
On computable numbers, with an application
to the Entscheidungsproblem

(Proc. Lond . Math . Soc., series 2 vol. 42 (1937) , pp. 2 3 0 - 2 6 5)

- A correction
(ibid. vol. 43 (1937) , p. 5 4 4 - 5 4 6)

PREFACE

1. Preamble

This is the classic paper which first established Turing's reputation and by which
he will longest be remembered. The argument falls into three parts.
A. The notion of a Turing machine is introduced and it is argued that any com-

putation, which can be performed by a human can be imitated by such a
machine.

B. It is shown that there is a universal machine which, when provided with a
standard description of any Turing machine will imitate the action of that
machine.

C. A diagonal argument is used to show that there are questions about the actions
of Turing machines which cannot be answered by any machine. By formaliz-
ing the action of Turing machines in the lower predicate calculus it is shown
that the Entscheidungsproblem is mechanically undecidable.

1.1. History

Turing always enjoyed calculating. At school he had devised a method for com-
puting 7v and had used it to calculate the first 36 decimal places [Hodges p. 35].
While walking, bicycling or washing up he would perform mental calculations
about mathematical or physical phenomena. Whether calculating mentally or
with pencil and paper, Turing was methodical only by fits and starts, and of-
ten made mistakes. [When I came to know him later the phrase 'What's a factor
of two between friends?' had become a catchword.] But he understood very well
what it meant to be totally methodical. Indeed an acceptance- sometimes ready,
sometimes reluctant- of the dichotomy between the clearly perceived ideal and
the confused actuality was fundamental in Turing's thought.

In the Spring of 1935 Turing attended lectures by M.H.A. Newman on math-
ematical logic [Hodges p. 91-93] in which the Entscheidungsproblem (and

I9~

G6del's incompleteness theorem) were discussed. To prove, what by then was
commonly though not universally believed, that there could be no effective or
mechanical method for deciding which formulae of the predicate calculus are
provable, it was necessary to limit the notion of 'effective method' by giving
a precise definition of it. The need for such a definition was what immediately
stimulated Turing to analyse the process of computation. But it is plain from the
paper that he was just as interested in the positive aspects of his analysis as in
the negative results, which it enabled him to prove. In particular, section 10 is
entirely concerned with what numbers and functions are computable. Ostensibly
the purpose of this section is to show that the defined notion of computable has
some of the properties which one would expect any intuitive notion to have; but
Turing is interested in their properties for their own sake.

I remember Turing telling me that the 'main idea for the paper' came to him
when he was lying in the grass in Granchester meadows in the summer of 1935.
I assume that he had by then already conceived of some form of Turing machine,
and that what he meant by 'the main idea' was the realisation that there could be
a universal machine and that this could permit a diagonal argument. Sometime
after this he described the universal machine to his friend David Champernowne.
He did not discuss his work with Newman, but gave him a completed typewritten
draft of the paper in April 1936 [Hodges p. 109]. A little later Newman received
from Alonzo Church an off print of his paper [1936] and a pre-print of [1936a],
the results of which had been presented to the American Mathematical Society
in April 1935. Turing inserted a reference to this in the introduction to his paper,
and sent it to the London Mathematical Society where it was received on 8th
May. On 31st May Newman wrote to Church:

An off print which you kindly sent me recently of your paper in which
you define "calculable numbers" and shew that the Entscheidungsproblem
for Hilbert logic is insoluble, had a rather painful interest for a young man,
A.M. Turing, here, who was just about to send in for publication a paper in
which he had used a definition of "Computable Numbers" for the same pur-
pose.

Church had certainly obtained the result before Turing; but Turing had written
his draft without any knowledge of Church's work. It should be remarked that
there is no evidence that Turing had read any of the scanty and sporadic literature
concerned with the general theory of mechanical computation. In particular, one
can be sure that if Turing had read either account by Babbage of the Analytic
Engine (Chapter VIII of 'Pages from the life of a philosopher' [1864]) or the
account of Menabrae [1842] translated by the Countess of Lovelace [1843] he
would have mentioned Babbage's ideas. He might well have read the article on
Calculating Machines in the 1 lth edition of the Encyclopaedia Britannica. In later
years he often consulted the copy of the Encyclopaedia which he inherited from

~10]]

his fa ther- but that article contains only a short and rather dismissive reference
to the Analytic Engine: 'a much more powerful machine.., intended to perform
any series of possible arithmetical operations'. This would hardly have suggested
to Turing that Babbage had in fact conceived a universal machine.

2. Discussion

For an overall account and estimation of the paper, the reader is referred to New-
man's obituary to Turing reproduced in this volume. My paper 'The confluence
of Ideas in 1936' [Gandy 1988] contains an account of the background history
of ideas; and a discussion of the contributions made by Hilbert and his school,
by Church and his students and by Post. It also includes a discussion of Turing's
work and its significance. In what follows I shall occasionally draw on that article
without indicating the difference between paraphrase and direct quotation.

2.1. Turing's analysis of computation

Turing considers 'computable (real) numbers'; in fact, what he is considering is
total computable functions of a positive integral argument with values 0 and 1.
He starts off his detailed analysis (pp. 249-258) by saying:

The real question at issue is "What are the possible processes which can be
carried out in computing a real number?"

This is significantly different from the question 'What is a computable func-
tion?' which other authors asked. Turing, so to speak, pointed himself in the true
direction.

2.1.1. He then considers the actions of an abstract human being who is mak-
ing a calculation; he pictures him as working on squared paper as in "a child's
arithmetic book". He argues- too brief ly- that nothing will be lost by suppos-
ing that the calculation is carried out on a potentially infinite tape divided into
squares in each of which a single symbol (or none) may be written.

2.1.2. By considering the limitations of our sensory and mental apparatus
Turing arrives at the following restrictions on the actions of a computor. 6

(1) There is a fixed upper bound to the number of distinct symbols which can
be written on a square.
(2) There is a fixed upper bound on the number of contiguous cells whose
contents the computor can take i n - 'at a glance' as one might say - when he
is deciding what to do next.

6 I use 'computor' for a human being, 'computer' for a machine.

Illl

(Turing shows by an example that for a normal human being- the reader- this
bound, for a linear arrangement, is less than 15. On pp. 250-251 Turing con-
siders the possibility that besides looking at the currently observed squares the
computor might also look at some 'immediately recognised' specially marked
squares. But there must be a fixed upper bound on the number of immediately
recognised squares, and s o - without detailed argument- he claims that they
can be, in effect, adjoined to the observed squares.)
(3) At each step the computor may alter the contents of only one square, and
there is a fixed upper bound to the distance the computor can move to reach
this square from the observed squares; so we may suppose that it is one of
them.
(4) There is a fixed upper bound to the distance between the squares observed
at one stage and those observed at the next stage.
(5) There is a fixed upper bound to the number of 'states of mind' of the com-
putor: his 'state of mind', together with the contents of the observed squares,
uniquely determine the action he takes (printing and moving his field of obser-
vation), and his next 'state of mind'. In place of 'state of mind' Turing admits
that the computor might leave an instruction on how to continue (p. 253).

2.1.3. Thus the computor must follow a fixed, finite, totally explicit set of
instructions satisfying the above restrictions. It is then easy to see that his action
can be simulated by a Turing machine- which at each step observes a single
square, can alter only the contents of that square, and moves by at most one
square.

2.1.4. It is worth emphasising that Turing's analysis is quite explicitly con-
cerned with calculations performed by a human being; there is no reference to
machines other than those which he introduces to imitate the actions of a human
computor. In subsequent discussions of Turing's work this fact has sometimes
been obscured by a play on the uses of the word 'mechanical', which has often
since the seventeenth century been applied in a loose figurative sense to human
actions. [The earliest example (1607) given in the Oxford English Dictionary
refers to farriers who mistreat sick horses by rule of thumb]. Of course, it is not
surprising that Turing does not mention machines. Numerical calculation in 1936
was carried out by human beings; they used mechanical aids for performing stan-
dard arithmetical operations, but these aids were not programmable. According to
Randall ([1982], p. 160) the first general purpose programme-controlled machine
to be built and used was Zuse's machine completed in 1941; even this (and other
machines of the same generation) did not fully allow for conditional branching.

Indeed, Turing's analysis does not directly apply to (discretely acting) ma-
chines, since it takes no account of the possibilities of parallel action. If one
considers (as in Newtonian theory) the possibility of instantaneous action at a

[~12]]

distance, then the alteration of the record need not be local nor locally deter-
mined. However, if (as in the theory of relativity) one supposes that there is an
upper bound to the velocity of propagation of physical influences, then one can
establish Turing's thesis for machines as well as for human beings (see Gandy
[1981]).

2.1.5. What makes Turing's analysis so breathtaking is its combination of
generality, directness and simplicity. These are characteristic of his way of think-
ing; but the particular manner in which they come to the fore in this paper is
a result of his having asked himself the question 'What is a computable real
number?' rather than, say, 'What functions are computable?'. The latter question
leads most naturally to a consideration of the various different ways in which cal-
culable functions may be specified; thus Hilbert and his school investigated vari-
ous kinds of recursive definition (see Hilbert [1926] and Ackermann [1928]). Had
Turing started with this line of thought, his machines might have been described
in terms of a high-level language (such as LISP, say) rather than the extremely
simple machine - language which he actually uses. But then the argument that all
conceivable methods of calculation had been covered would have been far less
direct and less cogent.

2.1.6. Turing concentrated on implementation rather than specification, and
found that this made it possible to set an exact limit on what is calculable. He
did, however, use the notion of specification as a supporting argument- for pred-
icates in w and for functions in the first paragraph of w 10. A predicate G is
specified by giving a formula A (of first-order predicate calculus using only rela-
tional symbols) which implicitly defines it together with the requirement that G
be formally reckonable in the predicate calculus; i.e. that the appropriate formula
G(x) or --,G(x) can be inferred from A and the formula which expresses that x
is the n-th natural number. One can say that the specification A of G must be
implemented by formal proofs. But this supporting argument lacks the general-
ity of Turing's direct proof of his thesis. Firstly, recursions involving higher type
objects may be used in specifying calculable functions; see, for example, p. 389
of Hilbert [1926]. Secondly, one might wish to interpret 'formal reckonability' as
allowing proofs in some formal system more powerful than the predicate calcu-
lus; this possibility is considered by Church ([1936], p. 357) at the corresponding
point in his argument.

2.2. Philosophical significance of Turing's analysis

2.2.1. Formal systems. Turing's work makes it possible to give a satisfactory
and definitive characterisation of a formal system (or theory). Namely, a formal

I13~]

system is one whose expressions are built up from a finite list of primitive sym-
bols and for which there is a Turing machine which will test all its theorems (or,
more generally, all its inferences). Turing does not refer to that possibility in this
paper, but the characterisation is of fundamental importance for the philosophy
of mathematics. It allows G6del's proof of incompleteness to be applied to any
formal system, which contains a certain amount of elementary number theory,
and was much emphasised at times by G6del in 1963-1965 (Volume 2 of his
Collected Works [1990]). Hence, it sets limits to what can be rigorously proved
in any formalisation of mathematics. In his paper on ordinal logics, which ap-
pears later in this volume, Turing gives a model for the different roles, which
are played in mathematics by intuition and by formal proofs. This notion allows
one to generalise the notions of formal specification and formal reckonability
described in 2.1.6 above; but one cannot, of course, use the fact that they give
an equivalent definition of computability as a supporting argument for Turing's
thesis - this would result in a vicious circle.

