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PREFACE 

1. Preamble 

This is the classic paper which first established Turing's reputation and by which 
he will longest be remembered. The argument falls into three parts. 
A. The notion of a Turing machine is introduced and it is argued that any com- 

putation, which can be performed by a human can be imitated by such a 
machine. 

B. It is shown that there is a universal machine which, when provided with a 
standard description of any Turing machine will imitate the action of that 
machine. 

C. A diagonal argument is used to show that there are questions about the actions 
of Turing machines which cannot be answered by any machine. By formaliz- 
ing the action of Turing machines in the lower predicate calculus it is shown 
that the Entscheidungsproblem is mechanically undecidable. 

1.1. History 

Turing always enjoyed calculating. At school he had devised a method for com- 
puting 7v and had used it to calculate the first 36 decimal places [Hodges p. 35]. 
While walking, bicycling or washing up he would perform mental calculations 
about mathematical or physical phenomena. Whether calculating mentally or 
with pencil and paper, Turing was methodical only by fits and starts, and of- 
ten made mistakes. [When I came to know him later the phrase 'What's a factor 
of two between friends?' had become a catchword.] But he understood very well 
what it meant to be totally methodical. Indeed an acceptance- sometimes ready, 
sometimes reluctant- of the dichotomy between the clearly perceived ideal and 
the confused actuality was fundamental in Turing's thought. 

In the Spring of 1935 Turing attended lectures by M.H.A. Newman on math- 
ematical logic [Hodges p. 91-93] in which the Entscheidungsproblem (and 
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G6del's incompleteness theorem) were discussed. To prove, what by then was 
commonly though not universally believed, that there could be no effective or 
mechanical method for deciding which formulae of the predicate calculus are 
provable, it was necessary to limit the notion of 'effective method' by giving 
a precise definition of it. The need for such a definition was what immediately 
stimulated Turing to analyse the process of computation. But it is plain from the 
paper that he was just as interested in the positive aspects of his analysis as in 
the negative results, which it enabled him to prove. In particular, section 10 is 
entirely concerned with what numbers and functions are computable. Ostensibly 
the purpose of this section is to show that the defined notion of computable has 
some of the properties which one would expect any intuitive notion to have; but 
Turing is interested in their properties for their own sake. 

I remember Turing telling me that the 'main idea for the paper' came to him 
when he was lying in the grass in Granchester meadows in the summer of 1935. 
I assume that he had by then already conceived of some form of Turing machine, 
and that what he meant by 'the main idea' was the realisation that there could be 
a universal machine and that this could permit a diagonal argument. Sometime 
after this he described the universal machine to his friend David Champernowne. 
He did not discuss his work with Newman, but gave him a completed typewritten 
draft of the paper in April 1936 [Hodges p. 109]. A little later Newman received 
from Alonzo Church an off print of his paper [1936] and a pre-print of [ 1936a], 
the results of which had been presented to the American Mathematical Society 
in April 1935. Turing inserted a reference to this in the introduction to his paper, 
and sent it to the London Mathematical Society where it was received on 8th 
May. On 31st May Newman wrote to Church: 

An off print which you kindly sent me recently of your paper in which 
you define "calculable numbers" and shew that the Entscheidungsproblem 
for Hilbert logic is insoluble, had a rather painful interest for a young man, 
A.M. Turing, here, who was just about to send in for publication a paper in 
which he had used a definition of "Computable Numbers" for the same pur- 
pose. 

Church had certainly obtained the result before Turing; but Turing had written 
his draft without any knowledge of Church's work. It should be remarked that 
there is no evidence that Turing had read any of the scanty and sporadic literature 
concerned with the general theory of mechanical computation. In particular, one 
can be sure that if Turing had read either account by Babbage of the Analytic 
Engine (Chapter VIII of 'Pages from the life of a philosopher' [1864]) or the 
account of Menabrae [1842] translated by the Countess of Lovelace [1843] he 
would have mentioned Babbage's ideas. He might well have read the article on 
Calculating Machines in the 1 lth edition of the Encyclopaedia Britannica. In later 
years he often consulted the copy of the Encyclopaedia which he inherited from 
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his fa ther-  but that article contains only a short and rather dismissive reference 
to the Analytic Engine: 'a much more powerful machine..,  intended to perform 
any series of possible arithmetical operations'. This would hardly have suggested 
to Turing that Babbage had in fact conceived a universal machine. 

2. Discussion 

For an overall account and estimation of the paper, the reader is referred to New- 
man's obituary to Turing reproduced in this volume. My paper 'The confluence 
of Ideas in 1936' [Gandy 1988] contains an account of the background history 
of ideas; and a discussion of the contributions made by Hilbert and his school, 
by Church and his students and by Post. It also includes a discussion of Turing's 
work and its significance. In what follows I shall occasionally draw on that article 
without indicating the difference between paraphrase and direct quotation. 

2.1. Turing's analysis of computation 

Turing considers 'computable (real) numbers'; in fact, what he is considering is 
total computable functions of a positive integral argument with values 0 and 1. 
He starts off his detailed analysis (pp. 249-258) by saying: 

The real question at issue is "What are the possible processes which can be 
carried out in computing a real number?" 

This is significantly different from the question 'What is a computable func- 
tion?' which other authors asked. Turing, so to speak, pointed himself in the true 
direction. 

2.1.1. He then considers the actions of an abstract human being who is mak- 
ing a calculation; he pictures him as working on squared paper as in "a child's 
arithmetic book". He argues-  too brief ly-  that nothing will be lost by suppos- 
ing that the calculation is carried out on a potentially infinite tape divided into 
squares in each of which a single symbol (or none) may be written. 

2.1.2. By considering the limitations of our sensory and mental apparatus 
Turing arrives at the following restrictions on the actions of a computor. 6 

(1) There is a fixed upper bound to the number of distinct symbols which can 
be written on a square. 
(2) There is a fixed upper bound on the number of contiguous cells whose 
contents the computor can take i n -  'at a glance' as one might say - when he 
is deciding what to do next. 

6 I use 'computor' for a human being, 'computer' for a machine. 
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(Turing shows by an example that for a normal human being-  the reader-  this 
bound, for a linear arrangement, is less than 15. On pp. 250-251 Turing con- 
siders the possibility that besides looking at the currently observed squares the 
computor might also look at some 'immediately recognised' specially marked 
squares. But there must be a fixed upper bound on the number of immediately 
recognised squares, and s o -  without detailed argument- he claims that they 
can be, in effect, adjoined to the observed squares.) 
(3) At each step the computor may alter the contents of only one square, and 
there is a fixed upper bound to the distance the computor can move to reach 
this square from the observed squares; so we may suppose that it is one of 
them. 
(4) There is a fixed upper bound to the distance between the squares observed 
at one stage and those observed at the next stage. 
(5) There is a fixed upper bound to the number of 'states of mind' of the com- 
putor: his 'state of mind', together with the contents of the observed squares, 
uniquely determine the action he takes (printing and moving his field of obser- 
vation), and his next 'state of mind'. In place of 'state of mind' Turing admits 
that the computor might leave an instruction on how to continue (p. 253). 

2.1.3. Thus the computor must follow a fixed, finite, totally explicit set of 
instructions satisfying the above restrictions. It is then easy to see that his action 
can be simulated by a Turing machine-  which at each step observes a single 
square, can alter only the contents of that square, and moves by at most one 
square. 

2.1.4. It is worth emphasising that Turing's analysis is quite explicitly con- 
cerned with calculations performed by a human being; there is no reference to 
machines other than those which he introduces to imitate the actions of a human 
computor. In subsequent discussions of Turing's work this fact has sometimes 
been obscured by a play on the uses of the word 'mechanical', which has often 
since the seventeenth century been applied in a loose figurative sense to human 
actions. [The earliest example (1607) given in the Oxford English Dictionary 
refers to farriers who mistreat sick horses by rule of thumb]. Of course, it is not 
surprising that Turing does not mention machines. Numerical calculation in 1936 
was carried out by human beings; they used mechanical aids for performing stan- 
dard arithmetical operations, but these aids were not programmable. According to 
Randall ([ 1982], p. 160) the first general purpose programme-controlled machine 
to be built and used was Zuse's machine completed in 1941; even this (and other 
machines of the same generation) did not fully allow for conditional branching. 

Indeed, Turing's analysis does not directly apply to (discretely acting) ma- 
chines, since it takes no account of the possibilities of parallel action. If one 
considers (as in Newtonian theory) the possibility of instantaneous action at a 
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distance, then the alteration of the record need not be local nor locally deter- 
mined. However, if (as in the theory of relativity) one supposes that there is an 
upper bound to the velocity of propagation of physical influences, then one can 
establish Turing's thesis for machines as well as for human beings (see Gandy 
[1981]). 

2.1.5. What makes Turing's analysis so breathtaking is its combination of 
generality, directness and simplicity. These are characteristic of his way of think- 
ing; but the particular manner in which they come to the fore in this paper is 
a result of his having asked himself the question 'What is a computable real 
number?' rather than, say, 'What functions are computable?'. The latter question 
leads most naturally to a consideration of the various different ways in which cal- 
culable functions may be specified; thus Hilbert and his school investigated vari- 
ous kinds of recursive definition (see Hilbert [1926] and Ackermann [1928]). Had 
Turing started with this line of thought, his machines might have been described 
in terms of a high-level language (such as LISP, say) rather than the extremely 
simple machine - language which he actually uses. But then the argument that all 
conceivable methods of calculation had been covered would have been far less 
direct and less cogent. 

2.1.6. Turing concentrated on implementation rather than specification, and 
found that this made it possible to set an exact limit on what is calculable. He 
did, however, use the notion of specification as a supporting argument- for pred- 
icates in w and for functions in the first paragraph of w 10. A predicate G is 
specified by giving a formula A (of first-order predicate calculus using only rela- 
tional symbols) which implicitly defines it together with the requirement that G 
be formally reckonable in the predicate calculus; i.e. that the appropriate formula 
G(x) or --,G(x) can be inferred from A and the formula which expresses that x 
is the n-th natural number. One can say that the specification A of G must be 
implemented by formal proofs. But this supporting argument lacks the general- 
ity of Turing's direct proof of his thesis. Firstly, recursions involving higher type 
objects may be used in specifying calculable functions; see, for example, p. 389 
of Hilbert [ 1926]. Secondly, one might wish to interpret 'formal reckonability' as 
allowing proofs in some formal system more powerful than the predicate calcu- 
lus; this possibility is considered by Church ([ 1936], p. 357) at the corresponding 
point in his argument. 

2.2. Philosophical significance of Turing's analysis 

2.2.1. Formal systems. Turing's work makes it possible to give a satisfactory 
and definitive characterisation of a formal system (or theory). Namely, a formal 
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system is one whose expressions are built up from a finite list of primitive sym- 
bols and for which there is a Turing machine which will test all its theorems (or, 
more generally, all its inferences). Turing does not refer to that possibility in this 
paper, but the characterisation is of fundamental importance for the philosophy 
of mathematics. It allows G6del's proof of incompleteness to be applied to any 
formal system, which contains a certain amount of elementary number theory, 
and was much emphasised at times by G6del in 1963-1965 (Volume 2 of his 
Collected Works [ 1990]). Hence, it sets limits to what can be rigorously proved 
in any formalisation of mathematics. In his paper on ordinal logics, which ap- 
pears later in this volume, Turing gives a model for the different roles, which 
are played in mathematics by intuition and by formal proofs. This notion allows 
one to generalise the notions of formal specification and formal reckonability 
described in 2.1.6 above; but one cannot, of course, use the fact that they give 
an equivalent definition of computability as a supporting argument for Turing's 
thesis - this would result in a vicious circle. 

Note: It should be mentioned that in the early 1920's Post had developed a 
quite different (but eventually seen to be equivalent) characterisation of formal 
system. This was not published until Post [1943]; for an historical account see 
Post [ 1965]. 

