
Systems of logic based on ordinals 
(Proc. Lond. Math. Soc., series 2 vol. 45 (1939), pp. 161-228) 

This paper deserves to be read and understood far more than it has been. For an 
early estimation of the paper, the reader is again referred to Newman's obituary 
to Turing reproduced in this volume. It was for many years regarded as a diffi- 
cult piece of work, and it was only when Feferman translated the work from the 
,k-calculus into the language of conventional recursive function theory (around 
twenty years later) that it began to be properly evaluated. Even now, it is still not 
widely understood and appreciated. 

The preface which follows has been adapted from Feferman's excellent paper 
[1988]: 'Turing in the Land of O(z)'. The editor wishes to reiterate his gratitude 
to both Professor Feferman and Oxford University Press, the publisher of the 
volume which includes that paper. 

The core of Turing's achievement, containing his incompleteness and partial 
completeness results is contained in w of his paper. A more accessible presenta- 
tion of this is contained in the Technical Appendix to Feferman [1988], but only 
the summary in the main part of [1988] is reproduced here. 

PREFACE (by Solomon Feferman) 

3. The purpose of ordinal logics 

The purpose of ordinal logics was to try to overcome the incompleteness phenom- 
ena discovered by G6del, by means of transfinite iteration of principles which 
serve to overcome incompleteness locally. Turing's investigation was character- 
istically original and penetrating. 

3.1. The rough idea 

With each sufficiently correct effectively generated formal axiomatic system (or 
"logic") L is associated a true but unprovable statement AL of the (I-I ~ form 
YxR(x), expressing that a certain (primitive) recursive property R holds for all 
integers x. If we start with an initially given system L 1 whose theorems concern- 
ing integers are all correct, and adjoin AL~ (call it A1) to form L2 (= L1U {A1}), 
then G6del's incompleteness result applies again to L2, so that associated with 
L2 is the true but unprovable AL2 (call it A2). We can iterate this construction 
arbitrarily often, to form Ln = L1 U {A1 . . . . .  An-1 }. But Loj U {A1 . . . . .  An . . . .  } 
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is still effectively generated (and correct), so we must proceed further into the 
transfinite in order to overcome incompleteness. In order to maintain effective 
generation, one will pass to a transfinite limit ordinal ot and system L~ only 
when ot is the limit of an effectively presented sequence Ctl ,  ~ 2  . . . . .  Ctn . . . .  and 
the systems L~, are already obtained. 

3.2. Making it precise 

In order to make this precise, one has to deal with a system of effective repre- 
sentations of ordinals in the integers. Such a system O of constructive notations 
a for ordinals t~ had been developed by Church and Kleene in 1935 (published 
in their [1937]) in the framework of the ~.-calculus. The idea of Turing's the- 
sis was to investigate the construction and degree of completeness of sequences 
A = (La l a ~ O) of logics associated with constructive notations a for ordinals, 
which would increase in strength as the ordinal of a increased, thus overcom- 
ing incompleteness- at least locally. The main question was whether one could 
thereby overcome incompleteness globally. A secondary question was whether 
such a logic would be invariant, i.e. whether the extent of A (a), the set of theo- 
rems of La, could depend only on the classical ordinal ct associated with a; this 
question must be considered since there are generally many notations a for the 
same or. Turing considered several natural ways in which ordinal logics could 
be constructed: (i) A p, obtained by successively adjoining statements directly 
overcoming G6del incompleteness at each stage a; (ii) A/4, a form of transfinite 
type theory; and (iii) Ac (after Gentzen), obtained by adjoining principles of 
transfinite induction and recursion up to a at each level AG(a). 

3.3. The main results 

These are contained in w of Turing's paper, and are: 
(1) A p is complete for true FI ~ statements 
(2) under quite general conditions, an ordinal logic A can't be both invariant 

and complete (even for H ~ statements). 
Thus, e.g., Ap, being FI ~ complete, is not invariant, while A H is necessarily 
incomplete since it is invariant. Turing had hoped to strengthen (1) to a com- 
pleteness result for true H ~ sentences, i.e. statements of the form u  y) 
with R primitive recursive. This class formally includes various statements of 
mathematical interest, such as the Riemann Hypothesis (by Turing's analysis 
of the problem). However, he was unable to achieve such an improved com- 
pleteness result, and indeed subsequent work of Feferman [1962] showed that 
A p is incomplete for H ~ sentences. Nevertheless, Turing's (1) could have been 
interpreted as meeting the initial aim of "overcoming" the incompleteness phe- 
nomenon discovered by G6del, since these only concerned true but unprovable 
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170 statements. Even so, Turing was rightly dissatisfied with this partial com- 
pleteness result, since it shifted the problem of settling the truth of I70 statements 
by axiomatic means to that of recognising whether what appears to be a notation 
a for a constructive ordinal actually is one; and that problem is at least as com- 
plicated as determining which 11 ~ statements are true. (For, if ais formally given 
as a limit of a sequence a (n), n = 1, 2, 3 . . . . .  then we have a E O if and only if 
Yx[a(x) E O and a(x) represents an increasing sequence], with x ranging over 
integers. Even the question whether a represents co is already at least as compli- 
cated as the most general 170 problem. And, as would be shown later by Kleene 
[ 1955], the problem, given any a, whether a E O, is more complicated than any 
arithmetical problem, even using an unlimited number of numerical quantifiers.) 
Turing was also rightly disappointed with his general incompleteness result (2) 
for invariant logics. However, he had succeeded in a relatively brief time in mak- 
ing remarkable progress on the topic proposed by Church and had laid the ground 
for all future investigations in this direction. 

4. The shape of things to come 

Turing's paper contains several interesting digressions and original observations; 
there are also some curious failures on his part to observe the obvious. These 
aspects are reviewed here, the more technical points being recast in modern 
recursion-theoretic terms. 

4.1. It has already been mentioned that Turing shows (w the Riemann Hy- 
pothesis to be equivalent to a I10 statement Yx3y R(x, y) with R primitive recur- 
sive. This result was quite striking for the time, although it was later improved to 
I10 by Kreisel 7. 

Turing further shows that statements of the form Yx (F (x) -- 0) with F general 
recursive are 11 ~ This arises from the fact that each such F can be put in the form 
F(x) = U(minyT(e,x, y)), where U and T are primitive recursive, arising in 
the usual way from the fact that e is the Godel number of a Turing machine Me 
that computes F. In fact, a slightly altered argument would have put it into I10 
form (see Feferman [1988], p. 126). 

What is more on the mark is Turing's next assertion that each statement "ma- 
chine M is circle-free", is 170, and conversely, that every I1 ~ statement is equiv- 
alent to one of this form. By definition (in his [1937]), M is circle-free if it com- 
putes a total function having only the values of 0 and 1 (thus representing a real 
number in binary form). But by composing any partial function Fwith the sign 
function sg(x + 1) = 1, sg(O) = 0, we see that Fis total if and only if sg(F) is 

7 A simple explicit I10 representation is given in the paper of Davis, Matijasevic and Robinson 
[1976], p. 335. 

I73~ 



total. Hence the class of statements of the form "Me computes a total function" 
(with no restriction on values), ranges through I-I ~ Turing could have moved 
immediately to this conclusion simply by observing that Me computes a total 
function if and only if Yx3yT(e,  x, y). 

4.2. Next, the brief section w contains a striking new idea put to a curious 
use. The aim here is to produce a problem which is not FI ~ This is trivial by 
a cardinality argument, but instead, Turing introduces a new notion (which is 
to change the face of recursion theory) namely, that of computability relative 
to an oracle. He begins by saying: "Let us suppose that we are supplied with 
some unspecified means of solving number-theoretic [FI ~ problems; a kind of 
oracle as it were . . . .  With the help of the oracle we could form a new kind of 
machine (call them o-machines), having as one of its fundamental processes that 
of solving a given number-theoretic problem." He then shows more specifically 
how to define computability by an o-machine and, by a direct extension of his 
argument in [ 1937], that the problem of determining "whether an o-machine is 
o-circle free" is not solvable by an o-machine and hence not by the oracle o itself. 

Turing did nothing further with the idea of o-machines, either in this paper or 
afterwards. But Post [1944] took it as his basic notion for a theory of degrees of 
unsolvability and properly credited Turing with the result that for any problem 
(about integers) there is another of higher degree of unsolvability. Eventually, the 
idea of transforming computability from an absolute notion to a relative notion 
would serve to open up the entire subject of generalised recursion theory. 