Note: It should be mentioned that in the early 1920's Post had developed a
quite different (but eventually seen to be equivalent) characterisation of formal
system. This was not published until Post [1943]; for an historical account see
Post [1965].

2.2.2. Wittgenstein's paradox. Turing's analysis can be applied quite generally
to characterise the notion of a rule - of calculation, of inference, of procedure, of
construction - and so on. In mathematics, such rules are usually designed so that
they may be applied in a potentially infinite number of distinct situations. This
gives rise to a puzzle or paradox with which Wittgenstein was much concerned.
Namely, suppose one has witnessed someone (perhaps oneself) apply a given rule
in a finite number of cases; how can one be sure that one has applied the given
rule and not some other rule which agrees with it so far? Hence, how can one
ever prove that a particular rule has been correctly applied? The paradox is not
immediately resolved by requiring that the particular rule be clearly stated; for
the statement cannot list what is to be done in all the infinite number of situations
in which the rule may be applied.

Turing's analysis does not solve this paradox, but it does make clearer where
the heart of the problem lies. I will call a finite list of actions which are to be taken
in suitable circumstances a recipe; such, for example, is the set of instructions
which one might give out for travelling from one place to another. A recipe may
well include alternatives. The table of instructions (or programme) for a Turing
machine constitutes a recipe. What Turing showed was that applying a rule in a
given situation can always be reduced to the iterated application of a recipe. Thus
the essential puzzle is: 'How can one prove that someone has followed a recipe
correctly?'; or 'How can one prove that a situation (or even an action) is the

~14~

same on one occasion as it was on another?' Wittgenstein certainly recognised
this form of the puzzle; he discusses, for example, how one can know that a
colour word has been correctly used. His solution draws attention to the fact
that correctness is to be judged by the ability to communicate with others, and
so cannot be applied to the behaviour of a totally isolated individual. But he
sometimes talked as if the puzzle about rules (and proofs) was different from, was
not merely a rhetorical embellishment of, the puzzle about recipes. In particular,
so it seems to me, he did so in the lectures on the foundations of mathematics
(recorded in Wittgenstein [1976]) which he gave in 1939 and at which Turing
was a vocal participant. I find it surprising that Turing seems never to have made
the point which I have just discussed. A full and clear account of Wittgenstein's
paradox and his solution of it will be found in Kripke [1982].

2.3. Turing machines and electronic computers

2.3.1. The influential ideas. The title of Turing's paper and the fact that its first
section is headed 'computing machines' encouraged people concerned with the
design of computers to read it, or at least to look at it; but, the ideas it contains
would have been equally important if Turing, like Post, had avoided the use of the
word 'machine'. I think that these ideas, in order of importance, are as follows:

(i) The elementary steps are extremely simple, and have specifications of a
fixed length.

(ii) The universal machine is a stored-program machine; that is, unlike Bab-
bage's all-purpose machine, the mechanisms used in reading a program are of the
same kind as those used in executing it.

(iii) Conditional instructions are no different from unconditional ones.
(iv) The operation is easily adapted to binary storage and working.

Notes: (1) Turing presumably realised when he wrote the paper that, like Post,
he could have used 'mark' and 'blank' as the only symbols; but that had he done
so his table for the universal machine would have been totally unreadable.

(2) Kleene used binary Turing machines in his book [1952].

It is (i) and (iv) that made it possible for McCulloch and Pitts to show that the
control mechanisms of a Turing machine can be simulated by a finite network
of 'neurons' (gates with delays). The ~,-calculus and the equational calculus both
use 'substitute a given term for a given variable in a given expression' as an
elementary step; this cannot have a total specification of fixed length. On the
other hand, the ~,-calculus is a stored program device, since there is no differ-
ence between a program (a h-term) and the successive stages in its computation.
Although the earlier designs for computers (in particular, the EDVAC) only al-
low rather restricted use of conditional instructions, the use of gates with two or

~15~

more inputs does in fact reflect the conditional nature of the elementary steps of
a Turing machine.

2.3.2. Their effect on U.S. developments. There is some controversy about the
exact extent of the influence of Turing's ideas on the design of electronic com-
puters in the U.S.A. I record a few historical facts:

(1) By the late 1930's von Neumann had become familiar with Turing's ideas
and was enthusiastic about them (Randell [1972], p. 10; Hodges [1983], p. 145;
Davis [1987]). There is no evidence, however, that there was ever a meeting at
which they exchanged ideas about the possibilities of designing 'universal' elec-
tronic computers. They did meet early in 1947, but by that time they had written
their respective reports. In a perceptive footnote ([1983], fn 5.26 on pp. 555-556)
Hodges argues that such a meeting would not, in any case, have been likely to
have been of great importance; each would develop his own ideas.

(2) In 1945 von Neumann wrote his 'First draft of a report on the EDVAC'. In
this he makes considerable use of the idealised neuronal networks of McCulloch
and Pitts [1943]. He does not explicitly refer to Turing [1936-7] in that paper
(although in his Hixon lecture in 1948 [1951] he gives Turing his due). As with
Turing's universal machine, the program is stored in a special part of the memory.
This report circulated widely and was influential. Turing read it in the summer of
1945.

(3) Most of the essential ideas for the design of electronic computers - binary
working, use of logical circuits and stored programs- were developed indepen-
dently by various people, from 1936 onwards; see Randell [1982], chapters VII
and VIII, and Burks [1980]. The most important and influential place for the
construction of electronic computers in the 1940's was the Moore School of En-
gineering; the first working large-scale (18,000 valves) electronic computer was
the ENIAC. The original proposal (in April 1943) was by Mauchly and Eckert.
The machine was finished at the end of 1945. In the meantime, plans were being
made for 'EDVAC-type' machines; von Neumann became a consultant there in
September 1944. Much of the work on ENIAC and EDVAC was classified. It has
become, it seems, impossible to discern a linear flow of ideas; probably there
was no such thing. Much acrimony (see Eckert [1980] and Mauchly [1980]) and
a protracted legal battle developed from the question of who told what to whom.

(4) According to Randell [1980], Turing and Newman and a group of math-
ematicians and engineers at Bletchley Park discussed in 1942-43, out of office
hours, Turing's universal machine, Babbage's plans for the Analytic Engine, and
the possibilities of artificial intelligence. Turing played some part in the design of
the first machines built under Newman' s direction. The final machines ('Colossi')
can claim to be the first medium-sized (2,000-3,000 valves) fairly flexible, pro-

~16~]

grammable electronic computers. (The Mark II Colossus came into service in
June 1944.)

(5) Turing worked at the National Physical Laboratory from 1945 to 1948
designing a computer. His report on the ACE [1945] was submitted in March
1946. Turing was influenced by von Neumann [1945], but he describes, in fair
detail, the design of a quite specific machine, and, ahead of the times, proposed
that many of the operations of the machine should have been effected by writing
subroutines, rather than by building special single-purpose units. In his lecture
[1947] to the London Mathematical Society he traces the connections between
the design of the ACE and his 1936-7 paper.

The ideas of the ACE report are discussed at length by Hodges [1983],
pp. 317-333.

(6) At the same time, in Manchester, Newman was responsible for, and con-
tributed to, the design of what became the Manchester Mark 1 machine (Newman
[1948]). Turing joined him in the autumn of 1948. His chief interest was in using
the machine (and helping others to use it). Although he wrote the 'Programmer's
Handbook' he did not contribute to the design of the machine or of programming
languages for it. Hodges [1983, p. 401] lists some of the things which Turing
could have worked on but didn't.

2.3.3. Summary. Although it may be difficult to trace the precise influence of
this paper on the design and development of high-speed digital computers, its
fundamental importance for the theory of computation is clear. Turing machines
(and modifications of them) still provide the standard setting for the definition of
the complexity of computation in terms of bounds on time and space; together
with the neural nets of McCulloch and Pitts they provided the foundations of the
theory of automata; together with the generated sets of Post [1943] they provided
the foundation for the theory of formal grammars.

~17~

230 A . M . TvmNG [Nov. 12,

ON COMPUTABLE NUMBERS, W I T H AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TuRI~G.

[Received 28 May, 1936.--Read 12 November, 1936.]

The "computab le" numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.
Although the subject of this paper is ostensibly the computable numbers,
it is almost equally easy to define and investigate computable functions
of an integral variable or a real or computable variable, computable
predicates, and so forth. The fundamental problems involved are,
however, the same in each case, and I have chosen the computable numbers
for explicit t reatment as involving the least cumbrous technique. I hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of com-
putable numbers. According to my definition, a number is computable
if its decimal can be written down by a machine.

In w167 9, 10 1 give some arguments with the intention of showing that the
computable numbers include all numbers which could naturally be
regarded as computable. In particular, I show that certain large classes
of numbers are computable. They include, for instance, the real parts of
all algebraic numbers, the real parts of the zeros of the Bessel functions,
the numbers ~r, e, etc. The computable numbers do not, however, include
all definable numbers, and an example is given of a definable number
which is not computable.

Although the class of computable numbers is so great, and in many
ways similar to the class of real numbers, it is nevertheless enumerable.
In w 81 examine certain arguments which would seem to prove the contrary.
By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of G6del t. These results

G6del, "Uber formal unentscheidbaro S~tze der Principia Mathema~ica und ver-
wandter Systeme, I " , MonatshefteMath. Phys., 38 (1931), 173-198.

~18]]

1936.] O:N COMPUTABLE :NUMBERS. 231

have valuable applications. In particular, it is shown (w 11) tha t the
Hilbertian Entseheidungsproblem can have no solution.

In a recent paper Alonzo Church t has introduced an idea of "effective
ealeulability", which is equivalent to my "computabi l i ty ", but is very
differently defined. Church also reaches similar conclusions about the
Entseheidungsproblem~:. The proof of equivalence between "computa-
bi l i ty" and "effective ealeulabili ty" is outlined in an appendix to the
present paper.

1. Computing machines.

We have said tha t the computable numbers are those whose decimals
are calculable by finite means. This requires rather more explicit
definition. No real a t tempt will be made to justify the de~nitions given
until we reach w 9. For the present I shall only say tha t the justification
lies in the fact tha t the human memory is necessarily limited.

We may compare a man in the process of computing a real number to a
machine which is only capable of a finite number of conditions ql, q2, -.., q t,,
which will be called "m-configurations ". The machine is supplied with a
" t a p e " (the analogue of paper) running through it, and divided into
sections (called "squares") each capable of bearing a " symbo l " . At
any moment there is just one square, say the r-th, bearing the symbol ~(r)
which is " in the machine" . We may call this square the "scanned
square ". The symbol on the scanned square may be called the "scanned
symbol" . The "scanned symbol" is the only one of which the machine
is, so to speak, "direct ly aware ". However, by altering its m-conKgu-
ration the machine can effectively remember some of the symbols which
it has " s e e n " (scanned) previously. The possible behaviour of the
machine at any moment is determined by the m-configuration q,~ and the
scanned symbol ~(r). This pair qn, ~(r) will be called the "conf igurat ion" :
thus the configuration determines the possible behaviour of the machine.
In some of the configurations in which the scanned square is blank (i.e.
bears no symbol) the machine writes down a new symbol on the scanned
square: in other configurations it erases the scanned symbol. The
machine may also change the square which is being scanned, but only by
shifting it one place to right or left. In addition to any of these operations
the m-con~guration may be changed. Some of the symbols written down

t Alonzo Church, "An unsolvable problem of elementary number theory ", American
J. of Math., 58 (1936), 345-363.