2.2.2. Wittgenstein's paradox. Turing's analysis can be applied quite generally 
to characterise the notion of a rule - of calculation, of inference, of procedure, of 
construction - and so on. In mathematics, such rules are usually designed so that 
they may be applied in a potentially infinite number of distinct situations. This 
gives rise to a puzzle or paradox with which Wittgenstein was much concerned. 
Namely, suppose one has witnessed someone (perhaps oneself) apply a given rule 
in a finite number of cases; how can one be sure that one has applied the given 
rule and not some other rule which agrees with it so far? Hence, how can one 
ever prove that a particular rule has been correctly applied? The paradox is not 
immediately resolved by requiring that the particular rule be clearly stated; for 
the statement cannot list what is to be done in all the infinite number of situations 
in which the rule may be applied. 

Turing's analysis does not solve this paradox, but it does make clearer where 
the heart of the problem lies. I will call a finite list of actions which are to be taken 
in suitable circumstances a recipe; such, for example, is the set of instructions 
which one might give out for travelling from one place to another. A recipe may 
well include alternatives. The table of instructions (or programme) for a Turing 
machine constitutes a recipe. What Turing showed was that applying a rule in a 
given situation can always be reduced to the iterated application of a recipe. Thus 
the essential puzzle is: 'How can one prove that someone has followed a recipe 
correctly?'; or 'How can one prove that a situation (or even an action) is the 
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same on one occasion as it was on another?' Wittgenstein certainly recognised 
this form of the puzzle; he discusses, for example, how one can know that a 
colour word has been correctly used. His solution draws attention to the fact 
that correctness is to be judged by the ability to communicate with others, and 
so cannot be applied to the behaviour of a totally isolated individual. But he 
sometimes talked as if the puzzle about rules (and proofs) was different from, was 
not merely a rhetorical embellishment of, the puzzle about recipes. In particular, 
so it seems to me, he did so in the lectures on the foundations of mathematics 
(recorded in Wittgenstein [1976]) which he gave in 1939 and at which Turing 
was a vocal participant. I find it surprising that Turing seems never to have made 
the point which I have just discussed. A full and clear account of Wittgenstein's 
paradox and his solution of it will be found in Kripke [ 1982]. 

2.3. Turing machines and electronic computers 

2.3.1. The influential ideas. The title of Turing's paper and the fact that its first 
section is headed 'computing machines' encouraged people concerned with the 
design of computers to read it, or at least to look at it; but, the ideas it contains 
would have been equally important if Turing, like Post, had avoided the use of the 
word 'machine'. I think that these ideas, in order of importance, are as follows: 

(i) The elementary steps are extremely simple, and have specifications of a 
fixed length. 

(ii) The universal machine is a stored-program machine; that is, unlike Bab- 
bage's all-purpose machine, the mechanisms used in reading a program are of the 
same kind as those used in executing it. 

(iii) Conditional instructions are no different from unconditional ones. 
(iv) The operation is easily adapted to binary storage and working. 

Notes: (1) Turing presumably realised when he wrote the paper that, like Post, 
he could have used 'mark' and 'blank' as the only symbols; but that had he done 
so his table for the universal machine would have been totally unreadable. 

(2) Kleene used binary Turing machines in his book [1952]. 

It is (i) and (iv) that made it possible for McCulloch and Pitts to show that the 
control mechanisms of a Turing machine can be simulated by a finite network 
of 'neurons' (gates with delays). The ~,-calculus and the equational calculus both 
use 'substitute a given term for a given variable in a given expression' as an 
elementary step; this cannot have a total specification of fixed length. On the 
other hand, the ~,-calculus is a stored program device, since there is no differ- 
ence between a program (a h-term) and the successive stages in its computation. 
Although the earlier designs for computers (in particular, the EDVAC) only al- 
low rather restricted use of conditional instructions, the use of gates with two or 
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more inputs does in fact reflect the conditional nature of the elementary steps of 
a Turing machine. 

2.3.2. Their effect on U.S. developments. There is some controversy about the 
exact extent of the influence of Turing's ideas on the design of electronic com- 
puters in the U.S.A. I record a few historical facts: 

(1) By the late 1930's von Neumann had become familiar with Turing's ideas 
and was enthusiastic about them (Randell [1972], p. 10; Hodges [1983], p. 145; 
Davis [1987]). There is no evidence, however, that there was ever a meeting at 
which they exchanged ideas about the possibilities of designing 'universal' elec- 
tronic computers. They did meet early in 1947, but by that time they had written 
their respective reports. In a perceptive footnote ([ 1983], fn 5.26 on pp. 555-556) 
Hodges argues that such a meeting would not, in any case, have been likely to 
have been of great importance; each would develop his own ideas. 

(2) In 1945 von Neumann wrote his 'First draft of a report on the EDVAC'. In 
this he makes considerable use of the idealised neuronal networks of McCulloch 
and Pitts [1943]. He does not explicitly refer to Turing [1936-7] in that paper 
(although in his Hixon lecture in 1948 [1951] he gives Turing his due). As with 
Turing's universal machine, the program is stored in a special part of the memory. 
This report circulated widely and was influential. Turing read it in the summer of 
1945. 

(3) Most of the essential ideas for the design of electronic computers - binary 
working, use of logical circuits and stored programs- were developed indepen- 
dently by various people, from 1936 onwards; see Randell [1982], chapters VII 
and VIII, and Burks [1980]. The most important and influential place for the 
construction of electronic computers in the 1940's was the Moore School of En- 
gineering; the first working large-scale (18,000 valves) electronic computer was 
the ENIAC. The original proposal (in April 1943) was by Mauchly and Eckert. 
The machine was finished at the end of 1945. In the meantime, plans were being 
made for 'EDVAC-type' machines; von Neumann became a consultant there in 
September 1944. Much of the work on ENIAC and EDVAC was classified. It has 
become, it seems, impossible to discern a linear flow of ideas; probably there 
was no such thing. Much acrimony (see Eckert [1980] and Mauchly [1980]) and 
a protracted legal battle developed from the question of who told what to whom. 

(4) According to Randell [ 1980], Turing and Newman and a group of math- 
ematicians and engineers at Bletchley Park discussed in 1942-43, out of office 
hours, Turing's universal machine, Babbage's plans for the Analytic Engine, and 
the possibilities of artificial intelligence. Turing played some part in the design of 
the first machines built under Newman' s direction. The final machines ('Colossi') 
can claim to be the first medium-sized (2,000-3,000 valves) fairly flexible, pro- 

~16~] 



grammable electronic computers. (The Mark II Colossus came into service in 
June 1944.) 

(5) Turing worked at the National Physical Laboratory from 1945 to 1948 
designing a computer. His report on the ACE [1945] was submitted in March 
1946. Turing was influenced by von Neumann [1945], but he describes, in fair 
detail, the design of a quite specific machine, and, ahead of the times, proposed 
that many of the operations of the machine should have been effected by writing 
subroutines, rather than by building special single-purpose units. In his lecture 
[1947] to the London Mathematical Society he traces the connections between 
the design of the ACE and his 1936-7 paper. 

The ideas of the ACE report are discussed at length by Hodges [1983], 
pp. 317-333. 

(6) At the same time, in Manchester, Newman was responsible for, and con- 
tributed to, the design of what became the Manchester Mark 1 machine (Newman 
[1948]). Turing joined him in the autumn of 1948. His chief interest was in using 
the machine (and helping others to use it). Although he wrote the 'Programmer's 
Handbook' he did not contribute to the design of the machine or of programming 
languages for it. Hodges [1983, p. 401] lists some of the things which Turing 
could have worked on but didn't. 

2.3.3. Summary. Although it may be difficult to trace the precise influence of 
this paper on the design and development of high-speed digital computers, its 
fundamental importance for the theory of computation is clear. Turing machines 
(and modifications of them) still provide the standard setting for the definition of 
the complexity of computation in terms of bounds on time and space; together 
with the neural nets of McCulloch and Pitts they provided the foundations of the 
theory of automata; together with the generated sets of Post [ 1943] they provided 
the foundation for the theory of formal grammars. 
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ON COMPUTABLE NUMBERS, W I T H  AN APPLICATION TO 
THE ENTSCHEIDUNGSPROBLEM 

By A. M. TuRI~G. 

[Received 28 May, 1936.--Read 12 November, 1936.] 

The "computab le"  numbers may be described briefly as the real 
numbers whose expressions as a decimal are calculable by finite means. 
Although the subject of this paper is ostensibly the computable numbers, 
it is almost equally easy to define and investigate computable functions 
of an integral variable or a real or computable variable, computable 
predicates, and so forth. The fundamental  problems involved are, 
however, the same in each case, and I have chosen the computable numbers 
for explicit t reatment  as involving the least cumbrous technique. I hope 
shortly to give an account of the relations of the computable numbers, 
functions, and so forth to one another. This will include a development 
of the theory of functions of a real variable expressed in terms of com- 
putable numbers. According to my definition, a number is computable 
if its decimal can be written down by a machine. 

In w167 9, 10 1 give some arguments with the intention of showing that  the 
computable numbers include all numbers which could naturally be 
regarded as computable. In particular, I show that  certain large classes 
of numbers are computable. They include, for instance, the real parts of 
all algebraic numbers, the real parts of the zeros of the Bessel functions, 
the numbers ~r, e, etc. The computable numbers do not, however, include 
all definable numbers, and an example is given of a definable number  
which is not computable. 

Although the class of computable numbers is so great, and in many  
ways similar to the class of real numbers, it is nevertheless enumerable. 
In w 81 examine certain arguments which would seem to prove the contrary. 
By the correct application of one of these arguments, conclusions are 
reached which are superficially similar to those of G6del t.  These results 

G6del, "Uber  formal unentscheidbaro S~tze der Principia Mathema~ica und ver- 
wandter Systeme, I " ,  MonatshefteMath. Phys., 38 (1931), 173-198. 
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have valuable applications. In particular, it is shown (w 11) tha t  the 
Hilbertian Entseheidungsproblem can have no solution. 

In a recent paper Alonzo Church t has introduced an idea of "effective 
ealeulability", which is equivalent to my "computabi l i ty  ", but  is very 
differently defined. Church also reaches similar conclusions about the 
Entseheidungsproblem~:. The proof of equivalence between "computa-  
bi l i ty"  and "effective ealeulabili ty" is outlined in an appendix to the 
present paper. 

1. Computing machines. 

We have said tha t  the computable numbers are those whose decimals 
are calculable by finite means. This requires rather  more explicit 
definition. No real a t tempt  will be made to justify the de~nitions given 
until we reach w 9. For the present I shall only say tha t  the justification 
lies in the fact tha t  the human memory is necessarily limited. 

We may compare a man in the process of computing a real number to a 
machine which is only capable of a finite number of conditions ql, q2, -.., q t,, 
which will be called "m-configurations ". The machine is supplied with a 
" t a p e "  (the analogue of paper) running through it, and divided into 
sections (called "squares" )  each capable of bearing a " symbo l " .  At 
any moment  there is just one square, say the r-th, bearing the symbol ~(r)  
which is " in  the machine" .  We may call this square the "scanned 
square ". The symbol on the scanned square may be called the "scanned 
symbol" .  The "scanned symbol"  is the only one of which the machine 
is, so to speak, "direct ly  aware ". However, by altering its m-conKgu- 
ration the machine can effectively remember some of the symbols which 
it has " s e e n "  (scanned) previously. The possible behaviour of the 
machine at any moment  is determined by the m-configuration q,~ and the 
scanned symbol ~(r).  This pair qn, ~(r) will be called the "conf igurat ion"  : 
thus the configuration determines the possible behaviour of the machine. 
In some of the configurations in which the scanned square is blank (i.e. 
bears no symbol) the machine writes down a new symbol on the scanned 
square: in other configurations it erases the scanned symbol. The 
machine may also change the square which is being scanned, but  only by 
shifting it one place to right or left. In addition to any of these operations 
the m-con~guration may be changed. Some of the symbols written down 

t Alonzo Church, "An unsolvable problem of elementary number theory ", American 
J. of Math., 58 (1936), 345-363. 

++ Alonzo Church, "A note on the Entscheidungsproblem" J. of Symbolic Logic, i 
(1936), 40-4~. 
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will form the sequence of figures which is the decimal of the real number 
which is being computed. The others are just rough notes to "assist  the 
memory ". I t  will only be these rough notes which will be liable to erasure. 