4.3. Later (in w after Turing defines ordinal logics A = (La l a ~ 0) ,  he 
takes as one of his main aims that of establishing completeness with respect to 
FI ~ propositions, i.e. of showing that if A is I-I ~ and true then La proves A for 
some a 6 0 .  Now, having already pointed out (w that O is not computable (to 
say the least, as we know), Turing asserts: "We might hope to obtain some in- 
tellectually satisfying system of logical inference [for deriving FI ~ statements] 
with some ordinal logic. G6del's theorem shows that such a system cannot be 
wholly mechanical; but with a complete ordinal logic we should be able to con- 
fine the nonmechanical steps entirely to verifications that particular formulae [of 
the )~-calculus] are ordinal formulae." (Here Turing prefigures his later extended 
discussion of "the purpose of ordinal logics" which we take up below.) This state- 
ment directly follows a brief discussion as to what problems could be solved if 
we had an oracle for telling us, given a whether or not a 6 0 .  But he does not put 
these together to analyse the logical complexity of 3a[a ~ 0 A La ~ A] relative 
to such an oracle o (simply that it is E ~ relative to O). 

Immediately after the quoted expression of hope, Turing says: "We might also 
expect to obtain an interesting classification of number-theoretic [FI ~ theorems 
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according to 'depth'. A theorem which required an ordinal c~ to prove it would be 
deeper than one which could be proved by the use of an ordinal 13 less than c~." He 
goes on to say that "however, this presupposes more than is justified", and carries 
the idea no further. But here Turing anticipated, at least programmatically, the 
classification by ordinals of the provably (total) recursive functions of various 
formal systems, obtained later by proof-theoretical work (see Feferman [ 1977]). 
This has been carried over to the classification by depth (or logical strength) of 
FI ~ statements emerging from combinatorial mathematics (see Paris-Harrington 
[1977] and the survey paper of Simpson [1986]). 

4.4. In w 10 of Turing's paper, there is another digression, this time concern- 
ing "constructive" analogues of Cantor's continuum hypothesis, the set-theoretic 
formulation of which is that there is a 1-1 correspondence between the set P(co) 
of all subsets of co (or equivalently of all sequences of O's and l 's) and the set of 
all ordinals less than the least uncountable ordinal col. Here, for the constructive 
analogue of P (co), Turing takes the set of all computable sequences of O's and l 's  
(or the description numbers of machines which compute these sequences), and 
for col, he substitutes coCK, the least ordinal not constructibly countable in the 
sense of Church-Kleene, i.e. the least ordinal not represented by a notation in O. 
Then he asks whether it is possible to set up a computable one-one correspon- 
dence between these sets; more precisely, to find a (partial) recursive function F 
such that for each a 6 0  and each n, F(a, n) is 0 or 1 and such that lal = la~l 
(i.e. a, a ~ represent the same ordinal) if and only if Yn[F(a, n) = F(a ~, n)]. The 
answer, as Turing shows, is negative; the proof, which is not difficult, transfers a 
technique that he had applied in w to establish the incompleteness of invariant 
ordinal logics (see the Appendix in Feferman [1988] for more details). 

As Turing points out, there is " . . .  great ambiguity concerning what the con- 
structive analogue of the continuum hypothesis should be", and he addresses only 
one possible formulation of it. He says that the suggestion for this came indirectly 
from E Bernstein and that a related problem was suggested by Bernays. But Tur- 
ing might also have been inspired by Hilbert's 1926 paper, "On the Infinite" (to 
which he refers in a different connection), where Hilbert attempted to establish 
an ordinal-recursive classification of integer functions in his abortive "solution" 
of the continuum problem. 

In any case, here again Turing anticipates later work, on the classification of 
recursive functions by means of hierarchies. It is customary in that work to con- 
sider some simple relative computability relation f ~< g between functions, such 
as that f is primitive recursive in g (or even weaker), and to seek assignments 
fa = )~n F (a, n) to each a 6 0  with the property that fa increases with the ordi- 
nal of a. Here the invariance required by Turing for his version of the continuum 
hypothesis is weakened to lal = la'l =~ fa =~ fa' (i.e. fa <~ fa' <~ fa). It turns 
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out that the general theory of such classifications, with both incompleteness and 
completeness results, runs entirely parallel to the theory of ordinal logics (see 
Feferman [1962a] and the Technical Appendix of [1988]). 

5. The significance of Turing's paper 

It is best to begin by quoting from Turing's own two page discussion (w 
"Mathematical reasoning may be regarded rather schematically as the exercise 
of a combination of two faculties, which we may call intuition and ingenuity." 
(There is a nice footnote to this sentence: "We are leaving out of account the most 
important faculty which distinguishes topics of interest from others...") He goes 
on to explain that "intuition consists in making spontaneous judgements which 
are not the result of conscious trains of reasoning. These judgements are often 
but by no means invariably correct... The exercise of ingenuity in mathematics 
consists in aiding the intuition through suitable arrangements of propositions .... 
When these are really well arranged the validity of the intuitive steps which are 
required cannot seriously be doubted." In Turing's view, there is no sharp, objec- 
tive line between these two "faculties"- the parts they play differ "from occasion 
to occasion and mathematician to mathematician". Formal logic helps remove 
this "arbitrariness"; the formal rules are supposed to be chosen so that infer- 
ences are always intuitively valid. Moreover, the exercise of ingenuity is then 
given more shape in the search for admissible chains of inference to make up a 
proof. "In pre-G6del times it was thought by some that it would.., be possible 
to carry this programme to such a point that.., the necessity for intuition would 
then be entirely eliminated." But G6del's incompleteness theorems have shown 
this is impossible, and one turns naturally instead to "nonconstructive" systems 
of logic in which "not all the steps in a proof are mechanical, some being intu- 
itive." Ordinal logics provide examples of such: "When we have an ordinal logic, 
we are in a position to prove number-theoretic theorems by the intuitive steps of 
recognising formulae [of the )~-calculus] as ordinal formulae [representing well- 
orderings] . . . .  We want it to show quite clearly when a step makes use of intuition 
and when it is purely formal. The strain put on the intuition should be minimal. 
Most important of all, it must be beyond all reasonable doubt that the logic leads 
to correct results whenever the intuitive steps [i.e. recognition of notations for 
ordinals] are correct." Turing concludes the discussion by considering his ordi- 
nal logics A p and A n with respect to this last criterion, and after putting them 
in question, moves on at the end of his paper to consider a new type of ordinal 
logic AG. His judgments about these particular logics do not concern us here; 
rather we shall examine his general conception about the whole enterprise. 

In modem logical discussions, ingenuity in its normal sense is put outside 
the purview of the subject, just as Turing set the question of the interest of 
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results aside, though for working mathematicians both of these are critical to 
what counts as "good" mathematics. Logic simply hopes to answer the question: 
"What counts as mathematics?", while disregarding all questions of value. In 
"pre-G6del times", it thought to find an answer in that which can be formalised, 
or, more fully, that which can be formalised in an axiom system which is justified 
on the grounds of some basic mathematical conception. However, even in those 
times, the question of which formal systems were so justified received no com- 
mon answer. And even if it had turned out that one could find a complete formal 
system for mathematics, the question of justification would still r emain-  though 
no doubt it would have seemed less compelling. In any case, G6del's incomplete- 
ness theorem brought to centre stage the question of what leads one to accept a 
formal system for the (necessarily partial) representation of mathematics. It is 
here that "intuition" would have to play its role, both in judging the acceptabil- 
ity of any proposed systems and in searching for new such systems. However, 
there was one aspect of the incompleteness theorem that suggested how the day 
might be saved without having to over-exercise the intuition: G6del's examples of 
formally undecidable propositions can be decided directly by informal considera- 
tions. If a statement ~0 which "says" of itself that it is underivable in L is shown to 
be underivable in L, then it is evidently true and ought to be added to L; it is just 
that somehow such were "overlooked", so that the expanded system ought to be 
deemed acceptable if L is. Thus, if the passage from L to L t is obtained simply by 
adjoining such evidently correct statements to L, the acceptability of L t follows 
directly from that of L. Also, if each of a sequence Lal C La2 C "'" C L a n  C . . .  

of increasing systems is recognised to be acceptable then Un La,, is evidently ac- 
ceptable too. Hence, if we start with a basic acceptable system L1, it seems that 
all we have to do to overcome G6del's incompleteness is to iterate the passage 
from L to L I transfinitely, as in ordinal logics, to obtain the collection of systems 
(La I a ~ 0) .  But then the whole question of which formal systems ought to be 
admitted under this process shifts to the question: for which representations a of 
ordinals is it justified to accept La ? Here there is an implicit use of the principle 
of transfinite induction on the set {b I b ~<o a} of notations up to and including a, 
applied to the informal predicate "Lb is acceptable", i.e. "Lb is correct according 
to a basic mathematical conception". 