++ Alonzo Church, "A note on the Entscheidungsproblem" J. of Symbolic Logic, i
(1936), 40-4~.

~19~

232 A . M . TURI~G [Nov. 12,

will form the sequence of figures which is the decimal of the real number
which is being computed. The others are just rough notes to "assist the
memory ". I t will only be these rough notes which will be liable to erasure.

I t is my contention tha t these operations include all those which are used
in the computation of a number. The defence of this contention will be
easier when the theory of the machines is familiar to the reader. In the
next section I therefore proceed with the development of the theory and
assume tha t it is understood what is meant by "mach ine" , " t a p e " ,
"scanned ", etc.

Automatic machines.

2. Definitions.

If at each stage the motion of a machine (in the sense of w 1) is completely
determined by the con~guration, we shall call the machine an "auto-
marie machine" (or a-machine).

For some purposes we might use machines (choice machines or
c-machines) whose motion is only partially determined by the configuration
(hence the use of the word "possible" in w 1). When such a machine
reaches one of these ambiguous configurations, it cannot go on until some
arbi trary choice has been made by an external operator. This would be the
case if we were using machines to deal with axiomatic systems. In this
paper I deal only with automatic machines, and will therefore often omit
the prefix a-.

Computing machines.

I f an a-machine prints two kinds of symbols, of which the first kind
(called figures) consists entirely of 0 and 1 (the others being called symbols of
the second kind), then the machine will be called a computing machine.
I f the machine is supplied with a blank tape and set in motion, starting
from the correct initial m-configuration, the subsequence of the symbols
printed by it which are of the first kind will be called the sequence computed
by the machine. The real number whose expression as a binary decimal is
obtained by prefacing this sequence by a decimal point is called the
number computed by the machine.

At any stage of the motion of the machine, the number of the scanned
square, the complete sequence of all symbols on the tape, and the
m-configuration will be said to describe the complete configuration at tha t
stage. The changes of the machine and tape between successive complete
configurations will be called the moves of the machine.

 20]

1936.] ON C O M P U T A B L E N U M B E R S . 233

Circular and circle-free machines.

I f a computing machine never writes down more than a finite number
of symbols of the first kind, it will be called circular. Otherwise it is said to
be circle-free.

A machine will be circular if it reaches a configuration from which there
is no possible move, or if it goes on moving, a:nd possibly printing symbols
of the second kind, bu t cannot print any more symbols of the first kind.
The significance of the term "circular" will be explained in w 8.

Computable sequences and numbers.

A sequence is said to be computable if it can be computed by a circle-free
machine. A number is computable if it differs by an integer from the
number computed by a circle-free machine.

We shall avoid confusion by speaking more often of computable
sequences than of computable numbers.

3. Examples of computing machines.

I. A machine can be constructed to compute tile sequence 010101
The machine is to have the four m-configurations "~" , "r "~", "c"
and is capable of printing " 0 " and " 1 ". The behaviour of the machine is
described in the following table in which " R " means "the machine moves
so tha t it scans the square immediate ly on the right of the one it was
scanning previously ". Similarly for " L ". " E " means "the scanned
symbol is e rased" and " P " stands for " p r i n t s " . This table (and all
succeeding tables of the same kind) is to be understood to mean tha t for
a cont~guration described in the first two columns the operations in the
third column are carried out successively, and the machine then goes over
into the m-configuration described in the last column. When the second
column is left blank, it is understood tha t the behaviour of the third and
fourth columns applies for any symbol and for no symbol. The machine
s tar ts in the m-configuration b with a blank tape.

Configuration B eha viou r

m-config, symbol operations

b None P0, R

final m-config.
r

c None R c

e None P1, R t~

N a n o . R ~-,

[[211]

234 A . M . TURINO [Nov. 12,

If (contrary to the description in w 1) we allow the letters L, R to appear
more than once in the operations column we can simplify the table
considerably.

m-config, symbol operations final m-cor~fig.

f None P0
0 R ,R , P1

1 R, R, PO

II. As a slightly more difficult example we can construct a machine to
compute the sequence 001011011101111011111 The machine is to
be capable of five m-configurations, viz. "~ ", "q ", "p ", " f ", " 5" and of
printing " a ", " x ", " 0 ", " 1 ". The first three symbols on the tape will
be ', 000 "; the other figures follow on alternate squares. On the inter-
mediate squares we never print anything but "x ". These letters serve to
"keep the place" for us and are erased when we have finished with them.
We also arrange tha t in the sequence of figures on alternate squares there
shall be no blanks.

Configuration Behaviour

m-config, symbol operations final
m-config.

Pa, R, Po, R, PO, R, R, PO, L, L

I 1

o

R, Px, L , L , L

Any (0 or 1) R,R q

None P1, L p

I
x E , R q

o R f

None L, L p

f I Any R, R {
[None PO, L, L o

To illustrate the working of this machine a table is given below of the
first few complete configurations. These complete configurations are
described by writing down the sequence of symbols which are on the tape,

[[22]

1936.] Ox COMPUTABLE NUMBERS. 235

with the m-configuration wri t ten below the scanned symbol.
successive complete configurations are separated by colons.

: o o 0 0 : o o 0 0 : o o 0 0 : o o 0

b o q q

o o 0 0 1 : o o 0 0 1 : o o 0 0

o o 0 0 1 : o o 0 0 1 : o o 0

f f
o o 0 0 l x 0 :

0 " o o 0 0

q

1 " o o 0

0 1 O"

This table could also be wri t ten in the form

0 1"

The

~

b ' o o t , O O ' o o ~ O 0 " . . . , (C)

in which a space has been made on the left of tile scanned symbol and the
m-configuration wri t ten in this space. This form is less easy to follow, but
we shall make use of it later for theoretical purposes.

The convention of writing the figures only on al ternate squares is very
useful" I shall always make use of it. I shall call the one sequence of alter-
nate squares F-squares and the other sequence E-squares. The symbols on
E-squar'es will be liable to erasure. The symbols on F-squares form a
continuous sequence. There are no blanks until the end is reached. There
is no need to have more than one E-square between each pair of F-squares"
an apparen t need of more E-squares can be satistied by having a sufficiently
rich var ie ty of symbols capable of being pr inted on E-squares. I f a
symbol fi is on an F-square S and a symbol a is on the E-square next on the
right of S, then S and fl will be said to be marked with a. The
process of print ing this a will be called marking fi (or S) with a.

4. Abbreviated tables.

There are certain types of process used by nearly all machines, and
these, in some machines, are used in many connections. These processes
include copying down sequences of symbols, comparing sequences, erasing
aH symbols of a given form, etc. Where such processes are concerned we
can abbreviate the tables for the m-configurations considerably by the use
of "ske le ton tables ". In skeleton tables there appear capital German
letters and small Greek letters. These are of the nature of "variables ".
By replacing each capital German let ter throughout by an m-configuration

~23]]

236 A . M . Tun ing [Nov. 12,

and each small Greek letter by a symbol, we obtain the table for an
m-configuration.

The skeleton tables are to be regarded as nothing but abbreviations:
they are not essential. So long as the reader understands how to obtain
the complete tables from the skeleton tables, there is no need to give any
exac t definitions in this connection.

Let us consider an example:

m-config. Symbol Behaviour Final
m-config.

f o L fl(C, ~ a)
f(~,~,~)

I not o L f(C, 2~, a) L
; a C /

fl (g, ~, a) t not a R fl (~, ~, a)
[None R f2 (C, 2~, a)

g I ' a
!

fg(g ,~ ,a) ~no t a R fl(g, ~, a)

L None R

F r o m the m-configuration
f(g, ~, a) the machine finds the
symbol of form a which is far-
thest to the left (the "first a ")
and the m-configuration then
becomes C. If there is no a
then the m-configuration be-
comes 2~.

If we were to replace g throughout by q (say), ~ by r, and a by x, we
should have a complete table for the m-configuration f(q, r, x). f is called
an "m-configuration funct ion" or "m-function ".

The only expressions which are admissible for substitution in an
m-function are the m-configurations and symbols of the machine. These
have to be enumerated more or less explicitly : they may include expressions
such as p(r x); indeed they must if there are any m-functions used at all.
I f we did not insist on this explicit enumeration, but simply stated tha t
the machine had certain m-configurations (enumerated) and all m-configu-
rations obtainable by substitution of m-coniigurations in certain m-func-
tions, we should usually get an infinity of m-configurations ; e.g., we might
say tha t the machine was to have the re,configuration q and all m-configu-
rations obtainable by substituting an m-configuration for g in ~(~). Then

it would have q, p(q), p (p(q)), p (p (p(q))) , ... as m-configurations.

Our interpretat ion rule then is this. We are given the names of the
m-configurations of the machine, mostly expressed in terms of m-functions.
We are also given skeleton tables. All we want is the complete table for
the m-configurations of the machine. This is obtained by repeated
substitution in the skeleton tables.

[~24]]

1936.] Ox COMPUTABLE NUMBERS. 237

Further examples.

(In the explanations the symbol " - > " is used to signify " the machine
goes into the m-configuration ")

e(ff, ~, a) f (r n2, a), ~, a)

r ~, a) E 5..2

From e(C, ~, a) the first a is
erased and ~ E . I f there is no
(Z ---~ ,~.

From e(~, a) all letters a are
erased and --> ~s.

The last example seems somewhat more difficult to interpret than
most. Let us suppose tha t in the list of m-eoniigurations of some machine
there appears e([~, x) (--q, say).

e(~,, x)

or q

Or, in greater detail:

The table is

c(q, b, x).

q e(q, ~,, x)

q(q, ~, x) E q.

In this we could replace el(q, [~, x) by q' and then give the table for f (with
the right substitutions) and eventually reach a table in which no
m-fmmtions appeared.

p) f
f Any R, R pcl(ff-, fi)

Pr P) 1 t. None Pfi C

1((5) L C

~(~) R

f"(~, ~, ~) f (r(~), ~,
/

From ~e (C, fi) the machine
prints fi at the end of the
sequence of symbols and -+ (5.

From f'(C, ~, a) it does the
same as for f((5, ~, a) but
moves to the left before-> ~.

c(E, ~, a). The machine
writes at the end the first sym-
bol marked a and ~ ~.

~25~

238 A . M . TURINO [Nov. 12,

The last line s tands for the to ta l i ty of lines obtainable from it by
replacing fl by any symbol which may occur on the tape of the machine
concerned.

ce(g, ~,,~)

~q(~, ~, ~,/~)E, P3
rr ~,/3)

or(g, ~, a)

c~(~, ~)

cr a). The machine
copies down in order at the
end all symbols marked a
and erases the letters a; --> ~.

re(g, ~, a, fi). The ma-
chine replaces the first a by
fl and -> ff ~ ~ if there is no a.
re(~, a, fi). The machine re-
places all letters a by fi ; -> ~.

c (re(g, ~, a, a), ~, a) cr(~, a) differs from
ce(~, a) only in t ha t the

c~ (c~(~, a), ~e(~, a, a), a) letters a are not erased. The
m-configuration cr(~, a) is
t aken up when no let ters
" a " are on the tape.

c~(E, ~, r ~, 3)

c~ (~, ~, 3) ~,

cp~.(g, 9J, y) not y ~.

The first symbol marked a and the first marked fl are compared. I f
there is nei ther a nor fl, -> ~. I f there are both and the symbols are alike,
-> ft. Otherwise --> ~I.