I t  is my contention tha t  these operations include all those which are used 
in the computation of a number. The defence of this contention will be 
easier when the theory of the machines is familiar to the reader. In the 
next section I therefore proceed with the development of the theory and 
assume tha t  it is understood what is meant by "mach ine" ,  " t a p e " ,  
"scanned ", etc. 

Automatic machines. 

2. Definitions. 

If  at each stage the motion of a machine (in the sense of w 1) is completely 
determined by the con~guration, we shall call the machine an "auto-  
marie machine"  (or a-machine). 

For some purposes we might use machines (choice machines or 
c-machines) whose motion is only partially determined by the configuration 
(hence the use of the word "possible"  in w 1). When such a machine 
reaches one of these ambiguous configurations, it cannot go on until some 
arbi trary choice has been made by an external operator. This would be the 
case if we were using machines to deal with axiomatic systems. In this 
paper I deal only with automatic machines, and will therefore often omit 
the prefix a-. 

Computing machines. 

I f  an a-machine prints two kinds of symbols, of which the first kind 
(called figures) consists entirely of 0 and 1 (the others being called symbols of 
the second kind), then the machine will be called a computing machine. 
I f  the machine is supplied with a blank tape and set in motion, starting 
from the correct initial m-configuration, the subsequence of the symbols 
printed by it which are of the first kind will be called the sequence computed 
by the machine. The real number whose expression as a binary decimal is 
obtained by prefacing this sequence by a decimal point is called the 
number computed by the machine. 

At any stage of the motion of the machine, the number of the scanned 
square, the complete sequence of all symbols on the tape, and the 
m-configuration will be said to describe the complete configuration at tha t  
stage. The changes of the machine and tape between successive complete 
configurations will be called the moves of the machine. 
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Circular and circle-free machines. 

I f  a computing machine never writes down more than  a finite number  
of symbols of the first kind, it will be called circular. Otherwise it is said to 
be circle-free. 

A machine will be circular if it reaches a configuration from which there 
is no possible move, or if it goes on moving, a:nd possibly printing symbols 
of the second kind, bu t  cannot  print  any more symbols of the first kind. 
The significance of the term "circular" will be explained in w 8. 

Computable sequences and numbers. 

A sequence is said to be computable if it can be computed by a circle-free 
machine. A number  is computable if it differs by an integer from the 
number  computed by a circle-free machine. 

We shall avoid confusion by speaking more often of computable 
sequences than  of computable numbers.  

3. Examples of computing machines. 

I. A machine can be constructed to compute tile sequence 010101 . . . .  
The machine is to have the four m-configurations "~" ,  "r "~", "c"  
and is capable of printing " 0 "  and " 1 ". The behaviour of the machine is 
described in the following table in which " R "  means "the machine moves 
so tha t  it scans the square immediate ly  on the right of the one it was 
scanning previously ". Similarly for " L  ". " E "  means "the  scanned 
symbol is e rased"  and " P "  stands for " p r i n t s " .  This table (and all 
succeeding tables of the same kind) is to be understood to mean tha t  for 
a cont~guration described in the first two columns the operations in the 
third column are carried out successively, and the machine then goes over 
into the m-configuration described in the last column. When the second 
column is left blank, it is understood tha t  the behaviour of the third and 
fourth columns applies for any symbol and for no symbol. The machine 
s tar ts  in the m-configuration b with a blank tape. 

Configuration B eha viou r 

m-config, symbol operations 

b None P0, R 

final m-config. 
r 

c None R c 

e None P1, R t~ 

N a n o .  R ~-, 
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If  (contrary to the description in w 1) we allow the letters L, R to appear 
more than once in the operations column we can simplify the table 
considerably. 

m-config, symbol operations final m-cor~fig. 

f None P0 
0 R ,R ,  P1 

1 R, R, PO 

II.  As a slightly more difficult example we can construct a machine to 
compute the sequence 001011011101111011111 . . . .  The machine is to 
be capable of five m-configurations, viz. "~ ", "q ", "p ", " f  ", " 5" and of 
printing " a  ", " x ", " 0 ", " 1 ". The first three symbols on the tape will 
be ', 000 ";  the other figures follow on alternate squares. On the inter- 
mediate squares we never print anything but  "x  ". These letters serve to 
"keep  the place" for us and are erased when we have finished with them. 
We also arrange tha t  in the sequence of figures on alternate squares there 
shall be no blanks. 

Configuration Behaviour 

m-config, symbol operations final 
m-config. 

Pa, R, Po, R, PO, R, R, PO, L, L 

I 1 

o 

R, Px, L , L , L  

Any (0 or 1) R,R  q 

None P1, L p 

I 
x E , R  q 

o R f 

None L, L p 

f I Any R, R { 
[ None PO, L, L o 

To illustrate the working of this machine a table is given below of the 
first few complete configurations. These complete configurations are 
described by writing down the sequence of symbols which are on the tape, 

[[22] 



1936.] Ox COMPUTABLE NUMBERS. 235 

with the m-configuration wri t ten below the scanned symbol. 
successive complete configurations are separated by colons. 

: o o 0  0 : o o 0  0 : o o 0  0 : o o 0  

b o q q 

o o 0  0 1 : o o 0  0 1 : o o 0  0 

o o 0  0 1 : o o 0  0 1 : o o 0  

f f 
o o 0  0 l x 0 :  . . . .  

0 " o o 0  0 

q 

1 " o o 0  

0 1 O" 

This table could also be wri t ten in the form 

0 1"  

The 

~ 

b ' o o t ,  O O ' o o ~ O  0 " . . . ,  (C) 

in which a space has been made on the left of tile scanned symbol and the 
m-configuration wri t ten in this space. This form is less easy to follow, but  
we shall make use of it later  for theoretical  purposes. 

The convention of writing the figures only on al ternate  squares is very 
useful" I shall always make use of it. I shall call the one sequence of alter- 
nate squares F-squares  and the other sequence E-squares.  The symbols on 
E-squar'es will be liable to erasure. The symbols on F-squares  form a 
continuous sequence. There are no blanks until  the end is reached. There 
is no need to have more than  one E-square between each pair of F-squares" 
an apparen t  need of more E-squares can be satistied by having a sufficiently 
rich var ie ty  of symbols capable of being pr inted on E-squares.  I f  a 
symbol fi is on an F-square  S and a symbol a is on the E-square next  on the 
right of S, then S and fl will be said to be marked with a. The 
process of print ing this a will be called marking fi (or S) with a. 

4. Abbreviated tables. 

There are certain types of process used by nearly all machines, and 
these, in some machines, are used in many  connections. These processes 
include copying down sequences of symbols, comparing sequences, erasing 
aH symbols of a given form, etc. Where such processes are concerned we 
can abbreviate  the tables for the m-configurations considerably by the use 
of "ske le ton  tables ". In  skeleton tables there appear  capital  German 
letters and small Greek letters. These are of the nature  of "variables ". 
By  replacing each capital  German let ter  throughout  by an m-configuration 
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and each small Greek letter by a symbol, we obtain the table for an 
m-configuration. 

The skeleton tables are to be regarded as nothing but  abbreviations: 
they are not essential. So long as the reader understands how to obtain 
the complete tables from the skeleton tables, there is no need to give any 
exac t  definitions in this connection. 

Let us consider an example: 

m-config. Symbol Behaviour Final 
m-config. 

f o L fl(C, ~ a) 
f(~,~,~) 

I not o L f(C, 2~, a) L 
; a  C / 

fl (g, ~, a) t not a R fl (~, ~, a) 
[ None R f2 ( C, 2~, a) 

g I ' a  
! 

fg(g ,~ ,a )  ~no t  a R fl(g, ~, a) 

L None R 

F r o m  the m-configuration 
f(g, ~, a) the machine finds the 
symbol of form a which is far- 
thest to the left (the "first  a " )  
and the m-configuration then 
becomes C. If  there is no a 
then the m-configuration be- 
comes 2~. 

If  we were to replace g throughout by q (say), ~ by r, and a by x, we 
should have a complete table for the m-configuration f(q, r, x). f is called 
an "m-configuration funct ion" or "m-function ". 

The only expressions which are admissible for substitution in an 
m-function are the m-configurations and symbols of the machine. These 
have to be enumerated more or less explicitly : they may include expressions 
such as p(r x); indeed they must  if there are any m-functions used at all. 
I f  we did not insist on this explicit enumeration, but  simply stated tha t  
the machine had certain m-configurations (enumerated) and all m-configu- 
rations obtainable by substitution of m-coniigurations in certain m-func- 
tions, we should usually get an infinity of m-configurations ; e.g., we might 
say tha t  the machine was to have the re,configuration q and all m-configu- 
rations obtainable by substituting an m-configuration for g in ~(~). Then 

it would have q, p(q), p (p(q)), p (p (p(q))) ,  ... as m-configurations. 

Our interpretat ion rule then is this. We are given the names of the 
m-configurations of the machine, mostly expressed in terms of m-functions. 
We are also given skeleton tables. All we want is the complete table for 
the m-configurations of the machine. This is obtained by repeated 
substitution in the skeleton tables. 
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Further examples. 

(In the explanations the symbol " - > "  is used to signify " the  machine 
goes into the m-configuration . . . .  ") 

e(ff, ~, a) f (r n2, a), ~, a) 

r ~, a) E 5..2 

From e(C, ~, a) the first a is 
erased and ~ E .  I f  there is no 
(Z ---~ ,~. 

From e(~, a) all letters a are 
erased and --> ~s. 

The last example seems somewhat more difficult to interpret  than 
most. Let us suppose tha t  in the list of m-eoniigurations of some machine 
there appears e([~, x) ( --q,  say). 

e(~,, x) 

or q 

Or, in greater detail: 

The table is 

c(q, b, x). 

q e(q, ~,, x) 

q(q, ~, x) E q. 

In this we could replace el(q, [~, x) by q' and then give the table for f (with 
the right substitutions) and eventually reach a table in which no 
m-fmmtions appeared. 

p) f 
f Any R, R pcl(ff-, fi) 

Pr P) 1 t. None Pfi C 

1((5) L C 

~(~) R 

f"(~, ~, ~) f (r(~), ~, 
/ 

From ~e (C, fi) the machine 
prints fi at the end of the 
sequence of symbols and -+ (5. 

From f'(C, ~, a) it does the 
same as for f((5, ~, a) but  
moves to the left before-> ~. 

c(E, ~, a). The machine 
writes at the end the first sym- 
bol marked a and ~ ~. 
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The last  line s tands for the to ta l i ty  of lines obtainable  from it by  
replacing fl by  any  symbol  which may  occur on the tape  of the machine 
concerned.  

ce(g, ~,,~) 

~q(~, ~, ~,/~)E, P3 
rr ~,/3) 

or(g, ~, a) 

c~(~, ~) 

cr a). The machine 
copies down in order at  the  
end all symbols marked  a 
and erases the letters a;  --> ~.  

re(g, ~,  a, fi). The ma-  
chine replaces the first a by  
fl and -> ff ~ ~ if there is no a. 
re(~, a, fi). The machine re- 
places all letters a by fi ; -> ~.  

c (re(g, ~,  a, a), ~,  a)  cr(~, a) differs from 
ce(~, a) only in t ha t  the  

c~ (c~(~, a), ~e(~, a, a), a)  letters a are not  erased. The 
m-configuration cr(~, a) is 
t aken  up when no let ters 
" a "  are on the tape.  

c~(E, ~, r ~, 3) 

c~ ( ~, ~, 3) ~, 

cp~.(g, 9J, y) not  y ~. 

The first symbol  marked  a and the first marked  fl are compared.  I f  
there  is nei ther  a nor  fl, -> ~. I f  there are both  and the symbols are alike, 
-> ft. Otherwise --> ~I. 

/ 

cpe(6., ~, ~, a, fl) differs from cp(E, ~, ~, a, fi) in t ha t  in the case when 
there  is s imilari ty the first a and/3  are erased. 

cpe(~, ~, a, fl). The sequence of symbols marked  a is compared  wi th  
the  sequence marked  ft. -> ~ if they  are similar. Otherwise -> ~I. Some 
of the symbols a and fl are erased. 