Thus the demand on "intuition" in recognising "which formulae are ordinal 
formulae" is somewhat greater than Turing suggests. But even in his own terms, 
there is a failure to test his analysis of purpose against reality. Is it a "sponta- 
neous judgement" without any "conscious train of reasoning" that leads one to 
recognise a complicated though computable ordering as being a well-ordering? 
Can one truly say that of familiar orderings for e0 or even co '~ let alone the 
more complicated orderings that have naturally emerged in modem proof the- 
ory (F0, ~be,+l (0) . . . .  )? Surely not. And once some form of reasoning has to be 
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admitted, then the whole question of which notations for ordinals are to be ac- 
cepted (if one is to work with ordinal logics at all) must be re-examined. This 
was subsequently done, at the suggestion of Kreisel [1958], by restricting atten- 
tion, successively, to those notations a for which one has a proof in L b for some 
b < o a that a 6 0  (i.e. that a represents a well-ordering). These have come to be 
called autonomous ordinal notations, and the notion of ordinal logic restricted in 
this way, autonomous recursive progressions of axiomatic theories. Kreisel orig- 
inally applied the notion of autonomous ordinal logics in his analysis of finitism, 
and I took it up (see Feferman [1964] and [1967]) in a corresponding analysis of 
predicativity. The idea of an autonomous progression more nearly approximates 
the process of finding out what is implicit in accepting a basic system L1, i.e. 
what one ought to accept, on the same fundamental grounds, if one accepts L 1. 
This theme is developed further in Kreisel [ 1970] and Feferman [ 1991 ]. The latter 
paper introduced a new notion, that of reflective closure of an axiomatic theory, 
which is a more realistic way to explain the idea of what is implicit in accepting a 
given axiomatic system. A still more realistic way of explaining this concept has 
been advanced more recently via the concept of the unfolding of such a system 
in Feferman [1996]. 

It is easily shown that [,.J La [a autonomous] is recursively axiomatizable and 
hence incomplete by G6del's theorem. Thus, whatever the value of the notion of 
autonomous progression (or reflective closure) for describing all that we ought 
to accept once we have made a basic conceptual commitment, we cannot hope 
thereby to answer the general question as to which axiomatic theories ought to be 
accepted according to the explanation, in a logical framework, of what constitutes 
mathematics. Ordinal logics provided the first model for attacking this question 
in any systematic way, and perhaps their greatest value lay in demonstrating the 
possibility of carrying out such an investigation at all. Turing's disappointment 
in their usefulness, and our latter-day disappointment for more sophisticated rea- 
sons, ought not to diminish our appreciation of what, after all, was this remark- 
able feature of Turing's achievement. 

6. Ordinal logics and mechanistic thought 

It is natural to move on to relate Turing's work on ordinal logics to his post-war 
work on machine intelligence and human mental activity (particularly in relation 
to mathematics). The relevant post-war work is Turing's NPL report [1948] and 
the further sources provided by Hodges [1983] (especially Chapter 6). Turing, as 
is well known, had a mechanistic conception of mind, and that conviction led him 
to have faith in the possibility of machines exhibiting intelligent behaviour. His 
idea seemed to be: if intelligent human activity depends only on the structure of 
the brain as a network of cells that are either activated or unactivated (and not on 
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its physical embodiment in tissue) then whatever humans can do in this respect 
can, in principle, be mimicked by machines. But even for Turing, the structure of 
the brain qua machine, as complicated as it may be, does not by itself suffice for 
intelligent behaviour. For that, he says, one also needs external instruction and 
internal initiative. Similarly, machines must be taught to think, be rewarded for 
success and punished for failure, so that they may learn from experience. Here 
one has a division between what is provided by the mechanism per se and what 
must be brought from outside in the form of a program that instructs the machine 
what to do. This echoes the division in ordinal logics between what is provided by 
the formal application of axioms and rules in any logic La and what must come 
from outside in order to recognise (by "intuition" or an "oracle") a as an ordinal 
notation that unlocks the La machinery. Also, once inside La, the application 
of "ingenuity" in searching for a proof of a conjecture may be compared with 
the required "initiative" for intelligent behaviour. However, I would not push this 
analogy too far, since it is already a bit strained. 

In sum, one might regard Turing's work on ordinal logics as a temporary shunt- 
ing off from his main track of thought, from 1936-37 on through his war work on 
mechanical cryptanalysis and then, after the war, with the design of computers 
and the analysis of intelligent behaviour in mechanical terms. Turing never tried 
to develop an over-all philosophy of mathematics and in the end did not seem to 
be really troubled by the problems that G6del's theorem raised for a mechanistic 
theory of mind. Indeed, I suspect from the history that he did not really have his 
heart in the Ph.D. work under Church, though the idea of Church's suggestion 
certainly appealed to him and, once engaged on it, he gave it the fullest of his 
mind. 

An interesting alternative point of view has recently been put forward by 
Hodges [ 1997]. He writes "I fell into this assumption inAlan Turing: the Enigma, 
[1983] essentially because I followed Turing's own later standpoint. But I now 
consider that at the time, Turing saw himself steaming straight ahead with the 
analysis of the mind, by studying a question complementary to 'On computable 
numbers.. . ' .  Turing asked in this paper whether it is possible to formalise those 
actions of the mind which are not those of following a definite method: mental 
actions one might call creative or original in nature. In particular, Turing focussed 
on the action of seeing the truth of one of G6del's unprovable assertions." 
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The well-known theorem of G0del (G(~del [1], [2]) shows that  every 
system of logic is in a certain sense incomplete, but at the same time it 
indicates means whereby from a system L of logic a more complete system 
L' may be obtained. By repeating the process we get a sequence 
L, L 1--  L ' ,  L 2--  LI ' ,  ... each more complete than the preceding. A logic 
L~ may then be constructed in which the provable theorems are the 
totali ty of theorems provable with the help of the logics L, L~, L 2, . . . .  
We may then form L2+ related to L~ in the same way as L~ was related to 
L. Proceeding in this way we can associate a system of logic with any 
constructive ordinal+. I t  may be asked whether a sequence of logics of 
this kind is complete in the sense that  to any problem A there corresponds 

"~ Th i s  p a p e r  r e p r e s e n t s  w o r k  done  whi le  a J a n e  E l i za  P r o c t e r  Vis i t ing  F e l l o w  a t  
P r i n c e t o n  U n i v e r s i t y ,  whe re  t he  a u t h o r  rece ived  m o s t  v a l u a b l e  adv ice  a n d  ass i s t ance  fi-om 
Prof .  Alonzo  Church .  

++ T h e  s i t u a t i o n  is n o t  qu i t e  so s imple  as is s u g g e s t e d  b y  th i s  c rude  a r g u m e n t .  See 
pages  189-193,  202, 203. 
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162 A . M .  TURING [June 16, 

an ordinal a such that  A is solvable by means of the logic L~. I propose 
to investigate this question in a rather more general case, and to give some 
other examples of ways in which systems of logic may be associated with 
constructive ordinals. 

1. The calculus of conversion. GSdel representations. 

I t  will be convenient to be able to use the "conversion calculus" of 
Church for the description of functions and for some other purposes. 
This will make greater clarity and simplicity of expression possible. I 
give a short account of this calculus. For detailed descriptions see 
Church [3], [2], Kleene [1], Church and Rosser [1]. 