/

cpe(6., ~, ~, a, fl) differs from cp(E, ~, ~, a, fi) in t ha t in the case when
there is s imilari ty the first a and/3 are erased.

cpe(~, ~, a, fl). The sequence of symbols marked a is compared wi th
the sequence marked ft. -> ~ if they are similar. Otherwise -> ~I. Some
of the symbols a and fl are erased.

1[26]]

1936.] ON COMPUTABLE NUMBERS. 239

q(~)
Any

~one

q~(~) f Any
~ o n e

q(~,~)

!
ql(~, a)

] not a k.

~r ~, ~)

c(c)
0

~ N o t o

r Any

None

R

R

R

L

q(~)

g

~i(~, a)

R r

L c(~)

R , E , R el(~)

q(C, a). The machine
finds the last symbol of
form a. --> ~.

p%(g, a, fi). The machine
prints a fl at the end.

cea(~3, a, fl, ~,). The mach-
ine copies down at the end
first the symbols marked a,
then those marked fl, and
finally those marked y; it
erases the symbols a, [3, y.

From c(g) the marks are
erased from all marked sym-
bols. -+ C.

5. E n u m e r a t i o n o f computab le sequences.

A computable sequence ~, is determined by a description of a machine
which computes ~,. Thus the sequence 001011011101111... is determined
by the table on p. 234, and, in fact, any computable sequence is capable of
being described in terms of such a table.

I t will be useful to put these tables into a kind of s tandard form. In the
first place let us suppose tha t the table is given in the same form as the first
table, for example, I on p. 233. That is to say, tha t the entry in the operations
column is always of one of the forms E : E, R : E, L : P a : P a , R : P a , L : R : L :
or no ent ry at all. The table can always be put into this form by intro-
ducing more m-configurations. Now let us give numbers to the m-configu-
rations, calling them ql, . . . , qR, as in w 1. The initial m-configuration is
always to be called ql. We also give numbers to the symbols S~ , S m

[~27]]

240 A . M . Tu~I.WG [Nov. 12,

and, in particular, b l a n k - - S 0, 0 = $1, 1 -- S 2.
now of form

The lines of the table are

Final
m-config. Symbol Operations m-config.

qi Sj P S k, L q,~ (N1)

qi S t P S k, R q,~ (N2)

qi S~ P S k q~ (Na)

Lines such as

qi Sj E, R qm

are to be wri t ten as

qi S j P S o, R q~

and lines such as

q,: Sj R qm

to be wri t ten as

qi S t PSi , R q,~

In this way we reduce each line of the table to a line of one of the forms
(Nx), (N2), (N3).

F rom each line of form (N1) let us form an expression qi S~ S k L qm ;
from each line of form (N2) we form an expression qi St Sk R qm ;
and from each line of form (Na) we form an expression qi St S k N qm"

Let us write down all expressions so formed from the table for the
machine and separate them by semi-colons. In this way we obtain a
complete description of the machine. In this description we shall replace
qi by the let ter " D " followed by the let ter " A " r epea t ed i times, and S~ by
" D " followed by " C " repeated j times. This new description of the
machine may be called tile standard description (S.D). I t is made up
entirely from the letters " A ", " C ", " D ", " L ", " R ", " N ", and from

,

I f finally we replace " A " by " 1 ", " C " by "2 ", " D " by " 3 ", " L "
by " 4 ", " R " by " 5 ", " N " by " 6 ", and " ,'" by " 7 " we shall have a
description of the machine in the form of an arabic numeral . The integer
represented by this numeral may be called a description number (D.N) of
the machine. The D.N determine the S.D and the s t ructure of the

~28~

1936.] 0N COMPUTABLE N U M B E R S . 24I

machine uniquely, The machine whose D.N is n may be described as
~(n).

To each computable sequence there corresponds at least one description
number, while to no description number does there correspond more than
one computable sequence. The computable sequences and numbers are
therefore enumerable.

Let us find a description number for the machine I of w 3. When we
rename the m-configurations its table becomes:

ql So P S 1, R q2

q2 So P S o, R qa

qa So P S 2, R q4

q~ S O P S o, R ql

Other tables could be obtained by adding irrelevant lines such as

ql $1 P S 1, R q2

Our first s tandard form would be

ql So $1 Rq2 ; q2 So So R qa ; qa So $2 Rq~ ; q4 So So Rql ;.

The standard description is

D A D D C R D A A ; D A A D D R D A A A ;

D A A A D D C C R D A A A A ; D A A A A D D R D A ;

A description number is

31332531173113353111731113322531111731111335317

and so is

3133253117311335311173111332253111173111133531731323253117

A number which is a description number of a circle-free machine will be
called a satisfactory number. In w 8 it is shown that there can be no general
process for determining whether a given number is satisfactory or not.

6. The universal computing machine.

I t is possible to invent a single machine which can be used to compute
any computable sequence. I f this machine % is supplied with a tape on
the beginning of which is writ ten the S.D of some computing machine A/t,

SER. 2. VOL. 4 2 . ~O. 2 1 4 4 . R [~29]]

:242 A . M . TUl~ING [Nov. 12,

then ~t will compute the same sequence as At,. In this section I explain
:in outline the behaviour of the machine. The next section is devoted to
:giving the complete table for ~ .

Let us first suppose tha t we have a machine At' which will write down on
the F-squares the successive complete configurations of A l.. These might
be expressed in the same form as on p. 235, using the second description,
(C), with all symbols on one line. Or, better, we could transform this
description (as in w 5) by replacing each m-contiguration by " D " followed
by " A " repeated the appropriate number of times, and by replacing each
symbol by " D " followed by " C " repeated the appropriate number of
times. The numbers of letters " A " a n d " C" are to agree with the numbers
chosen in w 5, so that, in particular, " 0 " is replaced by " D C ", " 1 " by
"' D C C " , and the blanks by " D ". These substitutions are to be made
after the complete configurations have been put together, as in (C). Diffi-
culties arise if we do the substitution first. In each complete coniigura-
t ion the blanks would all have to be replaced b y " D ", so that the complete
configuration would not be expressed as a finite sequence of symbols.

If in the description of the machine II of w 3 we replace " 0 " by " D A A ",
" ~ " by " D C C C ", " q " by "DAAA ", then the sequence (C) becomes :

D A : D C C C D C C C D A A D C D D C : D C C C D C C C D A A A D C D D C :.. . (C1)

{This is the sequence of symbols on F-squares.)
I t is not difficult to see tha t if At can be constructed, then so can A~'.

The manner of operation of At' could be made to depend on having the rules
of operation (i.e., the S.D) of At written somewhere within itself (i.e. within
AL'); each step could be carried out by referring to these rules. We have
only to regard the rules as being capable of being taken out and ex-
changed for others and we have something very akin to the universal
machine.

One thing is lacking: at present the machine A b' prints no figures. We
may correct this by printing between each successive pair of complete
configurations the figures which appear in the new configuration but not
in the old. Then (C1) becomes

D D A : 0 : 0 : D C C C D C C C D A A D C D D C : D C C C (C2)

I t is not altogether obvious tha t the E-squares leave enough room for
the necessary " rough work ", but this is, in fact, the case.

The sequences of letters between the colons in expressions such as
(C1) may be used as s tandard descriptions of the complete configurations.
When the letters are replaced by figures, as in w 5, we shall have a numerical

I30

1936.] ON COMPUTABLE NUMBERS. 243

description of the complete configuration, which may be called its descrip-
,tion number.

7. Detailed description of the universal machine.

A table is given below of the behaviour of this universal machine. The
~n-coniigurations of which the machine is capable are all those occurring in
the first and last columns of the table, together with all those which occur
when we write out the unabbreviated tables of those which appear in the
table in the form of m-functions. E.g., r appears in the table and is an
m-function. Its unabbreviated table is (see p. 239)

not o L e(anf)

[Any R, E, R e~(anf)

None an~

Consequently el(anf) is an m-configuration of %~.
When % is ready to start work the tape running through it bears on it

the symbol o on an F-square and again o on the next E-square ; after this,
on F-squares only, comes the S.D of the machine followed by a double
colon " (a single symbol, on an F-square). The S.D consists of a
:number of instructions, separated by semi-colons.

Each instruction consists of five consecutive parts

(i) " D " followed by a sequence of letters " A ". This describes the
relevant m-configuration.

(ii) " D " followed by a sequence of letters " C ". This describes the
.scanned symbol.

(iii) " D " followed by another sequence of letters " C " . This
describes the symbol into which the scanned symbol is to be changed.

(iv) " L ", " R ", or " N ", describing whether the machine is to move
to left, right, or not at all.

(v) " D " followed by a sequence of letters " A ". This describes the
final m-configuration.

The machine ~ is to be capable of printing " A " " C " " D " " 0 "
~ ~r ~ S " " w" " x " " y ", . . " 1 " u " , " v " , , , z The D is formed from " , " ,

" A " " C " " D " " L " " R " " N "

P.2 ~31]]

:44 A. M. TURING [Nov. 12,

Subsidiary skeleton table.

f Not A R, R c0n(~, a)

A L, Pa, R c0nl(~, a)

f A

L D

R, Pa, R c0nl(~, a)

R, Pa, R cong,(C, a)

c0n(E, a). Starting from
an F-square, S say, the se-
quence C of symbols describ-
ing a configuration closest on
the right of S is marked out
with letters a. -> C.

r C
.'on~,(g, a)

[Not C

The table for %.

R, Pa, R con~((S, a)

R , R

c0n(~,). In the final con-
figuration the machine is
scanning the square which is
four squares to the right of the
last square of C. C is left
unmarked.

f(~, ~, ::)
~1 R , R , P ' , R , R , PD, R,R, PA anf

~. The machine prints
:DA on the F-squares after
: : -->- d i l l .

anfl con(~om, y)

artf. The machine marks
the configuration in the last
complete configuration wi th
y. --> tom.

~om
f ; R, Pz, L r x)

z L, L t~om

not z nor ; L t~om

F0m. The machine finds
the last semi-colon not
marked with z. I t marks
this semi-colon with z and
the configuration following
it with x.

t~mp ~mp. The machine com-
pares the sequences marked
x and y. I t erases all letters
x and y. --> tim if they are
alike. Otherwise --> F0m.

anf. Taking the long view, the last instruction relevant to the last
configuration is found. I t can be recognised afterwards as the instruction
following the last semi-colon marked z. ->tim.

1.936.] ON COMPUTABLE NUMBERS. 245

~{ml

ira2 ~ A
not A

ira3 I
not A

[A

mt~

m,1 t
L

m~2 f

not A

A

C

D

:mt~ 4

mt~ 5

~2

'~3

~5

Any

~ol le

D

not D

C

not C

C

not C

C

not C

f' (~im~, ~im~, z)

con (~imz,)

~im3

R, Pu, R, R, R ~ im2

L, Py e(m~, z)
L, Py, R, R, R ~im3

~(m~, :)

R, R m~l

L, L, L, L m~2

R, Px, L, L, L mL.

ml~ 4

R, Px, L, L, L mr3

R, Pv, L, L, L m~3

m~4

R, Pw, R m~ 5

P. ~

L, L, L

R, It, R, R

R, R

R, R

f (~ , in,t, u)

in~t

in~t

~e2(in~t, 0, :)

in~t

~e,(in~t, 1, ")

ira. The machine marks out
the instructions. That part of
the instructions which refers to
operations to be carried out is
marked with u, and the final m-
configuration with y. The let-
ters z are erased.

m~. The last complete con-
figuration is marked out into
four sections. The conffgura-
ration is left unmarked. The
symbol directly preceding it is
marked wi th x. The remainder
of the complete configuration
is divided into two parts, of
which the first is marked with
v and the last with w. A colon is
printed after the whole. -> t~.

t~. The instructions (marked
u) are examined. If it is found
that they involve "Print 0" or
"P r in t 1", then 0" or 1" is
printed at the end.