1[26]] 



1936.] ON COMPUTABLE NUMBERS. 239 

q(~) 
Any 

~one  

q~(~) f Any 
~ o n e  

q(~,~) 

! 
ql( ~, a) 

] not a k. 

~r ~, ~) 

c(c) 
0 

~ N o t  o 

r Any 

None 

R 

R 

R 

L 

q(~) 

g 

~i(~, a) 

R r 

L c(~) 

R , E , R  el(~ ) 

q(C, a). The machine 
finds the last symbol of 
form a. --> ~. 

p%(g, a, fi). The machine 
prints a fl at  the end. 

cea(~3, a, fl, ~,). The mach- 
ine copies down at the end 
first the symbols marked a, 
then those marked fl, and 
finally those marked  y; it 
erases the symbols a, [3, y. 

From c(g) the marks are 
erased from all marked sym- 
bols. -+ C. 

5. E n u m e r a t i o n  o f  computab le  sequences.  

A computable sequence ~, is determined by a description of a machine 
which computes ~,. Thus the sequence 001011011101111... is determined 
by the table on p. 234, and, in fact, any computable sequence is capable of 
being described in terms of such a table. 

I t  will be useful to put  these tables into a kind of s tandard  form. In  the 
first place let us suppose tha t  the table is given in the same form as the first 
table, for example, I on p. 233. That  is to say, tha t  the entry  in the operations 
column is always of one of the forms E : E, R : E, L : P a  : P a ,  R : P a ,  L : R : L : 
or no ent ry  at  all. The table can always be put  into this form by intro- 
ducing more m-configurations. Now let us give numbers to the m-configu- 
rations, calling them ql, . . . ,  qR, as in w 1. The initial m-configuration is 
always to be called ql. We also give numbers to the symbols S~ . . . .  , S m 
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and, in particular,  b l a n k - -  S 0, 0 = $1, 1 --  S 2. 
now of form 

The lines of the table are 

Final 
m-config. Symbol Operations m-config. 

qi Sj P S  k, L q,~ (N1) 

qi S t P S  k, R q,~ (N2) 

qi S~ P S  k q~ (Na) 

Lines such as 

qi Sj E, R qm 

are to be wri t ten as 

qi S j P S o, R q~ 

and lines such as 

q,: Sj R qm 

to be wri t ten as 

qi S t PSi ,  R q,~ 

In  this way we reduce each line of the table to a line of one of the forms 
(Nx), (N2), (N3). 

F rom each line of form (N1) let us form an expression qi S~ S k L qm ; 
from each line of form (N2) we form an expression qi St Sk R qm ; 
and from each line of form (Na) we form an expression qi St S k N  qm" 

Let us write down all expressions so formed from the table for the 
machine and separate them by semi-colons. In  this way we obtain a 
complete description of the machine. In  this description we shall replace 
qi by the let ter  " D "  followed by the let ter  " A  " r epea t ed  i times, and S~ by 
" D "  followed by " C "  repeated j times. This new description of the 
machine may  be called tile standard description (S.D). I t  is made up 
entirely from the letters " A  ", " C  ", " D  ", " L  ", " R  ", " N  ", and from 

, 

I f  finally we replace " A  " by " 1 ", " C "  by "2  ", " D "  by " 3  ", " L "  
by " 4  ", " R "  by " 5  ", " N "  by " 6  ", and " ,'" by " 7 "  we shall have a 
description of the machine in the form of an arabic numeral .  The integer 
represented by this numeral  may  be called a description number (D.N) of 
the machine. The D.N determine the  S.D and the s t ructure of the 
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machine uniquely, The machine whose D.N is n may be described as 
~(n). 

To each computable sequence there corresponds at least one description 
number, while to no description number does there correspond more than 
one computable sequence. The computable sequences and numbers are 
therefore enumerable. 

Let us find a description number for the machine I of w 3. When we 
rename the m-configurations its table becomes: 

ql So P S  1, R q2 

q2 So P S  o, R qa 

qa So P S  2, R q4 

q~ S O P S  o, R ql 

Other tables could be obtained by adding irrelevant lines such as 

ql $1 P S  1, R q2 

Our first s tandard form would be 

ql So $1 Rq2 ; q2 So So R qa ; qa So $2 Rq~ ; q4 So So Rql ;. 

The standard description is 

D A D D C R D A A  ; D A A D D R D A A A  ; 

D A A A D D C C R D A A A A  ; D A A A A D D R D A  ; 

A description number is 

31332531173113353111731113322531111731111335317 

and so is 

3133253117311335311173111332253111173111133531731323253117 

A number which is a description number of a circle-free machine will be 
called a satisfactory number. In w 8 it is shown that  there can be no general 
process for determining whether a given number is satisfactory or not. 

6. The universal computing machine. 

I t  is possible to invent a single machine which can be used to compute 
any computable sequence. I f  this machine % is supplied with a tape on 
the beginning of which is writ ten the S.D of some computing machine A/t, 
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then ~t will compute the same sequence as At,. In this section I explain 
:in outline the behaviour of the machine. The next section is devoted to 
:giving the complete table for ~ .  

Let us first suppose tha t  we have a machine At'  which will write down on 
the  F-squares the successive complete configurations of A l.. These might 
be expressed in the same form as on p. 235, using the second description, 
(C), with all symbols on one line. Or, better, we could transform this 
description (as in w 5) by replacing each m-contiguration by " D "  followed 
by " A "  repeated the appropriate number of times, and by replacing each 
symbol by " D "  followed by " C "  repeated the appropriate number of 
times. The numbers of letters " A  " a n d "  C"  are to agree with the numbers 
chosen in w 5, so that,  in particular, " 0 "  is replaced by " D C  ", " 1 "  by 
"' D C C " ,  and the blanks by " D  ". These substitutions are to be made 
after the complete configurations have been put  together, as in (C). Diffi- 
culties arise if we do the substitution first. In each complete coniigura- 
t ion the blanks would all have to be replaced b y "  D ", so that  the complete 
configuration would not be expressed as a finite sequence of symbols. 

If  in the description of the machine II  of w 3 we replace " 0 "  by " D A A  ",  
" ~ "  by " D C C C  ",  " q "  by "DAAA ", then the sequence (C) becomes : 

D A  : D C C C D C C C D A A D C D D C  : D C C C D C C C D A A A D C D D C  :.. .  (C1) 

{This is the sequence of symbols on F-squares.) 
I t  is not difficult to see tha t  if At can be constructed, then so can A~'. 

The manner of operation of At' could be made to depend on having the rules 
of operation (i.e., the S.D) of At written somewhere within itself (i.e. within 
AL'); each step could be carried out by referring to these rules. We have 
only to regard the rules as being capable of being taken out and ex- 
changed for others and we have something very akin to the universal 
machine. 

One thing is lacking: at present the machine A b' prints no figures. We 
may  correct this by printing between each successive pair of complete 
configurations the figures which appear in the new configuration but  not 
in  the old. Then (C1) becomes 

D D A  : 0 : 0 : D C C C D C C C D A A D C D D C  : D C C C  . . . .  (C2) 

I t  is not altogether obvious tha t  the E-squares leave enough room for 
the  necessary " rough work ", but  this is, in fact, the case. 

The sequences of letters between the colons in expressions such as 
(C1) may be used as s tandard descriptions of the complete configurations. 
When the letters are replaced by figures, as in w 5, we shall have a numerical 

I30  



1936.] ON COMPUTABLE NUMBERS. 243 

description of the complete configuration, which may be called its descrip- 
,tion number. 

7. Detailed description of the universal machine. 

A table is given below of the behaviour of this universal machine. The 
~n-coniigurations of which the machine is capable are all those occurring in 
the first and last columns of the table, together with all those which occur 
when we write out the unabbreviated tables of those which appear in the 
table in the form of m-functions. E.g., r appears in the table and is an 
m-function. Its unabbreviated table is (see p. 239) 

not o L e(anf) 

[Any  R, E, R e~(anf) 

None an~ 

Consequently el(anf) is an m-configuration of %~. 
When % is ready to start  work the tape running through it bears on it 

the symbol o on an F-square and again o on the next E-square ; after this, 
on F-squares only, comes the S.D of the machine followed by a double 
colon " . . . .  (a single symbol, on an F-square). The S.D consists of a 
:number of instructions, separated by semi-colons. 

Each instruction consists of five consecutive parts 

(i) " D "  followed by a sequence of letters " A  ". This describes the 
relevant  m-configuration. 

(ii) " D "  followed by a sequence of letters " C ". This describes the 
.scanned symbol. 

(iii) " D "  followed by another sequence of letters " C " .  This 
describes the symbol into which the scanned symbol is to be changed. 

(iv) " L  ", " R  ", or " N  ", describing whether the machine is to move 
to left, right, or not at all. 

(v) " D "  followed by a sequence of letters " A  ". This describes the 
final m-configuration. 

The machine ~ is to be capable of printing " A  " " C "  " D "  " 0 "  
~ ~r ~ S " " w"  " x  " " y  ", . . " 1 " u " ,  " v " ,  , , z The D is formed from " , " ,  

" A "  " C "  " D "  " L "  " R "  " N "  
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Subsidiary skeleton table. 

f Not A R, R c0n(~, a) 

A L, Pa, R c0nl(~, a) 

f A 

L D 

R, Pa, R c0nl(~, a) 

R, Pa, R cong,(C, a) 

c0n(E, a). Starting from 
an F-square, S say, the se- 
quence C of symbols describ- 
ing a configuration closest on 
the right of S is marked out 
with letters a. -> C. 

r C 
.'on~,(g, a) 

[ Not C 

The table for %. 

R, Pa, R con~((S, a) 

R , R  

c0n(~, ). In the final con- 
figuration the machine is 
scanning the square which is 
four squares to the right of the 
last square of C. C is left 
unmarked. 

f(~, ~, ::) 
~1 R , R , P ' , R , R ,  PD, R,R, PA anf 

~. The machine prints 
:DA on the F-squares after 
: : -->- d i l l .  

anfl con(~om, y) 

artf. The machine marks  
the configuration in the last  
complete configuration wi th  
y. --> tom. 

~om 
f ; R, Pz, L r x) 

z L, L t~om 

not z nor ; L t~om 

F0m. The machine finds 
the last semi-colon not 
marked with z. I t  marks 
this semi-colon with z and 
the configuration following 
it with x. 

t~mp ~mp. The machine com- 
pares the sequences marked 
x and y. I t  erases all letters 
x and y. --> tim if they are 
alike. Otherwise --> F0m. 

anf. Taking the long view, the last instruction relevant to the last 
configuration is found. I t  can be recognised afterwards as the instruction 
following the last semi-colon marked z. ->tim. 
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~{ml 

ira2 ~ A 
not A 

ira3 I 
not  A 

[ A 

mt~ 

m,1 t 
L 

m~2 f 

not A 

A 

C 

D 

:mt~ 4 

mt~ 5 

~2 

'~3 

~5 

Any 

~ol le  

D 

not D 

C 

not C 

C 

not C 

C 

not C 

f' (~im~, ~im~, z) 

con (~imz,) 

~im3 

R, Pu, R, R, R ~ im2 

L, Py e(m~, z) 
L, Py, R, R, R ~im3 

~(m~, :) 

R, R m~l 

L, L, L, L m~2 

R, Px, L, L, L mL. 

ml~ 4 

R, Px, L, L, L mr3 

R, Pv, L, L, L m~3 

m~4 

R, Pw, R m~ 5 

P. ~ 

L, L, L 

R, It, R, R 

R, R 

R, R 

f ( ~ ,  in,t, u) 

in~t 

in~t 

~e2(in~t, 0, :) 

in~t 

~e,(in~t, 1, ") 

ira. The machine marks out 
the instructions. That part  of 
the instructions which refers to 
operations to be carried out is 
marked with u, and the final m- 
configuration with y. The let- 
ters z are erased. 

m~. The last complete con- 
figuration is marked out into 
four sections. The conffgura- 
ration is left unmarked. The 
symbol directly preceding it is 
marked wi th  x. The remainder 
of the complete configuration 
is divided into two parts, of 
which the first is marked with 
v and the last with w. A colon is 
printed after the whole. -> t~. 

t~. The instructions (marked 
u) are examined. If  it is found 
that  they involve "Print 0"  or 
"P r in t  1", then 0" or 1" is 
printed at the end. 