The formulae of the calculus are formed from the symbols {, }, ( , ) ,  
[, ], ~, ~, and an infinite list of others called variables; we shall take for 
our infinite list a, b, ..., z, x', x",  . . . .  Certain finite sequences of such 
symbols are called well-formed formulae (abbreviated to W.F.F.) ;  we 
define this class inductively, and define simultaneously the free and 
the bound variables of a W.F.F. Any variable is a W.F.F. ; it is its only 
free variable, and it has no bound variables. ~ is a W.F.F. and has no free 
or bound variables. If  M and N are W.F.F. then {M}(N) is a W.F.F.,  
whose free variables are the free variables of M together with the free 
variables of N, and whose bound variables are the bound variables of M 
together with those of N. If  M is a W.F.F. and V is one of its free variables, 
then )~V[M] is a W.F.F. whose free variables are those of M with the 
exception of V, and whose bound variables are those of M together with V. 
No sequence of symbols is a W.F.F. except in consequence of these three 
statements. 

In metamathematical  statements we use heavy type letters to 
stand for variable or undetermined fornmlae, as was done in the last 
paragraph, and in future such letters will stand for well-formed formulae 
unless otherwise stated. Small letters in heavy type will stand for 
formulae representing undetermined positive integers (see below). 

A W.F.F. is said to be in normal form if it has no parts of the form 

and none of the form {{~](M)} (N), where M and N have no "~V [M]}(N) 
free variables. 

We say that  one W.F.F. is immediately convertible into another if it is 
obtained from it either by: 

(i) Replacing one occurrence of a well-formed part  )~V[M] by 2U[N], 
where the variable U does not occur in M, and N is obtained from M by 
replacing the variable V by U throughout. 

[[82~] 



1938.] SYSTEMS OF LOGIC BASED O~ ORDINALS. i63 

(ii) Replacing a well-formed part  {IV[M]}(N) by the formula which is 
obtained from M by replacing V by N throughout,  provided that  the bound 
variables of M are distinct both from V and from the free variables of N. 

(iii) The process inverse to (ii). 

(iv) Replacing a well-formed part  {{8}(M)}(M) by 

if M is in normal form and has no free variables. 

(v) Replacing a well-formed part  {{8}(M)} (N) by 

if M and N are in normal form, are not transformable into one another 
by repeated application of (i), and have no free variables. 

(vi) The process inverse to (iv). 

(vii) The process inverse to (v). 

These rules could have been expressed in such a way that  in no case 
could there be any doubt about the admissibility or the result of the 
transformation [in particular this can be done in the case of process (v)]. 

A formula A is said to be convertible into another B (abbreviated to 
" A  conv B ") if there is a finite chaifi of immediate conversions leading 
from one formula to the other. I t  is easily seen that  the relation of convert- 
ibility is an equivalence relation, i.e. it is symmetric, transitive, and 
reflexive. 

Since the formulae are liable to be very lengthy, we need means for 
abbreviating them. If  we wish to introduce a particular letter as an 
abbreviation for a particular lengthy formula we write the letter fol- 
lowed by " + "  and then by the formula, thus 

1 -> 2x [x] 

indicates that  I is an abbreviation for 2x[x]. We also use the arrow 
in less sharply defined senses, but never so ~s to cause any real confusion. 
In these cases the meaning of the arrow may be rendered by the words 
~' stands for" .  

I83  
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If  a formula F is, or is represented by, a single symbol we abbreviate 
{F}(X) to F(X). A formula {{F}(X)} (Y) may be abbreviated to 

{F}(X, Y), 
or to F(X, Y) if F is, or is represented by, a single symbol. Similarly 

for ! {{F}(X)}t (Y'} (Z,, etc. A formula )~Vl[AV2 ... F2Vr[M]l . . .  ] _  may be 

abbreviated to )~V1V 2 ... Vr. M. 
We have not as yet assigned any meanings to our formulae, and we do 

not intend to do so in general. An exception may be made for the case 
of the positive integers, which are very conveniently represented by the 
fi)rmulae 2fx .f(x), 2 fx . f ( f ( x ) ) ,  .... In fact we introduce the abbrevi- 
ations 

1-> 2fx . f(x) 

j(:(x>) 
o o, 

and we also say, for example, that  Ux.f(f(x)), o r  i ,  full 

represents the positive integer 2. Later we shall allow certain formulae 
to represent ordinals, but otherwise we leave them without explicit 
meaning; an implicit meaning may be suggested by the abbreviations 
used. In any case where any meaning is assigned to formulae it is desirable 
that  the meaning should be invariant under conversion. Our definitions 
of the positive integers do not violate this requirement, since it may be 
proved that  no two formulae representing different positive integers are 
convertible the one into the other. 

In connection with the positive integers we introduce the abbreviation 

x>). 
This formula has the property that, if n represents a positive integer, S(n) 
is convertible to a formula representing its successorS. 

Formulae representing undetermined positive integers will be repre- 
sented by small letters in heavy type, and we adopt once for all the 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

t This ibllows from (A) below. 
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convention that ,  if a small letter, n say, stands for a positive integer, then 
the same letter in heavy type, n, stands for the formula representing the 
positive integer. When no confusion arises from so doing, we shall not 
trouble to distinguish between an integer and the formula which represents it. 

Suppose tha t f (n )  is a function of positive integers taking positive integers 
as values, and tha t  there is a W.F.F.  F not containing 8 such that ,  for each 
positive integer n, F(n) is convertible to the formula representing f(n). 
We shall then say tha t  f(n) is 2-definable or formally definable, and tha t  F 
formally defines f(n). Similar conventions are used for functions of more 
than one variable. The sum function is, for instance, formally defined by 

2abfx .a( f ,  b(f, x) ) ;  in fact, for any positive integers m, n, p for which 
m + n  = p, we have 

! 2abfx a (f ,  b(f, x)) I (m, n ) c o n v  p . ~ "  . 

In order to emphasize this relation we introduce the abbreviation 

(l. x/)l ix. 
and we shall use similar notations for sums of three or more terms, products, 
etc. 

For any W.F.F.  G we shall say tha t  G enumerates the sequence 
G(1), G(2), ... and any other sequence whose terms are convertible to 
those of this sequence. 

When a formula is convertible to another which is in normal form, the 
second is described as a normal form of the first, which is then said to have 
a normal form. I quote here some of the more impor tant  theorems 
concerning normal forms. 

(A) I f  a formula has two normal forms they are convertible into one 
another by the use of (i) alone. (Church and Rosser [1], 479, 481.) 

(B) I f  a formula has a normal form then every well-formed part of it 
has a normal form. (Church and Rosser [1], 480-481.) 

(C) There is (demonstrably) no process whereby it can be said of a formula 
whether it has a normal form. (Church [3], 360, Theorem XVIII . )  

We often need to be able to describe formulae by means of positive 
integers. The method used here is due to G6del (G6del [1]). To each 
single symbol s of the calculus we assign an integer r[s] as in the table below. 

_ 

s {, (, o r  [ }, ), o r  ] ~, ~ a . . .  z x '  x "  x ' "  . . .  

r[s] 1 2 3 4 5 . . .  30  31 32 33 . 
�9 _ _ 

�9 . i , 

 85] 
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I f  81, 82, 8 k is a sequence of symbols, then 2r[sl ] 3 r[8~.] ~r[sk] (where Pk is ~  " ' ' / ~ k  

the k-th prime number) is called the G6del representation (G.R.) of that  
sequence of symbols. No two W.F.F. have the same G.R. 

Two theorems on G.R. of W.F.F. are quoted here. 

(D) There is a W.F.F. " f o r m "  such that i f  a is the G.R. of a W.F.F. 
A without free variables, then form (a) conv A. (This follows from a similar 
theorem to be found in Church [3], 53 66. Metads are used there in place 
of G.R.) 

(E) There is a W.F.F. Gr such that, i f  A is a W.F.F. with a normal form 
without free variables, then Gr(A) conv a, where a is the G.R. of a normal 
form of A. [Church [3], 53, 66, as (D).] 