[33]]

246

in~t

inch

inch(L)

inst.(R)

in~tl(N)

A. M. TURn~G [Nov, 12,

R, E inCh(a)

c%(0~, v, y, x, u, w)

c%(0~, v, x, u, y, w)

ecs(0~, v, x, y, u, w)

inst. The next complete
configuration is written down,
carrying out the marked instruc-
tions. The letters u, v, w, x, y
are erased. -> anf.

c(.nf)

8. Application of the diagonal process.

I t may be thought that arguments which prove that the real numbers
are not enumerable would also prove that the computable numbers and
sequences cannot be enumerable*. I t might, for instance, be thought
that the limit of a sequence of computable numbers must be computable.
This is clearly only true if the sequence of computable numbers is defmed
by some rule.

Or we might apply the diagonal process. " I f the computable sequences
are enumerable, let % be the n-th computable sequence, and let r be:
the m-th figure in %. Let fl be the sequence with 1--r) as its n-th
figure. Since fl is computable, there exists a number K such that
1--r = CK(n) all n. Putting n = K, we have 1 = 2r i.e. 1 is
even. This is impossible. The computable sequences are therefore not,
enumerable ".

The fallacy in this argument lies in the assumption that fl is computable.
I t would be true if we could enumerate the computable sequencesby finite
means, but the problem of enumerating Computable sequences is equivalent
to the problem of finding out whether a given number is the D.N of a
circle-free machine, and we have no general process for doing this in a finite
number of steps. In fact, by applying the diagonal process argument
correctly, we can show that there cannot be any such general process.

The simplest and most direct proof of this is by showing that, if this
general process exists, then there is a machine which computes ft. This
proof, although perfectly sound, has the disadvantage that it may leave
the reader with a feeling that "there must be something wrong". The
proof which I shall give has not this disadvantage, and gives a certain
insight into the significance of the idea "circle-free ". I t depends not on
constructing fl, but on constructing fl', whose n-th figure is r (n).

~34]]

* Cf. Hobson, Theory of functions of a real variable (2nd ed., 1921), 87, 88.

1936.] Orr COMPUTABLE NUMBERS. 247

Let us suppose tha t there is such a process; that is to say, that we can
invent a machine ~ which, when supplied with the S.D. of any computing
machine A/, will test this S.D and if AL is circular will mark the S.D with the
symbol " u " and if it is circle:free will mark it with "s ". By combining
the machines ~ and %4 we could construct a machine J.i. to compute the:
sequence fl'. The machine qS- may require a tape. We may suppose that
it uses the E-squares beyond all symbols on F-squares, and that when it
has reached its verdict all the rough work done by q~ is erased.

The machine ~L has its motion divided into sections. In the first N- -1
sections, among other things, the integers 1, 2, ..., N- -1 have been written
down and tested by the machine ~ . A certain number, say R(N--1), of
them have been found to be the D.N's of circle-free machines. In the N-th
section the machine q~ tests the number N. If N is satisfactory, i.e., if it
is the D.N of a circle-free machine, then R(N)-- I~ -R(N- - 1) and the first
R(N) figures of the sequence of which a D.N is N are calculated. The
R (N)-th figure of this sequence is written down as one of the figures of the
sequence fi' computed by J:~. If N is not satisfactory, then R(N) = R(N-- 1)
and the machine goes on to the (Nq-1)-th section of its motion.

From the construction of ~ we can see that 3 l.. is circle-free. Each
section of the motion of ~ comes to an end after a finite number of steps.
For, by our assumption about ~ , the decision as to whether N is satisfactory
is reached in a finite number of steps. If N is not satisfactory, then the
N- th section is finished. I f N is satisfactory, this means that the machine
~L(N) whose D.N is N is circle-free, and therefore its R(N)-th figure can be
calculated in a finite number of steps. When this figure has been calculated
and written down as the R(N)-th figure of fi', the N-th section is finished.
Hence ~:~ is circle-free.

Now let K be the D.N of ~ . What does :!~ do in the K-th section of
its motion ? I t must test whether K is satisfactory, giving a verdict "s"
or " u ". Since K is the D.N of ~ and since j-l. is circle-free, the verdict
cannot be " u ". On the other hand the verdict cannot be "s ". For if it
were, then in the K-th section of its motion J l. would be bound to compute
the first R (K - - 1) + I - R(K) figures of the sequence computed by the
machine with K as its D.N and to write down the R(K)-th as a figure of the
sequence computed by Ji. The computation of the first R(K)--1 figures
would be carried out all right, but the instructions for calculating the
R(K)-th would amount to "calculate the first R(K) figures computed by
H and write down the R(K) - th" . This R(K)-th figure would never be
found. I.e., ~ is circular, contrary both to what we have found in the last
paragraph and to the verdict " s ". Thus both verdicts are impossible
and we conclude tha t there can be no machine ~ .

 3511

248 A.M. TuRI~G [Nov. 12,

We can show fur ther t h a t there can be no machine ~ which, when
supplied with the S.D of an arbitrary machine At, will determine whether .:[~
ever prints a given symbol (0 say).

We will first show tha t , if there is a machine 8, then there is a general
process for determining whether a given machine ./[~ prints 0 infinitely
often. Let All be a machine which prints the same sequence as t k, except
t h a t in the posit ion where the first 0 pr inted by At, s tands, At I pr ints 0.
At~ 2 is to have the first two symbols 0 replaced by 0, and so on. Thus, i f , [[.
were to pr in t

A B A O 1 A A B O O I O A B . . . ,

t h e n .t/1 would pr in t

A B A O 1 A A B O O I O A B . . .

.and ~tt 2 would pr in t
m

A B A O 1 A A B O O I O A B

Now let 9~ be a machine which, when supplied wi th the S.D of t[, will
wr i t e down successively the S.D of At, of At i, of At 2, ... (there is such a
:machine). We combine ~ with ~ and obtain a new machine, .q. In the
mot ion of .q first ~ is used to write down the S.D of At, and then ~ tests
it, : 0 : is wr i t ten if it is found tha t A ~, never prints 0 ; then g writes the S.D
of A~ ~, and this is tested, :0 : being pr in ted if and only if +tt 1 never pr ints 0,
and so on. Now let us test .~ wi th ~. I f it is found tha t .~J never pr ints 0,
then At~ prints 0 infinitely of ten; if ;~ prints 0 sometimes, then At, does no t
p r i n t 0 infinitely often.

Similarly there is a general process for determining whether At pr ints 1
:infinitely often. By a combinat ion of these processes we have a process
for determining whether At , pr ints an infinity of figures, i.e. we have a process
:for determining whether ~[t, is circle-free. There can therefore be no
machine .8.

The expression " t he r e is a generM process for determining ... " has
been used th roughou t this section as equivalent to " t h e r e is a machine
which will determine ... ". This usage can be justified if and only if we
can just i fy our definition of " compu tab l e ". For each of these "genera l
p rocess" problems can be expressed as a problem concerning a general
process for determining whether a given integer n has a p roper ty G(n) [e.g.
G(n) might mean " n is sa t i s fac to ry" or " n is the Godel representa t ion of
a provable formula "], and this is equiva len t to comput ing a number
whose n- th figure is 1 if G (n) is t rue and 0 if it is false.
~36~]

1936.] ON COMPUTABLE NUMBERS. 249

9. The extent of the computable numbers.

No a t tempt has yet been made to show tha t the "computab le" numbers
include all numbers which would naturally be regarded as computable. All
arguments which can be given are bound to be, fundamentally, appeals
to intuition, and for this reason rather unsatisfactory mathematically.
The real question at issue is "What are the possible processes which can be
carried out in computing a number ? "

The arguments which I shall use are of three kinds.

(a) A direct appeal to intuition.

(b) A proof of the equivalence of two definitions (in case the new
definition has a greater intuitive appeal).

(c) Giving examples of large classes of numbers which are
computable.

Once it is granted tha t computable numbers are all "computable ",
several other propositions of the same character follow. In particular, it
follows that, if there is a general process for determining whether a formula
of the Hilbert function calculus is provable, then the determination can be
carried out by a machine.

I. [Type (a)]. This argument is only an elaboration of the ideas of w 1.

Computing is normally done by writing certain symbols on paper. We
m a y suppose this paper is divided into squares like a child's arithmetic book.
In elementary arithmetic the two-dimensional character of the paper is
sometimes used. But such a use is always avoidable, and I think tha t it
will be agreed tha t the two-dimensional character of paper is no essential
of computation. I assume then that the computation is carried out on
one-dimensional paper, i.e. on a tape divided into squares. I shall also
suppose tha t the number of symbols which may be printed is finite. I f we
were to allow an infinity of symbols, then there would be symbols differing
to an arbitrarily small extent t. The effect of this restriction of the number
of symbols is not very serious. I t is always possible to use sequences of
symbols in the place of single symbols. Thus an Arabic numeral such as

t I f we regard a symbol as l i teral ly p r in ted on a square we m a y suppose t ha t the squar~
is 0 < x < 1, 0 < y ~< 1. The symbol is defined as a set of points in this square, viz. the
set occupied by p r in te r ' s ink. I f these sets are res t r ic ted to be measurable , we can define
the " d i s t a n c e " be tween two symbols as the cost of t ransforming one symbol into the
o ther if the cost of moving uni t area of p r in te r ' s ink uni t distance is uni ty , and there is an
,infinite supply of ink a t x - - 2, y -- 0. W i t h this topology the symbols form a condit ion-
al ly compac t space.

1137]]

250 A. IV[. TuRI~G [Nov. 12,

17 or 999999999999999 is normally treated as a single symbol. Similarly
in any European language words are treated as single symbols (Chinese,
however, a t tempts t o have an enumerable infinity of symbols). The
differences from our point of view between the single and compound symbols
is tha t the compound symbols, if they are too lengthy, cannot be observed
at one glance. This is in accordance with experience. We cannot tell a t
a glance whether 9999999999999999 and 999999999999999 are the same.

The behaviour of the computer at any moment is determined by the:
symbols which he is observing, and his " state of mind" at tha t moment.
We may suppose tha t there is a bound B to the number of symbols or
squares which the computer can observe at one moment. If he wishes to
observe more, he must use successive observations. We will also suppose
tha t the number of states of mind which need be taken into account is finite.
The reasons for this are of the same character as those which restrict the
number of symbols. I f we admit ted an infinity of states of mind, some of
them will be" arbitrarily close" and will be confused. Again, the restriction
is not one which seriously affects computation, since the use of more compli-
cated states of mind can be avoided by writing more symbols on the tape.

Let us imagine the operations performed by the computer to be split up
into "simple operat ions" which are so elementary that it is not easy to
imagine them further divided. Every such operation consists of some change
of the physical system consisting of the computer and his tape. We know
the state of the system if we know the sequence of symbols on the tape,
which of these are observed by the computer (possibly with a special
order), and the state of mind of the computer. We may suppose that in a
simple operation not more than one symbol is altered. Any other changes
can be split up into simple changes of this kind. The situation in regard to
the squares whose symbols may be altered in this way is the same as in
regard to the observed squares. We may, therefore, without loss o f
generality, assume tha t the squares whose symbols are changed are always
"obse rved" squares.