[33]] 



246 

in~t 

inch 

inch(L) 

inst.(R) 

in~tl(N) 
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R, E inCh(a) 

c%(0~, v, y, x, u, w) 

c%(0~, v, x, u, y, w) 

ecs(0~, v, x, y, u, w) 

inst. The next complete 
configuration is written down, 
carrying out the marked instruc- 
tions. The letters u, v, w, x, y 
are erased. -> anf. 

c(.nf) 

8. Application of the diagonal process. 

I t  may be thought that arguments which prove that the real numbers 
are not enumerable would also prove that the computable numbers and 
sequences cannot be enumerable*. I t  might, for instance, be thought 
that  the limit of a sequence of computable numbers must be computable. 
This is clearly only true if the sequence of computable numbers is defmed 
by some rule. 

Or we might apply the diagonal process. " I f  the computable sequences 
are enumerable, let % be the n-th computable sequence, and let r be: 
the m-th figure in %. Let fl be the sequence with 1--r ) as its n-th 
figure. Since fl is computable, there exists a number K such that  
1--r = CK(n) all n. Putting n =  K, we have 1 = 2r i.e. 1 is 
even. This is impossible. The computable sequences are therefore not, 
enumerable ". 

The fallacy in this argument lies in the assumption that fl is computable. 
I t  would be true if we could enumerate the computable sequencesby finite 
means, but the problem of enumerating Computable sequences is equivalent 
to the problem of finding out whether a given number is the D.N of a 
circle-free machine, and we have no general process for doing this in a finite 
number of steps. In fact, by applying the diagonal process argument 
correctly, we can show that there cannot be any such general process. 

The simplest and most direct proof of this is by showing that, if this 
general process exists, then there is a machine which computes ft. This 
proof, although perfectly sound, has the disadvantage that it may leave 
the reader with a feeling that "there must be something wrong". The 
proof which I shall give has not this disadvantage, and gives a certain 
insight into the significance of the idea "circle-free ". I t  depends not on 
constructing fl, but on constructing fl', whose n-th figure is r (n). 

~34]] 
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Let us suppose tha t  there is such a process; that  is to say, that  we can 
invent a machine ~ which, when supplied with the S.D. of any computing 
machine A/, will test this S.D and if AL is circular will mark the S.D with the 
symbol " u "  and if it is circle:free will mark it with "s  ". By combining 
the machines ~ and %4 we could construct a machine J.i. to compute the: 
sequence fl'. The machine qS- may require a tape. We may suppose that  
it uses the E-squares beyond all symbols on F-squares, and that  when it 
has reached its verdict all the rough work done by q~ is erased. 

The machine ~L has its motion divided into sections. In the first N- -1  
sections, among other things, the integers 1, 2, ..., N- -1  have been written 
down and tested by the machine ~ .  A certain number, say R(N--1), of 
them have been found to be the D.N's of circle-free machines. In the N-th 
section the machine q~ tests the number N. If  N is satisfactory, i.e., if it 
is the D.N of a circle-free machine, then R(N)--  I~ -R(N- -  1) and the first 
R(N) figures of the sequence of which a D.N is N are calculated. The 
R (N)-th figure of this sequence is written down as one of the figures of the 
sequence fi' computed by J:~. If  N is not satisfactory, then R(N) = R(N-- 1) 
and the machine goes on to the (Nq-1)-th section of its motion. 

From the construction of ~ we can see that  3 l.. is circle-free. Each 
section of the motion of ~ comes to an end after a finite number of steps. 
For, by our assumption about ~ ,  the decision as to whether N is satisfactory 
is reached in a finite number of steps. If  N is not satisfactory, then the 
N- th  section is finished. I f  N is satisfactory, this means that  the machine 
~L(N) whose D.N is N is circle-free, and therefore its R(N)-th figure can be 
calculated in a finite number of steps. When this figure has been calculated 
and written down as the R(N)-th figure of fi', the N-th section is finished. 
Hence ~:~ is circle-free. 

Now let K be the D.N of ~ .  What  does :!~ do in the K-th section of 
its motion ? I t  must  test whether K is satisfactory, giving a verdict "s"  
or " u  ". Since K is the D.N of ~ and since j-l. is circle-free, the verdict 
cannot be " u  ". On the other hand the verdict cannot be "s  ". For if it 
were, then in the K-th  section of its motion J l. would be bound to compute 
the first R ( K - - 1 ) + I -  R(K) figures of the sequence computed by the 
machine with K as its D.N and to write down the R(K)-th as a figure of the 
sequence computed by Ji. The computation of the first R(K)--1 figures 
would be carried out all right, but  the instructions for calculating the 
R(K)-th would amount  to "calculate the first R(K) figures computed by  
H and write down the R(K) - th" .  This R(K)-th figure would never be 
found. I.e., ~ is circular, contrary both to what we have found in the last 
paragraph and to the verdict " s  ". Thus both verdicts are impossible 
and we conclude tha t  there can be no machine ~ .  

 3511 
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We can show fur ther  t h a t  there can be no machine ~ which, when 
supplied with the S.D of an arbitrary machine At, will determine whether .:[~ 
ever prints a given symbol (0 say). 

We will first show tha t ,  if there is a machine 8, then  there is a general 
process for determining whether  a given machine ./[~ prints  0 infinitely 
often. Let  All be a machine which prints  the same sequence as .... t k, except  
t h a t  in the posit ion where the first 0 pr inted by At, s tands,  At I pr ints  0. 
At~ 2 is to have the first two symbols 0 replaced by 0, and so on. Thus, i f ,  [[. 
were to pr in t  

A B A O 1 A A B O O I O A B . . . ,  

t h e n  .t/1 would pr in t  

A B A O 1 A A B O O I O A B . . .  

.and ~tt 2 would pr in t  
m 

A B A O 1 A A B O O I O A B  . . . .  

Now let 9~ be a machine which, when supplied wi th  the S.D of .... t[, will 
wr i t e  down successively the S.D of At, of At i, of At 2, ... (there is such a 
:machine). We combine ~ with ~ and obtain a new machine,  .q. In  the 
mot ion  of .q first ~ is used to write down the S.D of At, and then  ~ tests  
it, : 0 : is wr i t ten  if it is found tha t  A ~, never prints  0 ; then  g writes the S.D 
of A~ ~, and this is tested, :0 :  being pr in ted if and only if +tt 1 never pr ints  0, 
and so on. Now let us test  .~ wi th  ~. I f  it is found tha t  .~J never pr ints  0, 
then  At~ prints  0 infinitely of ten;  if ;~ prints  0 sometimes, then  At, does no t  
p r i n t  0 infinitely often. 

Similarly there is a general process for determining whether  At pr ints  1 
:infinitely often. By  a combinat ion of these processes we have a process 
for determining whether  At , pr ints  an infinity of figures, i.e. we have a process 
:for determining whether  ~[t, is circle-free. There can therefore be no 
machine  .8. 

The expression " t he r e  is a generM process for determining ... " has 
been used th roughou t  this section as equivalent  to " t h e r e  is a machine  
which will determine ... ". This usage can be justified if and only if we 
can just i fy our definition of " compu tab l e  ". For  each of these "genera l  
p rocess"  problems can be expressed as a problem concerning a general 
process for determining whether  a given integer n has a p roper ty  G(n) [e.g. 
G(n) might  mean  " n  is sa t i s fac to ry"  or " n  is the Godel representa t ion of 
a provable formula "], and this is equiva len t  to comput ing  a number  
whose  n- th  figure is 1 if G (n) is t rue and 0 if it is false. 
~36~] 
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9. The extent of the computable numbers. 

No a t tempt  has yet been made to show tha t  the "computab le"  numbers 
include all numbers which would naturally be regarded as computable. All 
arguments which can be given are bound to be, fundamentally, appeals 
to  intuition, and for this reason rather unsatisfactory mathematically. 
The real question at issue is "What  are the possible processes which can be 
carried out in computing a number ? " 

The arguments which I shall use are of three kinds. 

(a) A direct appeal to intuition. 

(b) A proof of the equivalence of two definitions (in case the new 
definition has a greater intuitive appeal). 

(c) Giving examples of large classes of numbers which are 
computable. 

Once it is granted tha t  computable numbers are all "computable ", 
several other propositions of the same character follow. In particular, it 
follows that,  if there is a general process for determining whether a formula 
of the Hilbert function calculus is provable, then the determination can be 
carried out by a machine. 

I. [Type (a)]. This argument is only an elaboration of the ideas of w 1. 

Computing is normally done by writing certain symbols on paper. We 
m a y  suppose this paper is divided into squares like a child's arithmetic book. 
In elementary arithmetic the two-dimensional character of the paper is 
sometimes used. But  such a use is always avoidable, and I think tha t  it 
will be agreed tha t  the two-dimensional character of paper is no essential 
of computation. I assume then that  the computation is carried out on 
one-dimensional paper, i.e. on a tape divided into squares. I shall also 
suppose tha t  the number of symbols which may be printed is finite. I f  we 
were to allow an infinity of symbols, then there would be symbols differing 
to an arbitrarily small extent t. The effect of this restriction of the number 
of symbols is not very serious. I t  is always possible to use sequences of 
symbols in the place of single symbols. Thus an Arabic numeral such as 

t I f  we regard  a symbol  as l i teral ly p r in ted  on a square we m a y  suppose t ha t  the squar~ 
is 0 < x < 1, 0 < y ~< 1. The symbol  is defined as a set of points  in this square,  viz. the 
set occupied by  p r in te r ' s  ink. I f  these sets are res t r ic ted to be measurable ,  we can define 
the  " d i s t a n c e  " be tween two symbols  as the  cost of t ransforming  one symbol  into the 
o ther  if the cost of moving  uni t  area  of p r in te r ' s  ink uni t  distance is uni ty ,  and  there  is an 
,infinite supply  of ink a t  x - -  2, y -- 0. W i t h  this topology the symbols  form a condit ion- 
al ly compac t  space. 

1137]] 
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17 or 999999999999999 is normally treated as a single symbol. Similarly 
in any European language words are treated as single symbols (Chinese, 
however, a t tempts  t o  have an enumerable infinity of symbols). The 
differences from our point of view between the single and compound symbols 
is tha t  the compound symbols, if they are too lengthy, cannot be observed 
at  one glance. This is in accordance with experience. We cannot tell a t  
a glance whether 9999999999999999 and 999999999999999 are the same. 

The behaviour of the computer at any moment is determined by the: 
symbols which he is observing, and his " state of mind"  at tha t  moment. 
We may suppose tha t  there is a bound B to the number of symbols or 
squares which the computer can observe at one moment. If  he wishes to 
observe more, he must use successive observations. We will also suppose 
tha t  the number of states of mind which need be taken into account is finite. 
The reasons for this are of the same character as those which restrict the 
number of symbols. I f  we admit ted an infinity of states of mind, some of  
them will be" arbitrarily close" and will be confused. Again, the restriction 
is not one which seriously affects computation, since the use of more compli- 
cated states of mind can be avoided by writing more symbols on the tape. 

Let us imagine the operations performed by the computer to be split up  
into "simple operat ions" which are so elementary that  it is not easy to 
imagine them further divided. Every such operation consists of some change 
of the physical system consisting of the computer and his tape. We know 
the state of the system if we know the sequence of symbols on the tape, 
which of these are observed by the computer (possibly with a special 
order), and the state of mind of the computer. We may suppose that  in a 
simple operation not more than one symbol is altered. Any other changes 
can be split up into simple changes of this kind. The situation in regard to 
the squares whose symbols may be altered in this way is the same as in 
regard to the observed squares. We may, therefore, without loss o f  
generality, assume tha t  the squares whose symbols are changed are always 
"obse rved"  squares. 