2. Effective calculability. Abbreviation of treatment. 

A fimction is said to be "effectively calculable" if its values can be 
found by some purely mechanical process. Although it is fairly easy to 
get an intuitive grasp of this idea, it is nevertheless desirable to have some 
more definite, mathematically expressible definition. Such a definition 
was first given by G0del at Princeton in 1934 (G0del [2], 26), following in 
part  an unpublished suggestion of Herbrand, and has since been developed 
by Kleene [2]). These functions were described as "general recursive" by 
GSdel. We shall not be much concerned here with this particular definition. 
Another definition of effective calculability has been given by Church 
(Church [3], 356-358), who identifies it with )~-definability. The author has 
recently suggested a definition corresponding more closely to the intuitive 
idea (Turing [1], see also Post [1]). I t  was stated above that  " a  function 
is effectively calculable if its values can be found by some purely mechanical 
process ". We may take this statement literally, understanding by a purely 
mechanical process one which could be carried out by a machine. I t  is 
possible to give a mathematical description, in a certain normal form, of 
the structures of these machines. The development of these ideas leads to 
the author's definition of a computable function, and to an identification 
of computabi l i tyt  with effective calculability. I t  is not difficult, though 
somewhat laborious, to prove that  these three definitions are equivalent 
(Kleene [3], Turing [2]). 

t We  shall use the  expression " c o m p u t a b l e  f u n c t i o n "  to mean  a funct ion  calculable b y  
a machine ,  and  we let  " effect ively calculable " refer  to the  in tu i t ive  idea w i t h o u t  pa r t i cu la r  
ident i f ica t ion wi th  any  one of these definit ions.  We  do not  res t r ic t  the  values  t aken  by  a 
compu tab l e  func t ion  to be na tu ra l  number s ;  we m a y  for ins tance  have  computab le  pro- 
pos i t ional  funct ions,  
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In the present paper we shall make considerable use of Church's 
identification of effective calculability with A-definability, or, what comes 
to the same thing, of the identification with computability and one of the 
equivalence theorems. In most cases where we have to deal with an 
effectively calculable function, we shall introduce the corresponding W.F.F.  
with some such phrase as " the  function f is effectively calculable, let F be 
a formula ~ defining it ", or " le t  F be a formula such that  F(n)  is 
convertible to . . . whenever n represents a positive integer".  In such 
cases there is no difficulty in seeing how a machine could in principle be 
designed to calculate the values of the function concerned; and, assuming 
this done, the equivalence theorem can be applied. A statement of 
what the formula F actually is may be omitted. We may immediately 
introduce on this basis a W.F.F.  w with the property tha t  

w(m, n) conv r, 

if r is the greatest positive integer, if any, for which m r divides n and r is 1 
if there is none. We also introduce Dt with the properties 

Dt(n,  n) cony 3, 

Dt (n + m, n) conv 2, 

Dt(n, n + m )  conv 1. 

There is another point to be made clear in connection with the point of 
view that  we are adopting. I t  is intended that  all proofs that  are given 
should be regarded no more critically than proofs in classical analysis. The 
subject matter,  roughly speaking, is constructive systems of logic, but since 
the purpose is directed towards choosing a particular constructive system 
of logic for practical use, an a t tempt  at this stage to put our theorems into 
constructive form would be putting the cart before the horse. 

Those computable functions which take only the values 0 and 1 are of 
particular importance, since t h e y  determine and are determined by 
computable properties, as may be seen by replacing " 0 "  and "1 " by 
" t r u e "  and "false ". But, besides this type of property, we may have to 
consider a different type, which is, roughly speaking, less constructive 
than the computable properties, but more so than the general predicates 
of classical mathematics. Suppose that  we have a computable function of 
the natural  numbers taking natural numbers as values, then corresponding 
to this function there is the property of being a value of the function. 
Such a property we shall describe as "axiomatic " ;  the reason for using 
this term is that  it is possible to define such a property by giving a set of 
axioms, the property to hold for a given argument if and only if it is possible 
to deduce tha t  it holds from the axioms. 
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Axiomatic properties may also be characterized in this way. A 
property ~ of positive integers is axiomatic if and only if there is a 
computable property r of two positive integers, such that  r is true if 
and only if there is a positive integer y such that  r y) is true. Or again 

is ,'~xiomatic if and only if there is a W.F.F. F such that  ~b(n) is true if 
and only if F(n) cony 2. 

3. Number-theoretic theorems. 

By a number-theoretic theorem~ we shall mean a theorem of the form 
"O(x) vanishes for infinitely many natural  numbers x ", where O(x) is a 
primitive recursive~ function. 

We shall say that  a problem is number-theoretic if it has been shown 
that  any solution of the problem may be put in the form of a proof of one 
or more number-theoretic theorems. More accurately we may say tha t  
a class of problems is number-theoretic if the solution of any one of them 
can be transformed (by a uniform process) into the form of proofs of 
number-theoretic theorems. 

I shall now draw a few consequences from the definition of "number  
theoretic theorems ", and in section 5 I shall try to justify confining 
our consideration to this type of problem. 

t I bel ieve t h a t  there  is no general ly accep ted  meaning  for this  term,  bu t  it  should be 
not iced t h a t  we are using it in a ra ther  restr ic ted sense. Tile most  general ly accepted  mean-  
ing is p robab ly  this:  suppose t h a t  we take  an a rb i t ra ry  formula of the  f lmctional  calculus of 
the  first order and  replace the funct ion  variables  by  pr imi t ive  recursive relations.  The  re- 
suit ing formula represents  a typical  number- theore t ic  theorem ill this  (more general) sense. 

Pr imi t ive  recursive funct ions of na tura l  numbers  arc defined induc t ive ly  as follows. 
Suppose t h a t  f ( x  1 . . . . .  x,,-1), g ( x  1 . . . . .  x,,), h ( x  I . . . . .  x,+l) are pr imi t ive  rocursive, t hen  
@(x 1 . . . . .  xn) is pr imi t ive  recursive if it is (teilncd 1)y one of the  sets of equat ions  (a) to (e). 

(a) r ..., x , , ) - -  h ( x  1, . . . ,  x 1, g ( x , ,  .... . . . ,  x,,), x,,,+l, . . . ,  x , ,_ l ,  x , , , )  ( l ~ m ~ n ) ; - - ~ .  . 

(b) @(x 1 . . . . .  x , , ) - -  f ( x  2 . . . . .  x,);  

(c) r  where n -  1 and  a is some par t icu la r  na tu ra l  number ;  

(d) @ ( x l ) - - x l q - 1  ( n - -  1); 

(e) ~(x~ . . . . .  x~_~, O)=f(x~ . . . . .  x,,_~); 

@(x,, ..., x,,-1, x . -4-1)----h(x 1 . . . . .  x , ,  r  I . . . . .  x . )  ) .  

The class of l3rimitive recursive funct ions  is more res t r ic ted  t h a n  the  class of  computab lo  
functions,  bu t  i t  has the  advan tage  t h a t  there  is a process whereby  it can be said of a set  of 
equat ions  whe ther  it  defines a or imi t ive  recursive funct ion  in the  manne r  described A,bnve. 
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An alternative form for number-theoretic theorems i s "  for each natura l  
number  x there exists a natural  number y such tha t  r y) vanishes" ,  
where r y) is primitive recursive. In other words, there is a rule 
whereby, given the function 0(x), we can find a function r y), or given 
r y), we can find a function O(x), such tha t  "O(x) vanishes infinitely 
of ten"  is a necessary and sufficient condition for "for each x there is a y 
such tha t  r y) -- 0 ". In fact, given O(x), we define 

r y ) -  O(x)+a(x, y), 
where a(x, y) is the (primitive recursive) function with the properties 

a(x, y)-- 1 (y <~ x), 
= 0  (y > x). 

If  on the other hand we are given r y) we define O(x) by the equations 

01(0) - -  3, 

Ox(x- ~1) .... 2('+~d~ 4,(~3(~ "~ff2(01(:"))))3~'3(01(X))-['l--q( (~('~'3(01(g))--1' ~$(01(g)))), 

o(x) 

where w,.(x)is defined so as to mean "the largest s for which r ~ divides 
x ". The function a(x) is defined by the equations a(0) -- 0, a(x-}- 1) -- 1. 
I t  is easily verified tha t  the functions so defined have the desired pro- 
perties. 