Besides these changes of symbols, the simple operations must include
changes of distribution of observed squares. The new observed squares
must be immediately recognisable by the computer. I think it is reasonable
to suppose that they can only be squares whose distance from the closest
of the immediately previously observed squares does not exceed a certain
fixed amount. Let us say that each of the new observed squares is within
L squares of an immediately previously observed square.

In connection with " immediate recognisability", it may be though t
that there are other kinds of square which are immediately recognisable.
In particular, squares marked by special symbols might be taken as imme-
 38n

1936.] ON COMPUTABLE NUMBERS. 251

diately reeognisable. Now if these squares are marked only by single
symbols there can be only a finite number of them, and we should not upset
our theory by adjoining these marked squares to the observed squares. If,
on the other hand, they are marked by a sequence of symbols, we
cannot regard the process of recognition as a simple process. This is a
fundamental point and should be illustrated. In most mathematical
papers the equations and theorems are numbered. Normally the numbers
do not go beyond (say) 1000. I t is, therefore, possible to recognise a
theorem at a glance by its number. But if the paper was very long, we
might reach Theorem 157767733443477 ; then, further on in the paper, we
might find " ... hence (applying Theorem 157767733443477) we have ... ".
In order to make sure which was the relevant theorem we should have to
compare the two numbers figure by figure, possibly ticking the figures off
in pencil to make sure of their not being counted twice. If in spite of this
it is still thought that there are other "immediately recognisable" squares,
it does not upset my contention so long as these squares can be found by
some process of which my type of machine is capable. This idea is
developed in I I I below.

The simple operations must therefore include:

(a) Changes of the symbol on one of the observed squares.

(b) Changes of one of the squares observed to another square
within L squares of one of the previously observed squares.

I t may be that some of these changes necessarily involve a change of
state of mind. The most general single operation must therefore be taken
to be one of the following:

(A) A possible change (a) of symbol together with a possible
change of state of mind.

(B) A possible change (b) of observed squares, together with a
possible change of state of mind.

The operation actually performed is determined, as has been suggested
on p. 250, by the state of mind of the computer and the observed symbols.
In particular, they determine the state of mind of the computer after the
operation is carried out.

We may now construct a machine to do the work of this computer. To
each state of mind of the computer corresponds an "m-configuration" of
the machine. The machine scans B squares corresponding to the B squares
observed by the computer. In any move the machine can change a symbol
on a scanned square or can change any one of the scanned squares to another
square distant not more than L squares from one of the other scanned

~39~

252 A . M . TU~ING [Nov. 12.

squares. The move which is done, and the succeeding configuration, are
determined by the scanned symbol and the m-configuration. The
machines just described do not differ very essentially from computing
machines as defined in w 2, and corresponding to any machine of this type
a computing machine can be constructed to compute the same sequence,
t h a t is to say the sequence computed by the computer.

II . [Type (b)].

I f the notation of the Hilbert functional calculus t is modified so as to
be systematic, and so as to involve only a finite number of symbols, it
becomes possible to construct an automatic ~: machine Jr which will find
all the provable formulae of the calculusw

Now let a be a sequence, and let us denote by Q(x) the proposition
" T h e x-th figure of a is 1 ", so that f,! --G,(x) means "The x-th figure of a
is 0 ". Suppose further tha t we can find a set of properties which define
the sequence a and which can be expressed in terms of G,(x) and of the
propositional functions N(x) meaning "x is a non-negative integer" and
F(x, y) meaning " y - - x q - 1 ". When we join all these formulae together
conjunctively, we shall have a formula, 9~ say, which defines a. The terms
of 9~ must include the necessary parts of the Peano axioms, viz.,

which we will abbreviate to P.
When we say "!~ defines a" , we mean tha t --gJ is not a provable

formula, and also that, for each n, one of the following formulae (An) or
(Bn) is provable.

& F(~)-->G~(u(n)), (h~)�82

a ~(n)__> (- a a (u (n))) , (B n) '

where F (~) stands for F (u, u') & F (u', u") & ... F (u (n-l), u(n)).

t The express ion " t h e funct ional c a l cu l u s " is used t h r o u g h o u t to m e a n the restricted
Hi lbe r t func t iona l calculus.

I t is mos t n a t u r a l to cons t ruc t first a choice mach ine (w 2) to do this. B u t it is
t h e n easy to cons t ruc t the requi red au t oma t i c machine . We can suppose t h a t the choices
a re a lways choices be tween two possibili t ies 0 and 1. E a c h p roof will t hen be de t e rmined
by a sequence of choices il, i9 in (ix = 0 or 1, i9 -- 0 or 1 in -- 0 or 1), and hence
the n u m b e r 2" ~- i x 2 ~-1-~ i~ 2"-'-'-~... ~- i~ comple te ly de te rmines the proof. The a u t o m a t i c
m a c h i n e carries out successively p roof 1, p roof 2, p roof 3

w The a u t h o r has found a descr ip t ion of such a machine .
II The negat ion sign is wr i t t en before an expression and no t over it.
�82 A sequence of r p r imes is deno ted by (").

[[40]]

1936.] ON COMPUTABLE NUMBERS. 253

I say tha t a is then a computable sequence" a machine Jr to compute
a can be obtained by a fairly simple modification of ~r

We divide the motion of Jr into sections. The n-th section is devoted
to finding the n-th figure of a. After the (n-- 1)-th section is finished a double
colon :: is printed after all the symbols, and the succeeding work is done
wholly on the squares to the right of this double colon. The first step is to
write the letter " A " followed by the formula (An) and then " B " followed
by (Bn). The machine ~r then starts to do the work of ~, but whenever
a provable formula is found, this formula is compared with (A~) and with
(Bn). I f it is the same formula as (A~), then the figure " 1 " is printed, and
the n-th section is finished. If it is (Bn), t h e n " 0" is printed and the section
is finished. I f it is different from both, then the work of 3r is continued
from the point at which it had been abandoned. Sooner or later one of
the formulae (An) or (Bn) is reached; this follows from our hypotheses
about a and ~t, and the known nature of Jr Hence the n-th section will
eventually be finished. Jr is circle-free; a is computable.

I t can also be shown that the numbers a definable in this way by the use
of axioms include all the computable numbers. This is done by describing
computing machines in terms of the function calculus.

I t must be remembered tha t we have at tached rather a special meaning
to the phrase "r defines a ". The computable numbers do not include all
(in the ordinary sense) definable numbers. Let 8 be a sequence whose
n-th figure is 1 or 0 according as n is or is not satisfactory. I t is an imme-
diate consequence of the theorem of w 8 that ~ is not computable. I t is (so
far as we know at present) possible that any assigned number of figures of $
can be calculated, but not by a uniform process. When sufficiently many
figures of 8 have been calculated, an essentially new method is necessary in
order to obtain more figures.

I I I . This may be regarded as a modification of I or as a corollary of II .

We suppose, as in I, tha t the computation is carried out on a tape ; but we
avoid introducing the " s t a te of mind" by considering a more physical
and definite counterpart of it. I t is always possible for the computer to
break off from his work, to go away and forget all about it, and later to come:
back and go on with it. I f he does this he must leave a note of instructions
(written in some standard form) explaining how the work is to be con-
tinued. This note is the counterpart of the "s ta te of mind" . We will
suppose tha t the computer works in such a desultory manner that he never
does more than one step at a sitting. The note of instructions must enable
him tocar ry out one step and write the next note, Thus the state of progress
of the computation at any stage is completely determined by the note o f

~41~

254 A . M . TURI~G [Nov. 12,

instructions and the symbols on the tape. That is, the state of the system
may be described by a single expression (sequence of symbols), consisting
of the symbols on the tape followed by A (which we suppose not to appear
elsewhere) and then by the note of instructions. This expression may be
called the "s ta te formula ". We know that the state formula at any
:given stage is determined by the state formula before the last step was
made, and we assume that the relation of these two formulae is expressible
~n the functional calculus. In other words, we assume tha t there is an
axiom !~ which expresses the rules governing the behaviour of the
computer, in terms of the relation of the state formula at any stage to the
s ta te formula at the preceding stage. I f this is so, we can construct a
machine to write down the successive state formulae, and hence to
compute the required number.

10. Examples of large classes of numbers which are computable.

I t will be useful to begin with definitions of a computable function of
a n integral variable and of a computable variable, etc. There are many
.equivalent ways of defining a computable function of an integral
variable. The simplest is, possibly, as follows. If ~, is a computable
sequence in which 0 appears infinitely t often, and n is an integer, then let
us define ~(~, n) to be the number of figures 1 between the n-th and the
(n + 1)-th figure 0 in ~,. Then r is computable if, for all n and some ~,,
r n). An equivalent definition is this. Let H(x, y) mean
r y. Then, if we can find a contradiction-free axiom !~, such tha t
~+-> P, and if for each integer n there exists an integer N, such that

~ & F(~'}-+H(u {n}, u(~,{~})),

and such that, if m =fi r then, for some N',

t h e n r may be said to be a computable function.
We cannot define general computable functions of a real variable, since

there is no general method of describing a real number, but we can define
a computable function of a computable variable. I f n is satisfactory,
l e t ~,n be the number computed by ~t.(n), and let

I f J~ computes ~/, then the problem whether J~ prints 0 infinitely often is of the

-~ame character as the prob lem whether ~'t~t is circle-free.

[~42H

1936.] ON COMPUTABLE N U M B E R S . 255

unless ~'n--O or y ~ - - 1 , in either of which cases a n - - O . Then, as n
:runs through the satisfactory numbers, a n runs through the computable
numbers~. Now let r be a computable function which can be
shown to be such tha t for any satisfactory argument its value is satis-
factory,:. Then the function f, defined by f(a~)----a~(,~), is a computable
function and all computable functions of a computable variable are
expressible in this form.

Similar dei~nitions may be given of computable functions of several
variables, computable-valued functions of an integral variable, etc.

I shall enunciate a number of theorems about computability, but I
shall prove only (ii) and a theorem similar to (iii).

(i) A computable function of a computable function of an integral or
computable variable is computable.

(ii) Any function of an integral variable defined recursively in terms
of computable functions is computable. I.e. if r n) is computable, and
r is some integer, then v(n) is computable, where

v(o) = r ,

(iii) If r (m, n) is a computable function of two integral variables, then
r n) is a computable function of n.

(iv) If r is a computable function whose value is always 0 or 1, then
the sequence whose n-th figure is r is computable.

Dedekind's theorem does not hold in the ordinary form if we replace
" r e a l " throughout by " c o m p u t a b l e ". But it holds in the following form:

(v) If G(a) is a propositional function of the computable numbers and

and there is a general process for determining the t ru th value of G (a), then

t A func t ion an m a y be defined in m a n y o ther ways so as to run t h rough the
compu tab l e numbers .

++ Al though it is no t possible to find a general process for de te rmining whe the r a given
n u m b e r is sa t i s fac tory , it is of ten possible to show t h a t cer ta in classes of number s are
sa t i s fac tory .

[~43]]

256 A . M . TURING [Nov. 12,

there is a computable number $ such tha t

In other words, the theorem holds for any section of the computables
such tha t there is a general process for determining to which class a giver~
number belongs.

Owing to this restriction of Dedekind's theorem, we cannot say tha t a
computable bounded increasing sequence of computable numbers has a
computable limit. This may possibly be understood by considering a
sequence such as

- - 1 , - - � 8 9 --]; _ _ ! - - J _ !
~ 8~ 1 6 ~ 2 ~

On the other hand, (v) enables us to prove

(vi) If a and [3 are computable and a </3 and r < 0 < ~(fl), where
r is a computable increasing continuous function, then there is a unique
computable number 7, satisfying a < 7 </3 and r -- O.