Besides these changes of symbols, the simple operations must include 
changes of distribution of observed squares. The new observed squares 
must  be immediately recognisable by the computer. I think it is reasonable 
to suppose that  they can only be squares whose distance from the closest 
of the immediately previously observed squares does not exceed a certain 
fixed amount. Let us say that  each of the new observed squares is within 
L squares of an immediately previously observed square. 

In connection with " immediate  recognisability", it may be though t  
that  there are other kinds of square which are immediately recognisable. 
In particular, squares marked by special symbols might be taken as imme- 
 38n 
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diately reeognisable. Now if these squares are marked only by single 
symbols there can be only a finite number of them, and we should not upset 
our theory by  adjoining these marked squares to the observed squares. If, 
on the other hand, they are marked by a sequence of symbols, we 
cannot regard the process of recognition as a simple process. This is a 
fundamental point and should be illustrated. In most mathematical 
papers the equations and theorems are numbered. Normally the numbers 
do not go beyond (say) 1000. I t  is, therefore, possible to recognise a 
theorem at a glance by its number. But if the paper was very long, we 
might reach Theorem 157767733443477 ; then, further on in the paper, we 
might find " ... hence (applying Theorem 157767733443477) we have ... ". 
In order to make sure which was the relevant theorem we should have to 
compare the two numbers figure by figure, possibly ticking the figures off 
in pencil to make sure of their not being counted twice. If  in spite of this 
it is still thought that  there are other "immediately recognisable" squares, 
it does not upset my contention so long as these squares can be found by 
some process of which my type of machine is capable. This idea is 
developed in I I I  below. 

The simple operations must therefore include: 

(a) Changes of the symbol on one of the observed squares. 

(b) Changes of one of the squares observed to another square 
within L squares of one of the previously observed squares. 

I t  may be that  some of these changes necessarily involve a change of 
state of mind. The most general single operation must therefore be taken 
to be one of the following: 

(A) A possible change (a) of symbol together with a possible 
change of state of mind. 

(B) A possible change (b) of observed squares, together with a 
possible change of state of mind. 

The operation actually performed is determined, as has been suggested 
on p. 250, by the state of mind of the computer and the observed symbols. 
In particular, they determine the state of mind of the computer after the 
operation is carried out. 

We may now construct a machine to do the work of this computer. To 
each state of mind of the computer corresponds an "m-configuration" of 
the machine. The machine scans B squares corresponding to the B squares 
observed by the computer. In any move the machine can change a symbol 
on a scanned square or can change any one of the scanned squares to another 
square distant not more than L squares from one of the other scanned 
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squares. The move which is done, and the succeeding configuration, are 
determined by the scanned symbol and the m-configuration. The 
machines just described do not differ very essentially from computing 
machines as defined in w 2, and corresponding to any machine of this type 
a computing machine can be constructed to compute the same sequence, 
t h a t  is to say the sequence computed by the computer. 

II .  [Type (b)]. 

I f  the notation of the Hilbert functional calculus t is modified so as to 
be systematic, and so as to involve only a finite number of symbols, it 
becomes possible to construct an automatic ~: machine Jr which will find 
all the provable formulae of the calculusw 

Now let a be a sequence, and let us denote by Q(x)  the proposition 
" T h e  x-th figure of a is 1 ", so that  f,! --G,(x) means "The  x-th figure of a 
is 0 ". Suppose further tha t  we can find a set of properties which define 
the sequence a and which can be expressed in terms of G,(x) and of the 
propositional functions N(x) meaning "x  is a non-negative integer"  and 
F(x, y) meaning " y - - x q - 1  ". When we join all these formulae together 
conjunctively, we shall have a formula, 9~ say, which defines a. The terms 
of 9~ must include the necessary parts of the Peano axioms, viz., 

which we will abbreviate to P.  
When we say "!~ defines a" ,  we mean tha t  --gJ is not a provable 

formula, and also that,  for each n, one of the following formulae (An) or 
(Bn) is provable. 

& F(~)-->G~(u(n)), (h~)�82 

a ~(n)__> ( -  a a ( u ( n ) ) ) ,  ( B n )  ' 

where F (~) stands for F (u, u') & F (u', u") & ... F (u (n-l), u(n)). 

t The express ion " t h e  funct ional  c a l cu l u s "  is used t h r o u g h o u t  to m e a n  the  restricted 
Hi lbe r t  func t iona l  calculus.  

I t  is mos t  n a t u r a l  to cons t ruc t  first a choice mach ine  (w 2) to do this.  B u t  it  is 
t h e n  easy  to cons t ruc t  the  requi red  au t oma t i c  machine .  We  can suppose  t h a t  the  choices 
a re  a lways  choices be tween  two possibili t ies 0 and  1. E a c h  p roof  will t hen  be de t e rmined  
by  a sequence of choices il, i9 . . . . .  in (ix = 0 or 1, i9 --  0 or 1 . . . . .  in --  0 or 1), and  hence  
the  n u m b e r  2" ~- i x 2 ~-1-~ i~ 2"-'-'-~... ~- i~ comple te ly  de te rmines  the  proof. The a u t o m a t i c  
m a c h i n e  carries out  successively p roof  1, p roof  2, p roof  3 . . . . .  

w The a u t h o r  has  found  a descr ip t ion  of such a machine .  
II The negat ion  sign is wr i t t en  before an  expression and  no t  over  it. 
�82 A sequence of r p r imes  is deno ted  by  ("). 
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I say tha t  a is then a computable sequence" a machine Jr to compute 
a can be obtained by a fairly simple modification of ~r 

We divide the motion of Jr into sections. The n-th section is devoted 
to finding the n-th figure of a. After the (n--  1)-th section is finished a double 
colon :: is printed after all the symbols, and the succeeding work is done 
wholly on the squares to the right of this double colon. The first step is to  
write the letter " A  " followed by the formula (An) and then " B "  followed 
by (Bn). The machine ~r then starts to do the work of ~,  but  whenever 
a provable formula is found, this formula is compared with (A~) and with 
(Bn). I f  it is the same formula as (A~), then the figure " 1 " is printed, and 
the n-th section is finished. If  it is (Bn), t h e n "  0"  is printed and the section 
is finished. I f  it is different from both, then the work of 3r is continued 
from the point at which it had been abandoned. Sooner or later one of  
the formulae (An) or (Bn) is reached; this follows from our hypotheses 
about a and ~t, and the known nature of Jr Hence the n-th section will 
eventually be finished. Jr is circle-free; a is computable. 

I t  can also be shown that  the numbers a definable in this way by the use 
of axioms include all the computable numbers. This is done by describing 
computing machines in terms of the function calculus. 

I t  must be remembered tha t  we have at tached rather a special meaning 
to the phrase "r defines a ". The computable numbers do not include all 
(in the ordinary sense) definable numbers. Let 8 be a sequence whose 
n-th figure is 1 or 0 according as n is or is not satisfactory. I t  is an imme- 
diate consequence of the theorem of w 8 that  ~ is not computable. I t  is (so 
far as we know at present) possible that  any assigned number of figures of $ 
can be calculated, but  not by a uniform process. When sufficiently many 
figures of 8 have been calculated, an essentially new method is necessary in 
order to obtain more figures. 

I I I .  This may be regarded as a modification of I or as a corollary of II .  

We suppose, as in I, tha t  the computation is carried out on a tape ; but  we 
avoid introducing the " s t a te  of mind"  by considering a more physical 
and definite counterpart  of it. I t  is always possible for the computer to  
break off from his work, to go away and forget all about it, and later to come: 
back and go on with it. I f  he does this he must leave a note of instructions 
(written in some standard form) explaining how the work is to be con- 
tinued. This note is the counterpart  of the "s ta te  of mind" .  We will 
suppose tha t  the computer works in such a desultory manner that  he never  
does more than one step at a sitting. The note of instructions must enable 
him tocar ry  out one step and write the next note, Thus the state of progress 
of the computation at any stage is completely determined by the note o f  
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instructions and the symbols on the tape. That  is, the state of the system 
may be described by a single expression (sequence of symbols), consisting 
of the symbols on the tape followed by A (which we suppose not to appear 
elsewhere) and then by the note of instructions. This expression may be 
called the "s ta te  formula ". We know that  the  state formula at any 
:given stage is determined by the state formula before the last step was 
made, and we assume that  the relation of these two formulae is expressible 
~n the functional calculus. In  other words, we assume tha t  there is an 
axiom !~ which expresses the rules governing the behaviour of the 
computer,  in terms of the relation of the state formula at any stage to the 
s ta te  formula at the preceding stage. I f  this is so, we can construct a 
machine to write down the successive state formulae, and hence to 
compute  the required number. 

10. Examples of large classes of numbers which are computable. 

I t  will be useful to begin with definitions of a computable function of 
a n  integral variable and of a computable variable, etc. There are many 
.equivalent ways of defining a computable function of an integral 
variable. The simplest is, possibly, as follows. If  ~, is a computable 
sequence in which 0 appears infinitely t often, and n is an integer, then let 
us define ~(~, n) to be the number of figures 1 between the n-th and the 
( n +  1)-th figure 0 in ~,. Then r is computable if, for all n and some ~,, 
r  n). An  equivalent definition is this. Let H(x, y) mean 
r  y. Then, if we can find a contradiction-free axiom !~, such tha t  
~+-> P, and if for each integer n there exists an integer N, such that  

~ & F(~'}-+H(u {n}, u(~,{~})), 

and such that,  if m =fi r then, for some N', 

t h e n  r may be said to be a computable function. 
We cannot define general computable functions of a real variable, since 

there  is no general method of describing a real number, but  we can define 
a computable function of a computable variable. I f  n is satisfactory, 
l e t  ~,n be the number computed by ~t.(n), and let 

I f  J~  computes ~/, then the problem whether J~ prints 0 infinitely often is of  the 

-~ame character as the  prob lem whether  ~'t~t is circle-free. 
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unless ~'n--O or y ~ - - 1 ,  in either of which cases a n - - O .  Then, as n 
:runs through the satisfactory numbers, a n runs through the computable 
numbers~. Now let r be a computable function which can be 
shown to be such tha t  for any satisfactory argument its value is satis- 
factory,:. Then the function f, defined by f(a~)----a~(,~), is a computable 
function and all computable functions of a computable variable are 
expressible in this form. 

Similar dei~nitions may be given of computable functions of several 
variables, computable-valued functions of an integral variable, etc. 

I shall enunciate a number of theorems about computability, but  I 
shall prove only (ii) and a theorem similar to (iii). 

(i) A computable function of a computable function of an integral or 
computable variable is computable. 

(ii) Any function of an integral variable defined recursively in terms 
of  computable functions is computable. I.e. if r n) is computable, and 
r is some integer, then v(n) is computable, where 

v(o) = r ,  

(iii) If  r (m, n) is a computable function of two integral variables, then 
r n) is a computable function of n. 

(iv) If  r is a computable function whose value is always 0 or 1, then 
the sequence whose n-th figure is r is computable. 

Dedekind's theorem does not hold in the ordinary form if we replace 
" r e a l "  throughout  by " c o m p u t a b l e  ". But  it holds in the following form: 

(v) If  G(a) is a propositional function of the computable numbers and 

and there is a general process for determining the t ru th  value of G (a), then 

t A func t ion  an m a y  be defined in m a n y  o ther  ways  so as to run  t h rough  the  
compu tab l e  numbers .  

++ Al though  it  is no t  possible to find a general  process for de te rmining  whe the r  a given 
n u m b e r  is sa t i s fac tory ,  it  is of ten possible to show t h a t  cer ta in  classes of  number s  are  
sa t i s fac tory .  
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there is a computable number  $ such tha t  

In other words, the theorem holds for any section of the computables 
such tha t  there is a general process for determining to which class a giver~ 
number belongs. 

Owing to this restriction of Dedekind's theorem, we cannot say tha t  a 
computable bounded increasing sequence of computable numbers has a 
computable limit. This may possibly be understood by considering a 
sequence such as 

- - 1 , - - � 8 9  --]; _ _ !  - - J _  ! 
~ 8~ 1 6 ~  2 ~ . . . .  

On the other hand, (v) enables us to prove 

(vi) If a and [3 are computable and a </3 and r < 0 < ~(fl), where 
r is a computable increasing continuous function, then there is a unique 
computable number 7, satisfying a < 7 </3 and r -- O. 