We shall now show tha t  questions about the t ru th  of the s ta tements  of 
the form "doesf(x) vanish identically ", where f(x) is a computable function, 
can be reduced to questions about the t ru th  of number-theoretic theorems. 
I t  is understood tha t  in each case the rule for the calculation of f(x) is given 
and tha t  we are satisfied that. this rule is valid, i.e. tha t  the machine which 
should calculate f(x) is circle free (Turing [1], 233). The function f(x), 
being computable,  is general recursive in the Herbrand-G0del  sense, and 
therefore, by a general theorem due to KleeneX, is expressible in the form 

y)-  0]), (3.2) 
where ~y[2t(y)] means "the least y for which 2I(y) is t r u e "  and ~b(y) and 
r y) are primitive recursive functions. Without  loss of generality, we 
may suppose tha t  the functions r ~b take only the values 0, 1. Then, if 

. . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

t Kleene [3], 727. This result is really superfluous for our purpose, since the proof tha t  
every computable function is general reeursive proceeds by showing that these functions 
are of  the form (3 . 2). (Turing [2], 161). 
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we define p(x) by the equations (3. l) and 

, /o ) -  

it will be seen that  f(x) vanishes identically if and only if p(x) vanishes for 
infinitely many values of x. 

The converse of this result is not quite true. We cannot say that  the 
question about the t ruth of any number-theoretic theorem is reducible to 
a question about whether a corresponding computable function vanishes 
identically ; we should have rather to say that  it is reducible to the problem 
of whether a certain machine is circle free and calculates an identically 
vanishing function: But more is true: every number-theoretic theorem 
is equivalent to the statement that  a corresponding machine is circle free. 
The behaviour of the machine may be described roughly as follows: the 
machine is one for the calculation of the primitive recursive function O(x) 
of the number-theoretic problem, except that  the results of the calculation 
~re first arranged in a form in which the figures 0 and 1 do not occur, and 
the machine is then modified so that,  whenever it has been found that  the 
function vanishes for some value of the argument, then 0 is printed. The 
machine is circle free if and only if an infinity of these figures are printed, 
i.e. if and only if O(x) vanishes for infinitely many values of the argument. 
That, on the other hand, questions of circle freedom may be reduced to 
questions of the t ruth of number-theoretic theorems follows from the fact 
that  O(x) is primitive recursive when it is defined to have the value 0 if 
a certain machine ./[ prints 0 or 1 in its (xq-1)-th complete configuration, 
and to have the value 1 otherwise. 

The conversion calculus provides another normal form for the number- 
theoretic theorems, and the one which we shall find the most convenient to 
use. Every number-theoretic theorem is equivalent to a statement of the 
form "A(n)  is convertible to 2 for every W.F.F. n representing a positive 
integer",  A being a W.F.F. determined by the theorem; the property of 
A here asserted will be described briefly as " A  is dual ". Conversely such 
statements are reducible to number theoretic theorems. The first half of 
*,his assertion follows from our results for computable functions, or directly 
in this way. Since 0 (x-- 1)-+- 2 is primitive recursive, it is formally definable, 
say, by means of a formula G. Now there is (Kleene [1], 232) a 
W.F.F.  c2 with the property that, if T (r) is convertible to a formula repre- 
senting a positive integer for each positive integer r, then C2(T, n) is con- 
vertible to s, where s is the n-th positive integer t (if there is one) for which 
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T(t) conv 2; if T ( t ) conv2  for less than n values of t then C2(T, n) has 
normal form. The formula G(.~(G, n))  is therefore convertible to 2 n o  

if and only if O(x) vanishes for at least n values of x, and is con- 
vertible to 2 for every positive integer x if and only if O(x) vanishes 
infinitely often. To prove the second half of the assertion, we take G0del 
representations for the formulae of the conversion calculus. Let c(x) be 0 
i f x i s t h e G . R ,  o f2( i . e ,  i f x i s  2 a.31~ . 5 .7  a . l 12s .13 .17 .19  l~ . 232 . 29 .31 .  
37 l~ . 412 . 43.472s . 532 . 592 . 612 . 672) and let c(x) be 1 otherwise. Take an 
enumeration of the G.R. of the formulae into which A(m) is convertible: 
let a(m, n) be the n-th number in the enumeration. We can arrange the 
enumeration so that  a(m, n) is primitive recursive. Now the statement 
that  A (m) is convertible to 2 for every positive integer m is equivalent to 
the statement that,  corresponding to each positive integer m, there is a 

such that  c(a(m, n ) ) -  0; and this is number-theoretic. positive integer n 

I t  is easy to show that  a number of unsolved problems, such as the 
problem of the t ruth of Fermat 's  last theorem, are number-theoretic. 
There are, however, also problems of analysis which are number-theoretic. 
The Riemann hypothesis gives us an example of this. We denote by ~(s) 

oo 

the function defined for t !~s-  a > 1 by the series E n -'~ and over the rest 
n = l  

of the complex plane with the exception of the point s = 1 by analytic 
continuation. The Riemann hypothesis asserts that  this function does 
not vanish in the domain a > �89 It  is easily shown that  this is equivalent 
to saying that  it does not vanish for 2 > cr > �89 ~ s -  t > 2, i.e. that  it does 
not vanish inside any rectangle 2 > ~ > 1 > > �89 /T, T t 2, where T is 
an integer greater than 2. Now the function satisfies the inequalities 

.N . N l - s  ~(s)--En - s -  1 s--I < 2t(N-- 2)-~, 

] ~(8)-5(s ')  1 < 6o t [8 - s '  !, 

2 < a < � 8 9  t>~2, t 

2 < a ' < 1 ,  t '~>2, 

and we can define a primitive recursive function ~(l, l', m, m', N, M) such 
that  

~(/, l', m, m', N, M)--M 
N . N l - s  

1 1 

and therefore, if we put  

~(1, M, m, M, M~+2,  M ) -  X(1, m, M), 
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we have 

( l__~ + i m + ~9 / X(1, m, M)--122T 
M 

provided tha t  

1 1 1 l + l  1+~_ <_~_ <__~ <2--- 1 m ~ l  m + l  
M '  2 <  < M < T  

(--1 < t g <  1, --1 < tg '  < 1). 

I f  we define B(M, T) to be the smallest value of X(1, m, M) for which 

1 1 1 1 1 m 1 

then the Riemann hypothesis is true if for each T there is an M satisfying 

B(M, T)> 122T. 

I f  on the other hand there is a T such that ,  for all M, B(M, T) ~ 122T, 
the Riemann hypothesis is false; for let 1M, m M be such tha t  

X(1M, mM, M) ~ 122T, 

then 
244T 

M " 

Now if a is a condensation point of the sequence (1M+imM)/M then since 
(s) is continuous except at s ---- 1 we must  hav6 ~ (a) = 0 implying the falsity 

of the Riemann hypothesis. Thus we have reduced the problem to the 
question whether for each T there is an M for which 

B(M, T):> 122T. 

B(M, T) is primitive recursive, and the problem is therefore number-  
theoretic. 

4. A type of problem which is not number-theoretict. 

Let us suppose tha t  we are supplied with some unspecified means of 
solving number-theoretic problems; a kind of oracle as it were. We shall 

Compare Rosser [|]. 
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not go any further into the nature of this oracle apart  from saying that  it 
cannot be a machine. With the help of the oracle we could form a new 
kind of machine (call them o-machines), having as one of its fundamental  
processes that  of solving a given number-theoretic problem. More 
definitely these machines are to behave in this way. The moves of the 
machine are determined as usual by a table except in the case of moves 
from a certain internal configuration 0. If  the machine is in the internal 
configuration 0 and if the sequence of symbols marked with 1 is then the 
well-formedt formula A, then the machine goes into the internal 
configuration ~ or t according as it is or is not true that  A is dual. The 
decision as to which is the case is referred to the oracle. 

These machines may be described by tables of the same kind as those 
used for the description of a-machines, there being no entries, however, for 
the internal configuration ~. We obtain description numbers from these 
tables in the same way as before. If  we make the convention that,  in 
assigning numbers to internal configurations, ~, ~, t are always to be 
q2, q3, q4, then the description numbers determine the behaviour of the 
machines uniquely. 

Given any one of these machines we may ask ourselves the question 
whether  or not it prints an infinity of figures 0 or 1 ; I assert that  this class 
of problem is not number-theoretic. In view of the definition o f "  number 
theoretic problem" this means that  it is not possible to construct 
an o-machine which, when supplied$ with the description of any other 
o-machine, will determine whether that  machine is o-circle free. The 
argument may be taken over directly from Turing [1 ], w 8. We say that  
a number is o-satisfactory if it is the description number of an o-circle free 
machine. Then, if there is an o-machine which will determine of any 
integer whether it is o-satisfactory, there is also an o-machine to 
calculate the values of the function 1--r Let r(n) be the n-th 
o-satisfactory number and let r be the m-th figure printed by the 
o-machine whose description number is r(n). This o-machine is circle free 
and there is therefore an o-satisfactory number K such that  Cx(n) = 1--r 
for all n. Put t ing n = K yields a contradiction. This completes the proof 
that  problems of circle freedom of o-machines are not number-theoretic. 