Computable convergence.

We shall say tha t a sequence fl~ of computable numbers converges:
computably if there is a computable integral valued function hr(e) of the
computable variable e, such that we can show that , if e > 0 and n > N(e).
and m > N(e), then [fl~--flml < e.

We can then show tha t

(vii) A power series whose coefficients form a computable sequence of
computable numbers is computably convergent at all computable points
in the interior of its interval of convergence.

(viii) The limit of a computably convergent sequence is computable.

And with the obvious definition of" uniformly computably convergent"-

(ix) The limit of a uniformly computably convergent computable
sequence of computable functions is a computable function. Hence

(x) The sum of a power series whose coefficients form a computable
sequence is a computable function in the interior of its interval of
convergence.

From (viii) and ~ = 4(1--~+~--. . .)~ x we deduce tha t ~ is computable.
1 1 From e - 1-{-1 + ~.t + ~.t + "'" we deduce that e is computable.

I44]

1936.] O~r COMPUTABLE NUMBERS. 257

From (vi) we deduce that all real algebraic numbers are computable.
From (vi) and (x) we deduce that the real zeros of the Bessel functions

are computable.

Proof of (ii).

Let H(x, y) mean "~(x) = y" , and let K(x, y, z) mean "r y) = z " .
9~ is the axiom for ~(#, y). We take 9~ to be

I shall not give the proof of consistency of ~i,. Such a proof may be
constructed by the methods used in Hilbert and Bernays, Grundlagen der
Mathematik (Berlin, 1934), p. 209 et seq. The consistency is also clear
from the meaning.

Suppose that, for some n, N, we have shown

9~, & F(~)-+ H(u('~-1). u(,(n-1))).

then, for some M,

9j4, & F(M)___>K(u(n), u(,(n-1)), ~(~(n))),

9~ & F(M) --> E (~(n-1), u(n)) & H (~z (n-~), u(,(n-~)))

& K(u (n), u(n(n-1)), U(n(n))),

and

9~ & F(M)--> [F(~z (n-l), U (n)) & H('u (n-l), U(~(n-1)))

:~ K(u (n), u(n(n-1)), u(,7(n)))-->H(u(n) ' qZ(n(n)))].

Hence ~,, & F (M) --')" H (U (n), U(n(n))).

Also ~,, & F(")--->H(u, u('(~

Hence for each n some formula of the form

~,, & F (M) ---> H (u (n), u("(n)))

is provable. Also, if M'>~ M and M' ~>m and m C r](u), then

~'~1 & "F(M') -'~ G("tl/l((n))' "ll'(m)) y G(u(m)' U(~(n)))

s mZR. 2. VOL. 42. ~O. 2145. ~45]]

258 A. M~. TURING [Nov. 12,

and

~[, & F(M')-'> [(G(u (n(n)), u (m)) v G(u (m), u("(n))

Hence ~, & F(M',--> (H(u(n), u(m')).

The conditions of our second definition of a computable function are
therefore satisfied. Consequently V is a computable function.

Proof of a modified form of (iii).

Suppose tha t we are given a machine %, which, starting with a tape
bearing on it oo followed by a sequence of any number of letters " F " on
F-squares and in the m-configuration b, will compute a sequence Yn
depending on the number n of letters " F ". I f tn (m) is the m-th figure of
y~, then the sequence fl whose n-th figure is tn (n) is computable.

We suppose that the table for % has been written out in such a way
tha t in each line only one operation appears in the operations column. We
also suppose that .~., | 0, and 1 do not occur in the table, and we replace

m . _

throughout by | 0 by 0, and 1 by 1.
made. Any line of form

a P5

we replace by

2 a P0

and any line of the form

!~ a P1

by ~ a P1

and we add to the table the following lines"
u

u 1 R, Pk, R, PO, R, PO

tl 2
tl a

Further substitutions are then

!3

u, h, k)

13

re(, h, k)

H 2

re(u3, u3, k, h)
pc F)

and similar lines with v for u and 1 for 0 together with the following line

c R, PE, R, Ph b.

We then have the table for the machine q%' which computes ft. The
initial m-configuration is c, and the initial scanned symbol is the second o.

1936.] ON COMPUTABLE NUMBERS. 259

11. Application to the Entscheidungsproblem.

The results of w 8 have some important applications. In particular, they
can be used to show that the Hilbert Entscheidungsproblem can have no
solution. For the present I shall confine myself to proving this particular
theorem. For the formulation of this problem I must refer the reader to
Hilbert and Ackermann's Grundzizge der Theoretischen Logik (Berlin,
1 93 1), chapter 3.

I propose, therefore, to show that there can be no general process for
determining whether a given formula 9~ of the functional calculus K is
provable, i.e. tha t there can be no machine which, supplied with any one
9~ of these formulae, will eventually say whether 93 is provable.

I t should perhaps be remarked that what I shall prove is quite different
from the well-known results of G~delt. G~del has shown that (in the forma-
lism of Principia Mathematica) there are propositions 9~ such that neither
9~ nor --9~ is provable. As a consequence of this, it is shown that no proof
of consistency of Principia Mathematica (or of K) can be given within that
formalism. On the other hand, I shall show that there is no general method
which tells whether a given formula 9~ is provable in K, or, what comes to
the same, whether the system consisting of K with --93 adjoined as an
extra axiom is consistent.

If the negation of what G6del has shown had been proved, i.e. if, for each
9~, either 93 or --9~ is provable, then we should have an immediate solution
of the Entscheidungsproblem. For we can invent a machine 3r which will
prove consecutively all provable formulae. Sooner or later 3r will reach
either ~ or --9~. If it reaches 9~, then we know that 9~ is provable. If it
reaches --9~, then, since K is consistent (Hilbert and Ackermann, p. 65), we
know that 9~ is not provable.

Owing to the absence of integers in K the proofs appear somewhat
lengthy. The underlying ideas are quite straightforward.

Corresponding to each computing machine At we construct a formula
Un (A~) and we show that, if there is a general method for determining
whether Un (,t~) is provable, then there is a general method for deter-
mining whether A:~ ever prints 0.

The interpretations of the propositional functions involved are as
follows:

Rs,(x, y) is to be interpreted as " in the complete configuration x (of
AL) the symbol on the square y is S " .

t Loc. cir.
S2 ~47]]

260 A . M . TUR1NG [Nov. 12,

I(x, y) is to be interpreted as " in the complete configuration x the
square y is scanned".

Kq,,,(x) is to be interpreted as " in the complete configuration x the
m-configuration is qm'

F(x, y) is to be interpreted as " y is the immediate successor of x ".

Inst {qiSjSkLqt } is to be an abbreviation for

(X,, y, ffC,', y') { (Rsj(X , y)& I(X, y) ~ Kqi(X) (~ F(X, X r ~, F(y', y))

(I(x', y') & Rsk(X', y) & Kq,(x r)

Inst {qi Sj S k R qt} and Inst {qi Sj S k N qt}

are to be abbreviations for other similarly constructed expressions.
Let us put the description of A L into the first s tandard form of w 6. This

description consists of a number of expressions such as "qi Sj S k L q~" (or
with R or N substi tuted for L). Let us form all the corresponding expres-
sions such as Inst {qi Sj S k L ql} and take their logical sum. This we call
Des (A,t).

The formula Un (s is to be

& (y, z)(F(y, z)-->N(y)& N(z)) & (y)Rso(u, y)

& I(u, u) & Kal(u) & Des(jt(.)]

 (3s) (3t) IN(s) N(t) Rs (s, t)].

[N(u) & ... & Des (A~)] may be abbreviated to A(AI).
When we substitute the meanings suggested on p. 259-60 we find tha t

Un (A~) has the interpretation " in some complete configuration of A i., S 1
(i.e. 0) appears on the tape ". Corresponding to this I prove tha t

(a) If S 1 appears on the tape in some complete configuration of A[,, then
Un(AL) is provable.

(b) I f U n (A~) is provable, then $1 appears on the tape in some complete
configuration of A i.

When this has been done, the remainder of the theorem is trivial.

[[48]

1936.] ON COMPUTABLE NUMBERS. 261

LEM~_ 1. I f S x appears on the tape in some complete configuration of
AL, then Un (At,) is provable.

We have to show how to prove Un (At,). Let us suppose tha t in the
n-th complete configuration the sequence of symbols on the tape is
S,(n,o) , S,(n,X) , ..., S,(n,n), followed by nothing but blanks, and tha t the
scanned symbol is the i(n)-th, and tha t the m-configuration is q~n)" Then
we may form the proposition

.Rs,(,,o)(u(n) , u) & Rs,(,.a)(u(n), u') & ... & Rs,. (.... (u (n), u (n)) "

& I(u (n), U(i(n))) & Kqk(,)(u(n))

& (y)F((y, u ') v F(u, y)vF(u ' , y)v,.., v F(u ('~-x), y)v Rso(U ("), y)),

which we may abbreviate to C C~.
As before, F(u, u') & F(u ' , u") & ... & F (u (r-l), u (r)) is abbreviated

to F (r).
I shall show tha t all formulae of the form A (At) & F(n)--> CC n (abbre-

viated to CF~) are provable. The meaning of CF= is "The n-th complete
configuration of .s is so and so ", where "so and so" stands for the actual
n - th complete configuration of .:l i,. That CF~ should be provable is
therefore to be expected.

CF o is certainly provable, for in the complete configuration the symbols
.are all blanks, the m-configuration is ql, and the scanned square is u, i.e.
,CCo is

(y) Rso(U, y) & I(u, u) & Kql(u).

A (J~/,) -> C C o is then trivial.
We next show tha t C_N n--> CFn+ x is provable for each n. There are

three cases to consider, according as in the move from the n-th to the
{n-I-1)-th configuration the machine moves to left or to right or remains
:stationary. We suppose tha t the first case applies, i.e. the machine
moves to the left. A similar argument applies in the other cases. I f
r(n , i(n)) - -a , r (n~- l , i(n-4-1)) =c, k (i (n)) --b, and k (i (n + l)) - -d ,
then Des (At.) must include Inst {qa Sb Sa L qc} as one of its terms, i.e.

Hence

B u t

Des (AL) -> Inst {qa Sb Sa Lqc}"

A (Jl[.) &5 F(n+l)-> Inst {qa S bSd Lqe } & F (~+1).

Inst{q a S b S d L qc} & F(n+l) --> (CC~ --> Cgn+l)

:is provable, and so therefore is

[[49]]

262 A . M . TURING [Nov. 12,

and (A(J~) ~ ~(n)---~CCn)--~ (A(J~) ~i5 ~(n§247
i.e. CF~---> CFn+I.

CF~ is provable for each n. Now it is the assumption of this lemma
that S~ appears somewhere, in some complete configuration, in the sequence
of symbols printed by A(,; that is, for some integers N, K, CC~ has
Rs~(u(N), u(K)) as one of its terms, and therefore CC~---> Rs~(u(~), u(K)) is
provable, We have then

and

We also have

CClv--> Rs~ (u (~), ~(K))
A (~t;t) & F(~) -> CC N.

(3u)A(A~)--> (3u)(3u') . . . (Bu (N')) (A (A,t) & F(~r

where h r ' - max (N, K). And so

(3u) A (A/) --> (3u) (3u') ... (3u (zr Rs~ (u (~~ u(K)),

(3u) A (At) -> (3u(N)) (Bu (K)) Rs, (u (zr u(K)),

(3u) A (At)-> (3s) (3t) Rz, (s, t),

i.e. Un(At) is provable.
This completes the proof of Lemma 1.

