nevertheless, the crucial question was still open: given that in fact simple
arithmetic is (if consistent) incomplete, is it or is it not decidable? Turing and
Church both showed that no consistent formal system of arithmetic is decidable.
They showed this by proving that not even the functional calculus—the weaker,
purely logical system presupposed by any formal system of arithmetic—is mmn&u

able. The Hilbertian dream of a completely mechanized mathematics now lay in
total ruin.

A tutorial on first-order predicate calculys

What Turing called the functional calculus (and Church, following Hilbert, the
engere Funktionenkalkiil) is today known as first-order predicate calculus (FOPC).
FOPC is a formalization of deductive logical reasoning.

There are various different but equivalent ways of formulating FOPC. One
formulation presents FOPC as consisting of about a dozen formal rules of infer-
ence. (This formulation, which is more accessible than the Hilbert—Ackermann
formulation mentioned by Turing on p. 84, is due to Gerhard Gentzen.®?)

The following are examples of formal rules of inference. The symbol
indicates that the statement following it can be concluded from the statements
(or statement) displayed to its left, the premisses.

(i) X,if Xthen Y +Y
(i) Xand Y - X
(iii) X, YFXand Y

mw if, for example, ‘X’ represents ‘It is sunny’ and ‘Y’ represents ‘We will go for a
picnic’, (i) says:

c<<..m <.<E go for a picnic’ can be concluded from the premisses ‘It is sunny’ and
If it is sunny then we will go for a picnic’,

(ii) says:

It is sunny’ can be concluded from the conjunctive premiss ‘It is sunny and we
will go for a picnic’

Turing uses the symbol ‘= to abbreviate if then’ and the symbol ‘& to
abbreviate ‘and’ Using this notation, (i)—(iii) are written:

o1 P, mm.ngaw AUW Philosophie der Mathematik und die Hilbertsche Beweistheorie’ [The Philosophy of
Mathematics mb&. Hilbert’s Proof Theory], Bliitter fiir Deutsche FPhilosophie, 4 (1930/1931), 326~67. See also
H. Wang, Reflections on Kurt Gidel (Cambridge, Mass.: MIT Press, 1987), 87-8.

°2 G. Gentzen, ‘Investigations into Logical Deduction’ (1934), in Th
, , e Collected Papers of Gerhard Gent.
ed. M. E. Szabo (Amsterdam: North-Holland, 1969). perof Gerhard Genize,

50 | Jack Copeland

i) X, X —-YHFY
(i) X&YVk+X
(i) X, YFX &Y

Some more rules of the formal calculus are as follows. a represents any object,
I represents any property:

(iv) a has property F - there is an object that has property F
(v) each object has property F - a has property F

In Turing’s notation, in which ‘a has property F’ is abbreviated ‘F(a)’, these are
written:

(iv) Fla) - (30)F(x)
(v) ()F(x) - F(a)

‘(dx)’ is read: ‘there is an object (call it) which ...". So “(3x)F(x)’ says ‘there is
an object, call it x, which has property F. (x)’ is read: ‘each object, x, is such that
... 50 (%) F(x) says ‘each object, x, is such that x has property F.

Set out in full, FOPC contains not only rules like (i)—(v) but also several rules
leading from statements containing ‘+’ to other statements containing ‘. One
such rule is the so-called ‘cut rule, used in moving from lines (2) and (3) to (4)
in the proof below.

Turing calls “(Ix)” and “(x)’ quantors; the modern term is quantifiers. A
symbol, such as ‘F) that denotes a property is called a predicate. Symbols
denoting relationships, for example ‘<’ (less than) and ‘=" (identity), are also
classed as predicates. The symbol « is called a variable.

(FOPC is first-order in the sense that the quantifiers of the calculus always
involve variables that refer to individual objects. In second-order predicate calcu-

fus, on the other hand, the quantifiers can contain predicates, as in ‘(3F)’ The
following are examples of second-order quantification: ‘Jules and Jim have some
properties in common, ‘Each relationship that holds between a and b also holds
between ¢ and d))

Using the dozen or so basic rules of FOPC, more complicated rules of

inference can be proved as theorems (‘provable formulas’) of FOPC. For example:
Theorem (x)(G{x) — H(x)), G(a) + (Ix)H(x)

This theorem says: “There is an object that has property H’ can be concluded
from the premisses ‘Each object that has property G also has property H’ and ‘a
has property G

The proof of the theorem is as follows:

(1) ()(G(x) = H(x)) F Gla) — H(a) (rule (v))
(2) G(a), (G(a) — H(a)) F H(a) (rule (1))
(3) H(a) - (3x)H(x) (rule (iv))

(4) Gla), (G(a) — H(a)) F (dx)H(x) (from (2) and (3) by the cut rule)

Computable Numbers: A Guide | 51

(5) ()(G(x) — H(x)), G(a) - (3x)H(x)
(from (1) and (4) by the cut rule)

The cut rule (or rule of transitivity) says in effect that whatever can be con-
cluded from a statement Y (possibly in conjunction with additional premisses P)
can be concluded from any premiss(es) from which Y can be concluded (together
with the additional premisses B if any). For example, if Y+ Z and X | Y,
then X - Z. In the transition from (1) and (4) to (5), the additional premiss
G(a) in (4) is gathered up and placed among the premisses of (5).