Propositions of the form that  an o-machine is o-circle free can always 
be put  in the form of propositions obtained from formulae of the functional 
calculus of the first order by replacing some of the functional variables by 
primitive recursive relations. Compare foot-note ~ on page 168. 

t Without real loss of generality we may suppose that  A is always well formed. 
Compare Turing [1], w 7. 
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5. Syntactical theorems as number-theoretic theorems. 

I now mention a property of number-theoretic theorems which suggests 
tha t  there is reason for regarding them as of particular importance. 

Suppose that  we have some axiomatic system of a purely formal nature. 
We do not concern ourselves at all in interpretations for the formulae of 
this system; they are to be regarded as of interest fi)r themselves. An 
example of what  is in mind is afforded by the conversion calculus (w 1). 
Every sequence of symbols " A  cony B ", where A and B are well formed 
formulae, is a formula of the axiomatic system and is provable if the 
W.F.F.  A is convertible to B. The rules of conversion give us the rules of 
procedure in this axiomatic system. 

Now consider a new rule of procedure which is reputed to yield only 
formulae provable in the original sense. We may ask ourselves whether 
such a rule is valid. The statement that  such a rule is valid would be 
number-theoretic. To prove this, let us take G(idel representations for the 
formulae, and an enumeration of the provable formulae; let r be the 
G.R. of the r-th formula in the enumeration. We may suppose r to be 
primitive recursive if we are prepared to allow repetitions in the enumer- 
ation. Let r be the G.R. of the r-th formula obtained by the new rule, 
then the s tatement  that  this new rule is valid is eT~ivalent to ttle assertion of 

(r)(3s)[~b(r)-- r 

(the domain of individuals being the natural  numbers). I t  has been shown 
in w 3 that  such statements are number-theoretic. 

I t  might plausibly be argued that  all those theorems of mathematics 
which have any significance when taken alone are in effect syntactical 
theorems of this kind, stating the validity of certain "derived rules" of 
procedure. Without  going so far as this, I should assert that  theorems of 
this kind have an importalmc which makes it worth while to give them 
special consideration. 

6. Logic formulae. 

We shall call a formula L a logic formula (or, if it is clear that  we are 
speaking of a W.F.F.,  simply a logic) if it has the property that,  if A is a 
formula such that  L(A) cony 2, then A is dual. 

A logic formula gives us a means of satisfying ourselves of the t ruth  of 
number-theoretic theorems. For to each number-theoretic proposition 
there corresponds a W.F.F. A which is dual if and only if the proposition is 
true. Now, if L is a logic and L(A) conv 2, then A is dual and we know tha t  
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the corresponding number-theoretic proposition is true. I t  does not 
follow that,  if L is a logic, we can use L to satisfy ourselves of the t ruth  of 
any number-theoretic theorem. 

If  L is a logic, the set of formulae A for which L(A) cony 2 will be called 
the extent of L. 

I t  may be proved by the use of (D), (E), p. 166, that  there is a formula X 
such that,  if M has a normal form, has no free variables and is not convertible 
to 2, then X(M) conv 1, but, if M cony 2, then X(M) conv 2. If  L is a logic, 

then 2 x . X  (L(x))  is also a logic whose extent is the same as that  of L, 
and which has the property that,  if A has no free variables, then 

either is always convertible to 1 or to 2 or else has no normal form. A 
logic with this property will be said to be standardized. 

We shall say that  a logic L' is at least as complete as a logic L if the extent 
of L is a subset of the extent of L'. The logic L' is more complete than L if 
the extent of L is a proper subset of the extent of L'. 

Suppose that  we have an effective set of rules by which we can prove 
formulae to be dual; i.e. we have a system of symbolic logic in which the 
propositions proved are of the form that  certain formulae are dual. Then 
we can find a logic formula whose extent consists of just those formulae 
which can be proved to be dual by the rules; that  is to say, there is 
a rule for obtaining the logic formula from the system of symbolic logic. 
In fact the system of symbolic logic enables us to obtain t a computable 
function of positive integers whose values run through the G(~del represen- 
tations of the formulae provable by means of the given rules. By the 
theorem of equivalence of computable and )~-definable functions, there is 
a formula J such that  J(1), J(2), ... are the G.R. of these formulae. Now 
let 

w+ sv 

Then I assert that  W(J) is a logic with the required properties. The 
properties of c2 imply that  ~ (C, 1) is convertible to the least positive integer 
n for which C (n) cony 2, and has no normal form if there is no such integer. 
Consequently ~ (C, l, I, 2) is convertible to 2 if C(n) cony 2 for some positive 
integer n, and it has no normal form otherwise. That  is to say that  W( J, A) 

conv 2 if and only if 8(J  (n), A )  cony 2, some n, i.e. if J (n) cony A some n. 

t Compare Turing [i], 252, second footnote, [2], 156. 
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There is conversely a formula W' such that,  if L is a logic, then W' (L) 
enumerates the extent of L. For there is a formula Q such that  
Q(L, A, n) cony 2 if and only if L(A) is convertible to 2 in less than n steps. 
We then put 

Of coursc, W'(W(J)) , tormally entirely different fro,n J a, nd W(W'(L))" x 
from L. 

]n the case where we ha, ve ;~ symbolic logic whose propositions can be 
interpreted as ~mmbcr-theoretic theorems, but are not expressed in the 
form of the duality of formulae, we shall again have a corresponding logic 
formula, but its relation to the symbolic logic is not so simple. As an 
example let us take the case where the symbolic logic proves that  certain 
primitive recursive functions vanish infinitely often. As was shown in 
w 3, we can associate with each such proposition a W.F.F. which is dual if 
and only if the proposition is true. When we replace the propositions of 
the symbolic logic by theorems on the duality of formulae in this way, our 
previous argument applies and we obtain a certain logic formula L. 
However, L does not determine uniquely which are the propositions provable 
in the symbolic logic; for it is possible that  "01@) vanishes infinitely 
of ten"  and "Oz(x) vanishes infinitely often" are both associated with 
" A  is dual ", and that  the first of these propositions is provable in the 
system, but  the second not. However, if we suppose that  the system of 
symbolic logic is sufficiently powerful to be able to carry out the argument 
on 1313. 170-171 titan this difficulty cannot arise. There is also the possibility 
tha t  there may be formulac in the extent of L with no propositions of the 
form "O(x) vanishes infinitely often" corresponding to them. But to each 
such formula we can assign (by a different argument) a proposition p of 
the symbolic logic which is a necessary and sufficient condition for A to 
be dual. With p is associated (in the  first way) a formuh~ A'. Now L 
can always be modified so that  its extent contains A' whenever it 
contains A. 

We shall be interested principally in questions of completeness. Let us 
suppose that  we have a class of systems of symbolic logic, the propositions 
of these systems being expressed in a uniform notation and interpretable as 
number-theoretic theorems; suppose also that  there is a rule by which we 
can assign to each proposition p of the notation a W.F.F. A v which is dual 
if and only if p is true, and that  to each W.F.F. A wc can assign a propo- 
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sition PA which is a necessary and sufficient condition for A to be dual. 
p^, is to be expected to differ from p. To each symbolic logic C we can 
assign two logic formulae Lc and Lc'. A formula A belongs to the extent 
of Le if PA is provable in C, while the extent of I C' consists of all Ap, where 
p is provable in C. Let us say that  the class of symbolic logics is complete 
if each true proposition is provable in one of them: let us also say that  a 
class of logic formulae is complete if the set-theoretic sum of the extents of 
these logics includes all dual formulae. I assert that  a necessary condition 
for a class of symbolic logics C to be complete is that  the class of logics Le 
is complete, while a sufficient condition is that  the class of logics Lc' is 
complete. Let us suppose that  the class of symbolic logics is complete; 
consider PA, where A is arbitrary but dual. I t  must be provable in one of 
the systems, C say. A therefore belongs to the extent of L/, i.e. the class 
of logics Lc is complete. Now suppose the class of logics Lc' to be 
complete. Let p be an arbitrary true proposition of the notation ; Ap must 
belong to the extent of some Lc', and this means that  p is provable in C. 