LEMMA 2. I f Un(A'~) is provable, then S 1 appears on the tape in some
complete co~figuration of A l.

If we substitute any propositional functions for function variables in
a provable formula, we obtain a true proposition. In particular, if we
substitute the meanings tabulated on pp. 259"260 in Un(At), we obtain a
true proposition with the meaning " S 1 appears somewhere on the tape in
some complete configuration of AV'.

We are now in a position to show that the Entscheidungsproblem cannot
be solved. Let us suppose the contrary. Then there is a general
(mechanical) process for determining whether Un(A(,) is provable. By
Lemmas 1 and 2, this implies that there is a process for determining whether
A~ ever prints 0, and this is impossible, by w 8. Hence the Entscheidungs-
problem cannot be solved.

In view of the large number of particular cases of solutions of the
Entscheidungsproblem for formulae with restricted systems of quantors, i t

1936.] ON COMPUTABLE NUMBERS. 263

is interesting to express Un(AL) in a form in which all quantors are at the
beginning. Un(At) is, in fact, expressible in the form

(u) (3x) (w) (I)
where ~ contains no quantors, and n -- 6. By unimportant modifications
we can obtain a formula, with all essential properties of Un(A~), which is of
form (I) with n - 5.

Added 28 August, 1936.

APPENDIX.

Computability and effective calculability

The theorem tha t all effectively calculable (2-definable) sequences are
computable and its converse are proved below in outline. I t is assumed
tha t the terms "well-formed formula" (W.F.F.) a n d " conversion" as used
by Church and Kleene are understood. In the second of these proofs the
existence of several formulae is assumed without proof; these formulae
may be constructed straightforwardly with the help of, e.g., the
results of Kleene in " A theory of positive integers in formal logic ",
Americar~ Journal of Math., 57 (1935), 153-173, 219-244.

The W.F.F. representing an integer n will be denoted by N~. We shall
say that a sequence 7 whose n-th figure is r is)~-definable or effectively
calculable if 1 ~-~b~(~) is a ~-definable function of n, i.e. if there is a W.F.F.
My such that, for all integers n,

{My} (Nn) c o n y N~(~)+I,

i.e. (My} (N,) i s convertible into 2xy.x(x(y)) or into 2xv.x(y) according as
the n-th figure of)~ is 1 or 0.

To show that every)~-definable sequence ~, is computable, we have to
show how to construct a machine to compute ~,. For use with machines it
is convenient to make a trivial modification in the calculus of conversion.
This alteration consists in using x, x', x", ... as variables instead of
a, b, c, We now construct a machine % which, when supplied with the
formula My, writes down the sequence y. The construction of Y~ is some-
what similar to tha t of the machine ~ which proves all provable formulae
of the functional calculus. We first construct a choice machine Y-~, which,
if supplied with a W.F.F., M say, and suitably manipulated, obtains any
formula into which M is convertible. 2-1 can then be modified so as to
yield an automatic machine s which obtains successively all the formulae

264 A . M . TUR~G [Nov. 12,

into which M is convertible (of. foot-note p. 252). The machine
includes s as a part. The motion of the machine �9 when supplied
with the formula M r is divided into sections of which the n-th is
devoted to finding the n-th figure of ~. The first stage in this n-th section
is the formation of {M~} (Nn). This formula is then supplied to the
machine s which converts it successively into various other formulae.
Each formula into which it is convertible eventually appears, and each, as
it is found, is compared with

and with 2x[2x'[{x}(x')]], i.e. N r

If it is identical with the first of these, then the machine prints the figure 1
and the n-th section is finished. If it is identical with the second, then 0
is printed and the section is finished. If it is different from both, then the
work of ~. is resumed. By hypothesis, {M~}(N~) is convertible into one of
the formulae N~ or N~; consequently the n-th section will eventually be
finished, i.e. the u-th figure of ~, will eventually be writ ten down.

To prove tha t every computable sequence y is)~-definable, we must
show how to find a formula M~ such that, for all integers n,

{M.y}(Nn) conv Nx+~,(n).

Let At be a machine which computes ~, and let us take some description
of the complete configurations of A~ by means of numbers, e.g. we may take
the D.N of the complete configuration as described in w 6. Let ~(n) be
the D.N of the n-th complete configuration of A~. The table for the
machine A~ gives us a relation between ~(n-t-1) and ~(n) of the form

~(n-F])--p~(~(n)),
where p~ is a function of very restricted, although not usually very simple,
form : it is determined by the table for .'il. p~is ;~-definable (I omit the proof
of this), i.e. there is a W.F.F. A~ such that, for all integers n,

{A,) (_/V$(n)) cony _/~T$(n+l).
Let U stand for

where r = ~(0); then, for all integers n,

{U~} (Nn) cony ZY$(n).

 52]

1936.] On COMPUTABLE nUMBERS. 265

I t may be proved that there is a formula V such that

.(
(V} (N$(n.l)) } (N$(n))

conv N 1

Let W~ stand for

cony N 2

cony N 3

if, in going from the n-th to the (n + 1)-th
complete configuration, the figure 0 is
printed.

if the figure 1 is printed.

otherwise.

:so that, for each integer n,

{{V}(Nt(,~+I))}(Nr) cony {W~} (N~),

and let Q be a formula such that

{{Q} i
where r(s) is the s-th integer q for which {Wv} (Nq) is convertible into either
N 1 or Ng. Then, if My stands for

it will have the required propertyt .

The Graduate College,
Princeton University,

New Jersey, U.S.A.

t In a complete proof of the h-definability of computable sequences it would be best to
modify this method by replacing the numerical description of the complete configurations
by a description which can be handled more easily with our apparatus. Let us choose
certain integers to represent the symbols and the m-configurations of the machine.
Suppose that in a certain complete configuration the numbers representing the successive
symbols on the tape are sx%.., sn, that the m-th symbol is scanned, and that the m-configur-
ation has the number t; then we may represent this complete configuration by the formula

E [Nai, N , N 1], [N t , N], I N +1 , Nsu]],

where [a, b] stands for huE{ {u} (a) J (b)],

[a, b, c] stands for ~ ,u[{~ {u}(a)}(b)}(c)l ,
~tc.

H53

544 A . M . TURINO

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM. A CORRECTION

By A. M. TUq~ING.

In a paper entitled "On computable numbers, with an application to
4~he Entscheidungsproblem "* the author gave a proof of the insolubility
of the Entscheidungsproblem of the "engere FunktionenkMktil". This
proof contained some formal errors~ which will be corrected here: there
are also some other statements in the same paper which should be modified,
although they are not actually false as they stand.

The expression for Inst{qiSjSkLqt } on p. 260 of the paper quoted
should read

(x, y, x', y') { (Rs.,(x, y) & I(x, y)& Kq,(x) ,~. F(x, x') & F(y', y))

So, $1, ..., SM being the symbols which ,l/ can print.
p. 261, line 33, viz.

The statement on

"Inst-[q, S~ S d Lqc } & F ("+1)--> (CC n --> CC,,+I)

is provable" is false (even with the new expression for Inst {qa Sb Sd Lqc}):
unable for example to deduce F (n+l)---> (--F(u, u")) and therefore w o a r e

can never use the term

[[54]

* Proc. L o n d o n M a t h . Soc. (2), 42 (1936-7), 230--265.
~f The au thor is indebted to P. Bernays for point ing out these errors.

ON ('OMPUTABLE NUMBERS. 545

in l~st ~ ' ' Lq,,]. T ~q,.~,~a . o correct this we introduce a new functional
variable G [a(x, y) to have the interpretat ion " x precedes y"]. Then,
if Q is an abbreviation for

(
(x)(Bw)(y, z) i F(x, w)& (F(x, y)-+ G(x, y)) ,2 (F(x, z) & G(z, y)-> G(x, y))

the corrected forniula Un(.i t) is to be

(~u) A (. t t) + (3 s) (~ t) ~,s,,(s, t),

where A(,/l) is an abbreviation for

Q & (y)Rso(U, y)&I (u , u)&.Kqx(~I,)& Des (,l/).

The s ta tement on page 261 (line 33) must then read

Inst {q, S~ S a Lq~} & Q & F (*'~+1)-+ (CCn ~ CC,~+~),

and line 29 should read

For the words "logical s u m " on p. 260, line 15, read "conjunct ion
With these modifications the proof is correct. Un (. t t) may be put in the
form (I) (p . 263)wi th n - - 4 .

Some difficulty arises from the part icular manner in which "computab le
n u m b e r " was defined (p. 233). I f the computable numbers are to satisfy
intuitive requirements we should have"

I f we can give a rule 'which associates with each ,positive integer n two
rationals a.,~, b.,~ satisfying a,~ ~ a,,+i < b.,~+i ~ b.~, b.,~--a n < 2-'., then there is
a computable number a for which a.,~ ~ a <~ b.,~ each n. (A)

A proof of this may be given, valid by ordinary nmthematical s tandards,
but i~lvolving an application of the principle of excluded middle. On the
other hand the following is false"

There is a rule. whereby, given the rule of formation of the sequence,~ a,,, b,,.
i'n (A) we can obtain a D.N. for a machine to compute a. (B)

That (i/) is false; ~tt. least, if we ~l~)l)t tile convcntioll t,h~tt tile decimals
of ~lJt~li)er,~ ~)t" l,l~(: t'~R'mJl m/'2" ,~ll~tll ~tlways terl~linate witi~ zer~,~, (',;~li t)c
seett i~l this way. l~et It t)e s()nm :lnacllitle, alld. define c,, as fi~ll()ws'
c,, ~ if 1~ has not printed a tigure 0 by the time the n-th complete configu-
ration is reached c,~-=-: ~ 2 .-.''̀ -..3 if 0 had first been printed at the .m,-tl,

s,,:R. '..,. vo,-.. ~ . ~,o. ~lus. 2 ~ I5511

546 ON COMPUTABLE NUMBERS.

complete configuration (m ~ n). Pu t a n = c~--2 -n-9-, b , , - c,~q-2 -~--~.
Then the inequalities of (A) are satisfied, and the first figure of a is 0 if ::~1
ever prints 0 and is 1 otherwise. I f (B) were true we should have a means
of finding the first figure of a given the D.N. of q3 �9 i . e . we should be able to
determine whether/~ ever prints 0, contrary to the results of w 8 of the paper
quoted. Thus al though (A) shows tha t there must be machines which
compute the Euler constant (for example) we cannot at present describe
any such machine, for we do not yet know whether the Euler constant is
of the form m/2 "~.

This disagreeable situation can be avoided by modifying the manner in
which computable numbers are associated with computable sequences,
the total i ty of computable numbers being left unaltered. I t may be done
in many ways* of which this is an example. Suppose tha t the first figure
of a computable sequence ~, is i and tha t this is followed by 1 repeated n
times, then by 0 and finally by the sequence whose r-th figure is c~ ; then
the sequence 7, is to correspond to the real number

(2i-- 1)n~- E (2c~-- 1)(.~-) ~.
r = l

If the machine which computes 7' is regarded as computing also this real
number then (B) holds. The uniqueness of representation of real numbers
by sequences of figures is now lost, but this is of little theoretical importance,
since the D.N.'s are not unique in any case.

The Graduate College,
Princet<m, N.J., U.S.A.

* This u~e <)f overlal) i :) i i ig itlt, e rvals for the (te f in i t i~n ~~t" real nm,~bers is due o]'iginally
1()] '~1'~ ~I|WOI',

1156]