So far we have seen how to prove further inference rules in FOPC. Often
logicians are interested in proving not inference rules but single statements
unbroken by commas and ‘. An example is the complex statement

not (F(a) & not (Ix)F(x)),

which says ‘It is not the case that both F(a) and the denial of (3x) F(x) are true’; or in
other words, you are not going to find F(a) true without finding (3x) F(x) true.

To say that a single statement, as opposed to an inference rule, is provable in
FOPC is simply to say that the result of prefixing that statement by - can be
derived by using the rules of the calculus. Think of a ‘> with no statements on its
left as indicating that the statement on its right is to be concluded as a matter of
‘pure logic’—no premisses are required.

For example, the theorem

b not (F(a) & not (3x)F(x))
can be derived using rule (iv) and the following new rule.%

XFY
F not (X & not Y)

This rule is read:

If Y can be concluded from X, then it can be concluded that not both X and the
denial of Yare true.

Much of mathematics and science can be formulated within the framework of
FOPC. For example, a formal system of arithmetic can be constructed by adding
a number of arithmetical axioms to FOPC. The axioms consist of very basic
arithmetical statements, such as:

(x)(x+ 0= x)
and
()P)(Sx =8y — x =),
93 In Gentzen’s system this rule can itself be derived from the basic rules. It should be mentioned that in

the full system it is permissible to write any finite number of statements (including zero) on the right hand
side of .

52 | Jack Copeland

where ‘S’ means ‘the successor of —the successor of 1 is 2, and so on. (In these
axioms the range of the variables %’ and ‘" is restricted to numbers.) Other
arithmetical statements can be derived from these axioms by means of the rules
of FOPC. For example, rule (v} tells us that the statement

1+0=1

can be concluded from the first of the above axioms.

If FOPC is undecidable then it follows that arithmetic is undecidable. Indeed, if
FOPC is undecidable, then so are very many important mathematical systems. To
and decidable logics one must search among systems that are in a certain sense
weaker than FOPC. One example of a decidable logic is the system that results if all
the quantifier rules—iules such as (iv) and (v)—are elided from FOPC. This
system is known as the propositional calculus.

The proof of the undecidability of FOPC

Turing and Church showed that there is no systematic method by which, given any
formula Q in the notation of FOPC, it can be determined whether or not Q is
provable in the system (i.e. whether or not - Q). To put this another way, Church
and Turing showed that the Entscheidungsproblemis unsolvablein the case of FOPC.

Both published this result in 1936.%¢ Church’s demonstration of undecidability
proceeded via his lambda calculus and his thesis that to each effective method
there corresponds a lambda-definable function. There is general agreement that
Turing was correct in his view, mentioned above (p. 45), that his own way of
showing undecidability is ‘more convincing’ than Church’s.

Turing’s method makes use of his proof that no computing machine can solve
the printing problem. He showed that if a Turing machine could tell, of any
given statement, whether or not the statement is provable in FOPC, then a
Turing machine could tell, of any given Turing machine, whether or not it
ever prints ‘0’ Since, as he had already established, no Turing machine can do
the latter, it follows that no Turing machine can do the former. The final step of
the argument is to apply Turing’s thesis: if no Turing machine can perform the
task in question, then there is no systematic method for performing it.

¢ In a lecture given in April 1935——the text of which was printed the following year as ‘An Unsolvable
Problem of Elementary Number Theory’ (a short ‘Preliminary report’ dated 22 Mar. 1935 having appeared in
the Bulletin of the American Mathematical Society (41 (1935), 332-3))—Church proved the undecidability ofa
system that includes FOPC as a part. This system is known as Principia Mathematica, or PM, after the treatise in
which it was first set out (see n. 86). PM is obtained by adding mathematical axioms to FOPC. Church
established the conditional result that if PM is omega-consistent, then PM is undecidable. Omega-consistency
(first defined by Godel) is a stronger property than consistency, in the sense that a consistent system is not
necessarily omega-consistent. As explained above, a system is consistent when there is no statement S such that
both S and not-S are provable in the system. A system is omega-consistent when there is no predicate F of
integers such that all the following are provable in the system: (3x) F(x), not-F(1), not-F(2), not-F(3), and
50 on, for every integer. In his later paper ‘A Note on the Entscheidungsproblem’ (completed in April 1936)
Church improved on this earlier result, showing unconditionally that FOPC is undecidable.