Computable convergence. 

We shall say tha t  a sequence fl~ of computable numbers converges: 
computably if there is a computable integral valued function hr(e) of the  
computable variable e, such that  we can show that ,  if e > 0 and n > N(e). 
and m > N(e), then [fl~--flml < e. 

We can then show tha t  

(vii) A power series whose coefficients form a computable sequence of  
computable numbers is computably convergent at  all computable points 
in the interior of its interval of convergence. 

(viii) The limit of a computably convergent sequence is computable. 

And with the obvious definition of"  uniformly computably convergent"-  

(ix) The limit of a uniformly computably convergent computable 
sequence of computable functions is a computable function. Hence 

(x)  The sum of a power series whose coefficients form a computable 
sequence is a computable function in the interior of its interval of 
convergence. 

From (viii) and ~ = 4(1--~+~--. . . )~ x we deduce tha t  ~ is computable.  
1 1 From e -  1-{-1 + ~.t + ~.t + "'" we deduce that  e is computable. 
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From (vi) we deduce that  all real algebraic numbers are computable. 
From (vi) and (x) we deduce that  the real zeros of the Bessel functions 

are computable. 

Proof of (ii). 

Let H(x, y) mean "~(x) = y" ,  and let K(x, y, z) mean "r  y ) = z " .  
9~ is the axiom for ~(#, y). We take 9~ to be 

I shall not give the proof of consistency of ~i,. Such a proof may be 
constructed by the methods used in Hilbert and Bernays, Grundlagen der 
Mathematik (Berlin, 1934), p. 209 et seq. The consistency is also clear 
from the meaning. 

Suppose that,  for some n, N, we have shown 

9~, & F(~)-+ H(u('~-1). u(,(n-1))). 

then, for some M, 

9j4, & F(M)___>K(u(n), u(,(n-1)), ~(~(n))), 

9~ & F(M) --> E (~(n-1), u(n)) & H (~z (n-~), u(,(n-~))) 

& K(u  (n), u(n(n-1)), U(n(n))), 

and 

9~ & F(M)--> [F(~z (n-l), U (n)) & H('u (n-l), U(~(n-1))) 

:~ K(u  (n), u(n(n-1)), u(,7(n)))-->H(u(n) ' qZ(n(n)))]. 

Hence ~,, & F (M) --')" H (U (n), U(n(n))). 

Also ~,, & F(")--->H(u, u('(~ 

Hence for each n some formula of the form 

~,, & F (M) ---> H (u (n), u("(n))) 

is provable. Also, if M'>~ M and M'  ~>m and m C r](u), then 

~'~1 & "F(M') -'~ G( "tl/l((n))' "ll'(m)) y G( u(m)' U(~(n))) 

s mZR. 2. VOL. 42. ~O. 2145. ~45]] 
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and 

~[, & F(M')-'> [ (G(u (n(n)), u (m)) v G(u (m), u("(n) ) 

Hence ~, & F( M',--> (H(u(n), u(m') ). 

The conditions of our second definition of a computable function are 
therefore satisfied. Consequently V is a computable function. 

Proof of a modified form of (iii). 

Suppose tha t  we are given a machine %, which, starting with a tape 
bearing on it oo followed by a sequence of any number of letters " F "  on 
F-squares and in the m-configuration b, will compute a sequence Yn 
depending on the number n of letters " F  ". I f  tn  (m) is the m-th figure of 
y~, then the sequence fl whose n-th figure is tn  (n) is computable. 

We suppose that  the table for % has been written out in such a way 
tha t  in each line only one operation appears in the operations column. We 
also suppose that  .~., | 0, and 1 do not occur in the table, and we replace 

m . _  

throughout by | 0 by 0, and 1 by 1. 
made. Any line of form 

a P5 

we replace by 

2 a P0 

and any line of the form 

!~ a P1 

by ~ a P1 

and we add to the table the following lines" 
u 

u 1 R, Pk, R, PO, R, PO 

tl 2 
tl a 

Further  substitutions are then 

!3 

u, h, k) 

13 

re( , h, k) 

H 2 

re(u3, u3, k, h) 
pc F) 

and similar lines with v for u and 1 for 0 together with the following line 

c R, PE, R, Ph b. 

We then have the table for the machine q%' which computes ft. The 
initial m-configuration is c, and the initial scanned symbol is the second o. 
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11. Application to the Entscheidungsproblem. 

The results of w 8 have some important  applications. In particular, they 
can be used to show that  the Hilbert Entscheidungsproblem can have no 
solution. For the present I shall confine myself to proving this particular 
theorem. For the formulation of this problem I must refer the reader to 
Hilbert and Ackermann's Grundzizge der Theoretischen Logik (Berlin, 
1 93 1), chapter 3. 

I propose, therefore, to show that  there can be no general process for 
determining whether a given formula 9~ of the functional calculus K is 
provable, i.e. tha t  there can be no machine which, supplied with any one 
9~ of these formulae, will eventually say whether 93 is provable. 

I t  should perhaps be remarked that  what  I shall prove is quite different 
from the well-known results of G~delt. G~del has shown that  (in the forma- 
lism of Principia Mathematica) there are propositions 9~ such that  neither 
9~ nor --9~ is provable. As a consequence of this, it is shown that  no proof 
of  consistency of Principia Mathematica (or of K) can be given within that  
formalism. On the other hand, I shall show that  there is no general method 
which tells whether a given formula 9~ is provable in K, or, what  comes to 
the same, whether the system consisting of K with --93 adjoined as an 
extra  axiom is consistent. 

If  the negation of what G6del has shown had been proved, i.e. if, for each 
9~, either 93 or --9~ is provable, then we should have an immediate solution 
of  the Entscheidungsproblem. For we can invent a machine 3r which will 
prove consecutively all provable formulae. Sooner or later 3r will reach 
either ~ or --9~. If  it reaches 9~, then we know that  9~ is provable. If  it 
reaches --9~, then, since K is consistent (Hilbert and Ackermann, p. 65), we 
know that  9~ is not provable. 

Owing to the absence of integers in K the proofs appear somewhat 
lengthy. The underlying ideas are quite straightforward. 

Corresponding to each computing machine At we construct a formula 
Un (A~) and we show that,  if there is a general method for determining 
whether Un (,t~) is provable, then there is a general method for deter- 
mining whether A:~ ever prints 0. 

The interpretations of the propositional functions involved are as 
follows: 

Rs,(x, y) is to be interpreted as " in  the complete configuration x (of 
AL) the symbol on the square y is S " .  

t Loc. cir. 
S2 ~47]] 
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I(x, y) is to be interpreted as " in  the complete configuration x the 
square y is scanned".  

Kq,,,(x) is to be interpreted as " in  the complete configuration x the  
m-configuration is qm' 

F(x, y) is to be interpreted as " y  is the immediate successor of x ". 

Inst  {qiSjSkLqt } is to be an abbreviation for 

(X,, y, ffC,', y') { (Rsj(X , y)& I(X, y ) ~  Kqi(X ) (~ F(X, X r ~, F(y', y)) 

(I(x', y') & Rsk(X', y) & Kq,(x r) 

Inst  {qi Sj S k R qt} and Inst  {qi Sj S k N qt} 

are to be abbreviations for other similarly constructed expressions. 
Let  us put  the description of A L into the first s tandard form of w 6. This 

description consists of a number of expressions such as "qi Sj S k L q~" (or 
with R or N substi tuted for L). Let us form all the corresponding expres- 
sions such as Inst  {qi Sj S k L ql} and take their logical sum. This we call 
Des (A,t). 

The formula Un (s is to be 

& (y, z)(F(y, z)-->N(y)& N(z)) & (y)Rso(u, y) 

& I(u, u) & Kal(u ) & Des(jt(.)] 

 (3s) (3t) IN(s) N(t) Rs (s, t)]. 

[N(u) & ... & Des (A~)] may be abbreviated to A(AI). 
When we substitute the meanings suggested on p. 259-60 we find tha t  

Un (A~) has the interpretation " in  some complete configuration of A i., S 1 
(i.e. 0) appears on the tape ". Corresponding to this I prove tha t  

(a) If S 1 appears on the tape in some complete configuration of A[,, then 
Un(AL) is provable. 

(b) I f U n  (A~) is provable, then $1 appears on the tape in some complete 
configuration of A i. 

When this has been done, the remainder of the theorem is trivial. 

[[48] 
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LEM~_ 1. I f  S x appears on the tape in some complete configuration of 
AL, then Un (At,) is provable. 

We have to show how to prove Un (At,). Let us suppose tha t  in the 
n-th complete configuration the sequence of symbols on the tape is 
S,(n,o) , S,(n,X) , ..., S,(n,n), followed by nothing but  blanks, and tha t  the 
scanned symbol is the i(n)-th, and tha t  the m-configuration is q~n)" Then 
we may form the proposition 

.Rs,(,,o)(u(n) , u) & Rs,(,.a)(u(n), u') & ... & Rs,. ( .... (u (n), u ( n ) )  " 

& I(u (n), U(i(n))) & Kqk(,)(u(n)) 

& (y)F( (y, u ' ) v  F(u, y)vF(u ' ,  y)v,.., v F(u ('~-x), y)v Rso(U ("), y)),  

which we may abbreviate to C C~. 
As before, F(u,  u') & F(u ' ,  u") & ... & F ( u  (r-l), u (r)) is abbreviated 

to F (r). 
I shall show tha t  all formulae of the form A (At) & F(n)--> CC n (abbre- 

viated to CF~) are provable. The meaning of CF= is "The  n-th complete 
configuration of .s is so and so ", where "so and so"  stands for the actual 
n - th  complete configuration of .:l i,. That  CF~ should be provable is 
therefore to be expected. 

CF o is certainly provable, for in the complete configuration the symbols 
.are all blanks, the m-configuration is ql, and the scanned square is u, i.e. 
,CCo is 

(y) Rso(U, y) & I(u, u) & Kql(u). 

A (J~/,) -> C C o is then trivial. 
We next  show tha t  C_N n--> CFn+ x is provable for each n. There are 

three cases to consider, according as in the move from the n-th to the 
{n-I-1)-th configuration the machine moves to left or to right or remains 
:stationary. We suppose tha t  the first case applies, i.e. the machine 
moves to the left. A similar argument  applies in the other cases. I f  
r(n ,  i(n)) - -a ,  r (n~- l ,  i(n-4-1)) =c,  k ( i (n) )  --b,  and k ( i ( n + l ) )  - -d ,  
then  Des (At.) must  include Inst  {qa Sb Sa L qc} as one of its terms, i.e. 

Hence 

B u t  

Des (AL) -> Inst  {qa Sb Sa Lqc}" 

A (Jl[.) &5 F(n+l)-> Inst  {qa S bSd Lqe } & F (~+1). 

Inst{q a S b S d L qc} & F(n+l) --> (CC~ --> Cgn+l) 

:is provable, and so therefore is 

[[49]] 
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and (A(J~) ~ ~(n)---~CCn)--~ (A(J~) ~i5 ~(n§247 
i.e. CF~---> CFn+I. 

CF~ is provable for each n. Now it is the assumption of this lemma 
that  S~ appears somewhere, in some complete configuration, in the sequence 
of symbols printed by A(,; that  is, for some integers N, K, CC~ has 
Rs~(u(N), u(K)) as one of its terms, and therefore CC~---> Rs~(u(~), u(K)) is 
provable, We have then 

and 

We also have 

CClv--> Rs~ (u (~), ~(K)) 
A (~t;t) & F(~) -> CC N. 

(3u)A(A~)--> (3u)(3u') . . .  (Bu (N')) (A (A,t) & F(~r 

where h r ' -  max (N, K). And so 

(3u) A (A/) --> (3u) (3u') ... (3u (zr Rs~ (u (~~ u(K)), 

(3u) A (At) -> (3u(N)) (Bu (K)) Rs, (u (zr u(K)), 

(3u) A (At)-> (3s) (3t) Rz, (s, t), 

i.e. Un(At) is provable. 
This completes the proof of Lemma 1. 