Computable Numbers: A Guide | 53

In detail, Turing’s demonstration contains the following steps.

1. Turing shows how to construct, for any computing machine m, a compli-
cated statement of FOPC that says ‘at some point, machine m prints 0’ He
calls this formula ‘Un(m)’. (The letters ‘Un’ probably come from ‘undecid-
able’ or the German equivalent ‘unentscheidbare’)

2. Turing proves the following;

(a) If Un(m) is provable in FOPC, then at some point m prints 0.
(b) If at some point m prints 0, then Un(m) is provable in FOPC.

3. Imagine a computing machine which, when given any statement Q in the
notation of FOPC, is able to determine (in some finite number of steps)
whether or not Q is provable in FOPC. Let’s call this machine HILBERT s
DREAM. 2(a) and 2(b) tell us that HILBERT’s DREAM would solve the
printing problem. Because if the machine were to indicate that Un(m)
is provable then, in view of 2(a), it would in effect be indicating that m does
print 0; and if the machine were to indicate that the statement Un(m) is
not provable then, in view of 2(b), it would in effect be indicating that m
does not print 0. Since no computing machine can solve the printing
problem, it follows that HILBERT’S DREAM is a figment. No computing
machine is able to determine in some finite number of steps, of each statement
Q, whether or not Q is provable in FOPC.

4. If there were a systematic method by which, given any statement Q, it can
be determined whether or not Q is provable in FOPC, then it would follow,
by Turing’s thesis, that there is such a computing machine as HILBERT’S
DrREAM. Therefore there is no such systematic method.

The significance of undecidability

Poor news though the unsolvability of the Entscheidungsproblem was for the
Hilbert school, it was very welcome news in other quarters, for a reason that
Hilbert’s illustrious pupil von Neumann had given in 1927:

If undecidability were to fail then mathematics, in today’s sense, would cease to exist; its
place would be taken by a completely mechanical rule, with the aid of which any man would
be able to decide, of any given statement, whether the statement can be proven or not.%>

As the Cambridge mathematician G. H. Hardy said in a lecture in 1928: if
there were...a mechanical set of rules for the solution of all mathematical
problems. .. our activities as mathematicians would come to an end.?

%]. von Neumann, ‘Zur Hilbertschen Beweistheorie’ [On Hilbert’s Proof Theory], Mathematische
Zeitschrift, 26 (1927), 1-46 (12); reprinted in vol. i of von Neumann’s Collected Works, ed. A. H. Taub
(Oxford: Pergamon Press, 1961).

% G. H. Hardy, ‘Mathematical Proof’, Mind, 38 (1929), 1-25 (16) (the text of Hardy’s 1928 Rouse Ball
Lecture),

54 | Jack Copeland

Further reading

Barwise,]., and Etchemendy, 1., Turing’s World: An Introduction to Computability Theory
(Stanford, Calif: CSLI, 1993). (Includes software for building and displaying Turing
machines.)

Boolos, G. 8., and Jeffrey, R. C., Computability and Logic (Cambridge: Cambridge Univer-
sity Press, 2nd edn. 1980).

Copeland, B.], ‘Colossus and the Dawning of the Computer Age, in R. Erskine and
M. Smith (eds.), Action This Day (London: Bantam, 2001).

Epstein, R. L., and Carnielli, W. A, Computability: Computable Functions, Logic, and the
Foundations of Mathematics (Belmont, Calif.: Wadsworth, 2nd edn. 2000).

Hopcroft, J. E., and Ullman, J. D., Introduction to Automata Theory, Languages, and Comput-
ation (Reading, Mass.: Addison-Wesley, 1979).

Minsky, M. L., Computation: Finite and Infinite Machines (Englewood Cliffs, NJ: Prentice-
Hall, 1967).

Sieg, W., ‘Hilbert’s Programs: 19171922, Bulletin of Symbolic Logic, 5 (1999), 1-44.

Sipser, M., Introduction to the Theory of Computation (Boston: PWS, 1997).

Appendix

Subroutines and M-Functions®?

Section 3 of this guide gave a brief introduction to the concept of a skeleton table, where
names of subroutines are employed in place of letters referring to states of the machine.
This appendix explains the associated idea of an m-function, introduced by Turing on
p. 63. m-functions are subroutines with parameters—values that are plugged into the
subroutine before it is used.

The example of the ‘find’ subroutine f makes this idea clear. The subroutine f(A, B, x) is
defined in Section 3 (Tables 2 and 3). Recall that f(A, B, x) finds the leftmost x on the tape
and places the machine in A, leaving the scanner resting on the x; or if no x is found,
places the machine in B and leaves the scanner resting on a blank square to the right of the
used portion of the tape. ‘4, ‘B, and ‘%’ are the parameters of the subroutine. Parameter %’
may be replaced by any symbol (of the Turing machine in question). Parameters ‘A’ and
‘B’ may be replaced by names of states of the machine. Alternatively, Turing permits A
and ‘B’ (one or both) to be replaced by a name of a subroutine. For example, replacing ‘A
by the subroutine name ‘e; (C)” produces:

f(e1(C), B, x)

This says: find the leftmost x, let the scanner rest on it, and go into subroutine e;(C); or, if
there is no x, go into B (leaving the scanner resting on a blank square to the right of the
used portion of the tape).

The subroutine e,(C) simply erases the scanned square and places the machine in C,
leaving the scanner resting on the square that has just been erased. (‘C’ is another
parameter of the same type as ‘A and ‘B.) Thus the subroutine f(e;(C), B, x) finds

97 By Andrés Sicard and Jack Copeland.

Computable Numbers: A Guide | 55

the leftmost occurrence of the symbol x and erases it, placing the machine in Cand leaving
the scanner resting on the square that has just been erased (or if no x is found, leaves the
scanner resting on a blank square to the right of the used portion of the tape and places
the machine in B). Since in this case nothing turns on the choice of letter, the name of the
subroutine may also be written ‘f(e; (A), B, x)’

The subroutine f(e,(A), B, x) is one and the same as the subroutine e(A, B, x) (Section
3). The new notation exhibits the structure of the subroutine.

More examples of m-functions are given below. While the use of m-functions is not
strictly necessary for the description of any Turing machine, m-functions are very useful in
describing large or complex Turing machines. This is because of the possibilities they offer
for ‘generalization, reusability, simplification, and modularization. Generalization is
achieved because tasks of a similar nature can be done by a single m-function, and
modularization because a complex task can be divided into several simpler m-functions.
Simplification is obtained because the language of m-functions submerges some of the
detail of the language of instruction-words—i.e. words of the form q;$;SMgq,—so produ-
cing transparent descriptions of Turing machines. Reusability arises simply because we can
employ the same m-function in different Turing machines.

Although it is difficult (if not impossible) to indicate the exact role that Turing’s
concept of an m-function played in the development of today’s programming languages,
it is worth emphasizing that some characteristics of m-functions are present in the
subroutines of almost all modern languages. Full use was made of the idea of parametrized
subroutines by Turing and his group at the National Physical Laboratory as they pioneered
the science of computer programming during 1946. A contemporary report {by Huskey)
outlining Turing’s approach to programming said the following:

The fact that repetition of subroutines require[s] large numbers of orders has led to the
abbreviated code methods whereby not only standard orders are used but special words
containing parameters are converted into orders by an interpretation table. The general idea
is that these describe the entries to subroutines, the values of certain parameters in the
subroutine, how many times the subroutine is to be used, and where to go after the
subroutine is finished.9®

Rather than give a formal definition of an m-function we present a series of illustrative
examples.

First, some preliminaries. An alphabet A is some set of symbols, for example {-, 0, 1, 2},
and a word of alphabet A is a finite sequence of non-blank symbols of A. The blank symbol,
represented ‘-’ is used to separate different words on the tape and is part of the alphabet, but
never occurs within words. The following examples all assume that, at the start of operation,
there is a single word w of the alphabet on an otherwise blank tape, with the scanner
positioned over any symbol of w. The symbols of w are written on adjacent squares, using
both E-squares and F-squares, and w is surrounded by blanks (some of the examples require
there to be at least one blank in front of w and at least three following w).

8 H. D. Huskey, untitled typescript, National Physical Laboratory, n.d. but ¢. Mar. 1947 (in the Woodger
Papers, National Museum of Science and Industry, Kensington, London (catalogue reference M12/105); a
digital facsimile is in The Turing Archive for the History of Computing <www.AlanTuring.net/
huskey_1947>).