LEMMA 2. I f  Un(A'~) is provable, then S 1 appears on the tape in some 
complete co~figuration of A l. 

If  we substitute any propositional functions for function variables in 
a provable formula, we obtain a true proposition. In particular, if we 
substitute the meanings tabulated on pp. 259"260 in Un(At), we obtain a 
true proposition with the meaning " S  1 appears somewhere on the tape in 
some complete configuration of AV'. 

We are now in a position to show that  the Entscheidungsproblem cannot 
be solved. Let us suppose the contrary. Then there is a general 
(mechanical) process for determining whether Un(A(,) is provable. By 
Lemmas 1 and 2, this implies that  there is a process for determining whether 
A~ ever prints 0, and this is impossible, by w 8. Hence the Entscheidungs- 
problem cannot be solved. 

In view of the large number of particular cases of solutions of the 
Entscheidungsproblem for formulae with restricted systems of quantors, i t  
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is interesting to express Un(AL) in a form in which all quantors are at the  
beginning. Un(At) is, in fact, expressible in the form 

(u) (3x) (w) (I) 
where ~ contains no quantors, and n -- 6. By unimportant  modifications 
we can obtain a formula, with all essential properties of Un(A~), which is of  
form (I) with n -  5. 

Added 28 August, 1936. 

APPENDIX. 

Computability and effective calculability 

The theorem tha t  all effectively calculable (2-definable) sequences are 
computable and its converse are proved below in outline. I t  is assumed 
tha t  the terms "well-formed formula"  (W.F.F.) a n d "  conversion" as used 
by Church and Kleene are understood. In the second of these proofs the 
existence of several formulae is assumed without proof; these formulae 
may be constructed straightforwardly with the help of, e.g., the 
results of Kleene in " A  theory of positive integers in formal logic ", 
Americar~ Journal of Math., 57 (1935), 153-173, 219-244. 

The W.F.F. representing an integer n will be denoted by N~. We shall 
say that  a sequence 7 whose n-th figure is r is )~-definable or effectively 
calculable if 1 ~-~b~(~) is a ~-definable function of n, i.e. if there is a W.F.F.  
My such that,  for all integers n, 

{My} (Nn) c o n y  N~(~)+I, 

i.e. (My} (N, ) i s  convertible into 2xy.x(x(y))  or into 2xv.x(y ) according as 
the n-th figure of )~ is 1 or 0. 

To show that  every )~-definable sequence ~, is computable, we have to 
show how to construct a machine to compute ~,. For use with machines it 
is convenient to make a trivial modification in the calculus of conversion. 
This alteration consists in using x, x', x", ... as variables instead of 
a, b, c, . . . .  We now construct a machine % which, when supplied with the 
formula My, writes down the sequence y. The construction of Y~ is some- 
what  similar to tha t  of the machine ~ which proves all provable formulae 
of the functional calculus. We first construct a choice machine Y-~, which, 
if supplied with a W.F.F.,  M say, and suitably manipulated, obtains any 
formula into which M is convertible. 2-1 can then be modified so as to 
yield an automatic machine s which obtains successively all the formulae 



264 A . M .  TUR~G [Nov. 12, 

into which M is convertible (of. foot-note p. 252). The machine 
includes s as a part.  The motion of the machine �9 when supplied 
with the formula M r is divided into sections of which the n-th is 
devoted to finding the n-th figure of ~. The first stage in this n-th section 
is the formation of {M~} (Nn). This formula is then supplied to the 
machine s which converts it successively into various other formulae. 
Each formula into which it is convertible eventually appears, and each, as 
it is found, is compared with 

and with 2x[2x'[{x}(x')]], i.e. N r 

If  it is identical with the first of these, then the machine prints the figure 1 
and the n-th section is finished. If  it is identical with the second, then 0 
is printed and the section is finished. If  it is different from both, then the 
work of ~.  is resumed. By hypothesis, {M~}(N~) is convertible into one of 
the formulae N~ or N~; consequently the n-th section will eventually be 
finished, i.e. the u-th figure of ~, will eventually be writ ten down. 

To prove tha t  every computable sequence y is )~-definable, we must  
show how to find a formula M~ such that,  for all integers n, 

{M.y}(Nn) conv Nx+~,(n ). 

Let At be a machine which computes ~, and let us take some description 
of  the complete configurations of A~ by means of numbers, e.g. we may take 
the D.N of  the complete configuration as described in w 6. Let  ~(n) be 
the D.N of the n-th complete configuration of A~. The table for the 
machine A~ gives us a relation between ~(n-t-1) and ~(n) of the form 

~(n-F])--p~(~(n)), 
where p~ is a function of very restricted, although not usually very simple, 
form : it is determined by the table for .'il. p~is ;~-definable (I omit the proof 
of this), i.e. there is a W.F.F.  A~ such that,  for all integers n, 

{A,) (_/V$(n)) cony _/~T$(n+l). 
Let U stand for 

where r =  ~(0); then, for all integers n, 

{U~} (Nn) cony ZY$(n). 

 52] 
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I t  may be proved that  there is a formula V such that  

.( 
(V} (N$(n.l)) } (N$(n)) 

conv N 1 

Let W~ stand for 

cony N 2 

cony N 3 

if, in going from the n-th to the (n + 1)-th 
complete configuration, the figure 0 is 
printed. 

if the figure 1 is printed. 

otherwise. 

:so that,  for each integer n, 

{{V}(Nt(,~+I))}(Nr ) cony {W~} (N~), 

and let Q be a formula such that  

{{Q} i 
where r(s) is the s-th integer q for which {Wv} (Nq) is convertible into either 
N 1 or Ng. Then, if My stands for 

it will have the required propertyt .  

The Graduate College, 
Princeton University, 

New Jersey, U.S.A. 

t In  a complete proof of the h-definability of computable sequences it would be best to 
modify this method by replacing the numerical description of the complete configurations 
by a description which can be handled more easily with our apparatus. Let us choose 
certain integers to represent the symbols and the m-configurations of the machine. 
Suppose that  in a certain complete configuration the numbers representing the successive 
symbols on the tape are sx%.., sn, that  the m-th symbol is scanned, and that  the m-configur- 
ation has the number t; then we may represent this complete configuration by the formula 

E [Nai, N . . . . . .  , N .... .  1], [ N t ,  N .... ], I N  .... +1 . . . .  , Nsu] ],  

where [a, b] stands for huE{ {u} (a) J (b) ], 

[a, b, c] stands for ~ ,u[{~ {u}(a)}(b)}(c)l ,  
~tc. 

H53  
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ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO 
THE ENTSCHEIDUNGSPROBLEM. A CORRECTION 

By A. M. TUq~ING. 

In  a paper entitled "On  computable numbers, with an application to 
4~he Entscheidungsproblem "* the author gave a proof of the insolubility 
of the Entscheidungsproblem of the "engere FunktionenkMktil".  This 
proof contained some formal errors~ which will be corrected here: there 
are also some other statements in the same paper which should be modified, 
although they are not actually false as they stand. 

The expression for Inst{qiSjSkLqt } on p. 260 of the paper quoted 
should read 

(x, y, x', y') { ( Rs.,(x, y) & I(x, y)& Kq,(x) ,~. F(x, x') & F(y', y) ) 

So, $1, ..., SM being the symbols which ,l/ can print. 
p. 261, line 33, viz. 

The statement on 

"Inst-[q,  S~ S d Lqc } & F ("+1)--> ( CC n --> CC,,+I ) 

is provable" is false (even with the new expression for Inst  {qa Sb Sd Lqc}): 
unable for example to deduce F (n+l)---> (--F(u, u")) and therefore w o  a r e  

can never use the term 

[[54] 

* Proc.  L o n d o n  M a t h .  Soc.  (2), 42 (1936-7), 230--265. 
~f The au thor  is indebted to P. Bernays  for point ing out  these errors. 
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in l~st  ~ ' ' Lq,,]. T ~q,.~,~a . o  correct this we introduce a new functional 
variable G [a(x, y) to have the interpretat ion " x  precedes y"].  Then, 
if Q is an abbreviation for 

( 
(x)(Bw)(y, z) i F(x, w)& ( F(x, y)-+ G(x, y) ) ,2 ( F(x, z) & G(z, y)-> G(x, y) ) 

the corrected forniula Un(.i t)  is to be 

(~u)  A (. t t ) +  ( 3 s ) ( ~ t )  ~,s,,(s, t), 

where A(,/l)  is an abbreviation for 

Q & (y)Rso(U, y )&I (u ,  u)&.Kqx(~I,)& Des (,l/). 

The s ta tement  on page 261 (line 33) must  then read 

Inst  {q, S~ S a Lq~} & Q & F (*'~+1)-+ ( CCn ~ CC,~+~), 

and line 29 should read 

For the words "logical s u m "  on p. 260, line 15, read "conjunct ion  
With these modifications the proof is correct. Un (. t t) may be put  in the 
form ( I ) ( p .  263)wi th  n - - 4 .  

Some difficulty arises from the part icular manner  in which "computab le  
n u m b e r "  was defined (p. 233). I f  the computable numbers are to satisfy 
intuitive requirements we should have" 

I f  we can give a rule 'which associates with each ,positive integer n two 
rationals a.,~, b.,~ satisfying a,~ ~ a,,+i < b.,~+i ~ b.~, b.,~--a n < 2-'., then there is 
a computable number a for which a.,~ ~ a <~ b.,~ each n. (A) 

A proof of this may be given, valid by ordinary nmthematical  s tandards,  
but i~lvolving an application of the principle of excluded middle. On the 
other hand the following is false" 

There is a rule. whereby, given the rule of formation of the sequence,~ a,,, b,,. 
i'n (A) we can obtain a D.N. for a machine to compute a. (B) 

That  (i/) is false; ~tt. least, if we ~l~)l)t tile convcntioll t,h~tt tile decimals 
of ~lJt~li)er,~ ~)t" l,l~(: t'~R'mJl m/'2" ,~ll~tll ~tlways terl~linate witi~ zer~,~, (',;~li t)c 
seett i~l this way. l~et It t)e s()nm :lnacllitle, alld. define c,, as fi~ll()ws' 
c,, ..... ~ if 1~ has not printed a tigure 0 by the time the n-th complete configu- 
ration is reached c,~-=-: ~ 2 .-.''̀ -..3 if 0 had first been printed at the .m,-tl, 

s,,:R. '..,. vo,-.. ~ .  ~,o. ~lus. 2 ~  I5511 
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complete configuration (m ~ n). Pu t  a n = c~--2 -n-9-, b , , -  c,~q-2 -~--~. 
Then the inequalities of (A) are satisfied, and the first figure of a is 0 if ::~1 
ever prints 0 and is 1 otherwise. I f  (B) were true we should have a means 
of finding the first figure of a given the D.N. of q3 �9 i . e .  we should be able to 
determine whether/~ ever prints 0, contrary to the results of w 8 of the paper 
quoted. Thus al though (A) shows tha t  there must  be machines which 
compute the Euler constant  (for example) we cannot at present describe 
any such machine, for we do not yet know whether the Euler constant  is 
of the form m/2 "~. 

This disagreeable situation can be avoided by modifying the manner  in 
which computable numbers are associated with computable sequences, 
the total i ty of computable numbers being left unaltered. I t  may be done 
in many ways* of which this is an example. Suppose tha t  the first figure 
of a computable sequence ~, is i and tha t  this is followed by 1 repeated n 
times, then by 0 and finally by the sequence whose r-th figure is c~ ; then 
the sequence 7, is to correspond to the real number  

(2i-- 1)n~- E (2c~-- 1)(.~-) ~. 
r = l  

If  the machine which computes 7' is regarded as computing also this real 
number  then (B) holds. The uniqueness of representation of real numbers 
by sequences of figures is now lost, but  this is of little theoretical importance, 
since the D.N.'s are not unique in any case. 

The Graduate College, 
Princet<m, N.J.,  U.S.A. 

* This  u~e <)f overlal) i : ) i i ig  itlt, e rvals  for the ( te f in i t i~n  ~~t" real nm,~bers is due  o]'iginally 
1() ] '~1'~ ~I|WOI', 

1156] 