56 | Jack Copeland

Let M be a Turing machine with alphabet A = {-, 0, 1, 2}. The following instructions result
in M printing the symbol ‘1" at the end of w, replacing the first blank to the right of w:

q:00Rq:, q:11Rq,, q:22Rq;, q:-1Ng;
The first three instructions move the scanner past the symbols ‘0’, ‘1’, and ‘2’, and once the
scanner arrives at the first blank square to the right of w, the fourth instruction prints ‘1’
(leaving M in state g,).
If the symbols 37 4} ..., ‘9 are added to the alphabet, so A = {-,0,1, .., 9}, then the
necessary instructions for printing ‘I at the end of w are lengthier:

QFOOW@T @HMMWQT ey ﬁf@@ﬁ@f @quzmwm

The m-function add(S, «) defined by Table 4 carries out the task of printing one symbol
‘e at the end of any word w of any alphabet (assuming as before that the machine starts
operating with the scanner positioned over one or another symbol of w and that w is
surrounded by blanks).

Table 4 is the skeleton table for the m-function add(S, o). (Skeleton tables are like tables
of instructions but with some parameters to be replaced by concrete values.) Table 4 has
two parameters, ‘o’ and ‘S. The second parameter ‘S’ is to be replaced by the state or
m-function into which the machine is to go once add(S, &) completes its operation, and
the first parameter ‘o is to be replaced by whatever symbol it is that we wish to be printed
at the end of the word.

Both sets of instruction-words shown above can now be replaced by a simple call to the
m-function add(S, o), where § = g, and o = 1.

If instead of adding ‘1’ at the end of a word from alphabet A = {-, 0, 1, ..., 9}, we
wanted to add a pair of symbols 5” and ‘4, then the instruction-words would be:

q100Rq;, q111Rq;, ..., 6i199Rqi, qi-5Rq,, q;-4Ngs

These instruction-words can be replaced by the m-function add(add(qs, 4), 5). This m-
function finds the end of the word and writes ‘5 going into m-function add(qs, 4), which
writes ‘4’ and ends in state gs.

Another example: suppose that ‘5" and ‘4” are to be printed as just described, and then
each occurrence of the symbol 3’ is to be replaced by ‘4. The m-function
add(add(change(qy, 3, 4), 4), 5) carries out the required task, where the m-fanction
change(S, o, B) is defined by Table 5. The m-function change) (S, o, B) is a subroutine
inside the m-function change(S, o, B).

m-functions can employ internal variables. Although internal variables are not strictly
necessary, they simplify an m-function’s description. Internal variables are not parameters
of the m-function—we do not need to replace them with concrete values before the m-
function is used. In the following example, the internal variable ‘8’ refers to whatever symbol
is present on the scanned square when the machine enters the m-function repeat, (S).

Suppose we wish to print a repetition of the first symbol of w at the end of w. This can
be achieved by the m-function repeat(S) defined by Table 5. (The m-function add(S, 3) is
as given by Table 4.)

Every m-function has the form: name(S;, S, e O,
S1, S, ..., Oy denote sym-
bols. Each m-function is a Turing machine with parameters. To convert an m-function’s

oSy, o, o, where

..., 8y refer either to states or to m-functions, and a1, oy,

Computable Numbers: A Guide | 57

Table 4
State Scanned Square Operations Next State
add(S, o) not - R add(S, o)
add(S,) - Pla] $
Table 5
State Scanned Square Operations Next State
change(S, o, B) not - L change(S, o, B)
change(S, o, B) - R change, (S, «, B)
change; (S, o, B) o P[R], R change, (S, o, B)
change, (S, o, B) not « R change, (S, o, B)
change, (S, o, B) - L S
Table 6
State Scanned Square Operations Next State
repeat(S) not - L repeat(S)
repeat(S) - R repeat, (S)
repeat, (S) 3 add(s, 8)

skeleton table to a Turing-machine instruction table, where each row is an instruction-
word of the form ¢;5;5Mqy, it is necessary to know the context in which the m-function
is to be used, namely, the underlying Turing machine’s alphabet and states. It is necessary
to know the alphabet because of the use in skeleton tables of expressions such as ‘does not
contain), ‘not o, ‘neither a nor -} ‘any’, Knowledge of the underlying machine’s states is
necessary to ensure that the m-function begins and ends in the correct state.

The economy effected by m-functions is illustrated by the fact that if the m-functions

are eliminated from Turing’s description of his universal machine, nearly 4,000
instruction-words are required in their place.5?

% A. Sicard, ‘Méquinas de Turing dindmicas: historia y desarrollo de una ide2’ [Dynamic Turing
Machines: Story and Development of an Idea], appendix 3 (Master’s thesis, Universidad EAFTT, 1998);
‘Méquina universal de Turing: algunas indicaciones para su construccién’ [The Universal Turing Machine:
Some Directions for its Construction], Revista Universidad EAFIT, vol. 108 (1998), pp. 61-106.