We shall say that  a single logic formula L is complete if its extent 
includes all dual formulae; that  is to say, it is complete if it enables 
us to prove every true number-theoretic theorem. I t  is a consequence 
of the theorem of G5del (if suitably extended) that  no logic formula is com- 
plete, and this also follows from (C), p. 165, or from the results of Turing 
[1 ], w 8, when taken in conjunction with w 3 of the present paper. The idea 
of completeness of a logic formula is not therefore very important, 
although it is useful to have a term for it. 

Suppose Y to be a W.F.F. such that  Y (n) is a logic for each positive in- 
The formulae of the extent of Y(n) are enumerated by W(Y(n)) ,  teger n .  

~ J 

and the combined extents of these logics by 

If  we put 

Ar. W (Y(w(2, r), w(3, r ) ) ) .  

then F(Y) is a logic whose extent is the combined extent of 

Y(1), Y(2), Y(3), . . . .  

To each W.F.F. L we can assign a W.F.F. V(L) such that  a necessary 
and sufficient condition for L to be a logic formula is that  V(L) is dual. 
Let Nm be a W.F.F. which enumerates all formulae with normal forms 

sx•. 2. vo~.. 45. ~o.  2240. l~I 
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and no free variables. Then the condition for L to be a logic is that  
L(Nm(r), s )cony  2 for all positive integers r, s, i.e. that 

2a .L(Nm(w(2,  a)), w(3, a)) 

is dual. We may therefore put 

V-->2la.l(Nm(w(2, a)), w(3, a)). 

7. Ordinals. 

We begin our treatment of ordinals with some brief definitions from 
the Cantor theory of ordinals, but for the understanding of some of the 
proofs a greater amount of the Cantor theory is necessary than is_ set out 
here. 

Suppose that we have a class determined by the propositional function 
D(x) and a relation G(x, y) ordering its members, i.e. satisfying 

G(x, y)& G(y, z)D G(x, z), (i), 

D(x) & D(y) ~ G(x, y) v G(y, x) v x -- y, (ii) 

G(x, y) ~ n(x)& n(y), (iii) 

,~ G(x, x). (iv) 

(7.1) 

The class defined by D(x) is then called a series with the ordering relation 
G(x, y). The series is said to be well ordered and the ordering relation is 
called an ordinal if every sub-series which is not void has a first term, i.e. if 

.(x)) 

The condition (7.2) is equivalent to another, more suitable for our 
purposes, namely the condition that every descending subsequence must 
terminate; formally 

The ordering relation G(x, y) is said to be similar to G' (x, y) if there is 
a one-one correspondence between the series transforming the one relation 
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into the other. This is best expressed formally, thus 

(3M) E(x)(D(x) j (3x ' )M(x,  x'))&(x')(D'(x')~ (3x)M(x, Xl)) 

Ordering relations are regarded as belonging to the same ordinal if and only 
if they are similar. 

We wish to give names to all the ordinals, but  this will not be possible 
until they have been restricted in some way;  the class of ordinals, as at 
present defined, is more than enumerable. The restrictions tha t  we actually 
impose are these: D(x) is to imply tha t  x is a positive integer; D(x) and 
G(x, y) are to be computable properties. Both of the propositional 
functions D(x), G(x, y) can then be described by means of a single W.F.F.  
fJ with the properties: 

~ (m,  n) cony 4 unless both D(m) and D(n) are true, 

f~(m, m) cony 3 if D(m) is true, 

f2(m, n) conv 2 if D(m), D(n), G(m, n), ,~, (m -- n) are true, 

f~(m, n) cony 1 if D(m), D(n), ,~, G(m, n), ~, (m : n) are true. 

In consequence of the conditions to which D(x), G(x, y) are subjected, 
if2 must  further satisfy: 

(a) if f~(m, n) is convertible to 1 or 2, then l~(m, m) and ~(n ,  n) arc 
convertible to 3, 

(b) if f2(m, m) and O.(n, n) are convertible to 3, then ~ (m,  n) is 
convertible to 1, 2, or 3, 

(c) if f~(m, n) is convertible to 1, then ~Q(n, m) is convertible to 2 and 
conversely, 

(d) if ff2(m, n) and ~(n ,  p) are convertible to 1, then fl(m, p) is also, 

(e) there is no sequence m 1, m 2, ... such tha t  f~(mi+x, mi)cony 2 for 
each positive integer i, 

(f) f2(m, n) is always convertible to 1, 2, 3, or 4. 

If  a formula fl satisfies these conditions then there are corresponding 
propositional functions D(x), G(x, y). We shall therefore say t h a t  f~ is 

~ 2  
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an ordinal formula if it satisfies the conditions (a)-(f). I t  will be seen tha t  
a consequence of this definition is tha t  Dt  is an ordinal formula;  it repre- 
sents the ordinal w. The definition tha t  we have given does not  pretend 
to have virtues such as elegance or convenience. I t  has been introduced 
rather to fix our ideas and to show how it is possible in principle to describe 
ordinals by means of well formed formulae. The definitions could be 
modified in a number of ways. Some such modifications arc quite tr ivial;  
they are typified by modifications such as changing the numbers l, 2, 3, 4, 
used in the definition, to others. Two such definitions will be said to 
be equivalent ; in general, wc shrill say tha t  two definitions are equivalent if 
there are W.F.F.  T, T'  such that ,  if A is an ordinal formula under one defi- 
nition and represents the ordinal a, then T' (A) is an ordinal formula under 
the second definition and represeuts the same ordinal;  and, conversely, 
if A'  is an ordinal formuh~ under the second definition representing a, then 
T(A') represents a under the first definition. Besides definitions equivalent 
in this sense to our origilml definition, there arc a number  of other possibili- 
ties open. Suppose for instance tha t  wc do not require D(x) and G(x, y) to 
be computable, but  tha t  we require only tha t  D(x) and G(x, y) & x < y are 
axiomatic'~. This le.ads to ~ definition of an ordinal formula which is 
(presumably) not  equivalent to the definition tha t  we are using1:. There 
are numerous possibilities, and little to guide us in choosing one definition 
rather  than another. No one of them could well be described as " w r o n g "  ; 
some of them may be found more valuable in applications than  others, 
and the particular choice tha t  we have made has been determined par t ly  
by the applications tha t  we have in view. In the case of theorems of a 
negative character, one would wish to prove them for each one of the 
possible definitions of "ordinal  fi)rmula". This programme could, I 
think, be carried through for the nega.tive results of w 10. 

Before leaving the subject of possible ways of defining ordinal formulae, 
I must  mention another definition due to Church and Kleene (Church and 
Kleene [1 ]). We can make use of this definition in constructing ordinal 
logics, but  it is more convcnicJ~t to use a slightly different definition which 
is equivalent (in the sense just described) to the Church-Kleene deft- 
nition as modified in Church [4]. 

t To require (/(x, y) to be axiomatic amounts  to requiring G(x, y) to be computable  
on account  of (7. 1) (ii). 

On the other hand,  if D(x) is axiomatic and (l(x, y) is computable  ill the modified sense 
tha t  there is a rule for determining whether  G(x, y) is true which leads to a definite result  
in all cases where D(x) and D(y) are true, the corresponding definition of ordinal  formula  
is equivalent  to our definition. To give the proof  would be too much of a digression. 
Probably  other  equivalences of this kind hold. 
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Introduce the abbreviations 

Suc-->?taufx.f(a(u,f, x)). 

We define first a partial  ordering relation " <  " which holds between. 
certain pairs of W.F.F.  [conditions (1)-(5)]. 

(1) I f  A cony B, then A < C implies B < C and C < A implies C < B. 

(2) A < Suc (A). 

(3) For  any positive integers m and n, ?tufx. R(n) < ?tufx. R(m) implies 
?tufx. R(n) < ~tufx. u(R). 

(4) I f A < B  and B < C ,  then A < C .  
W.F.F.  A, B, C, 2tufx. R. 

(1)-(4) are required for any 

(5) The relation A < B holds only when compelled to do so by (1)-(4). 

We define C-K ordinal formulae by the conditions (6)-(10). 

(6) I f  A conv B and A is a C-K ordinal formula, then B is a C-K ordinal 
formula. 

(7) U is a C-K ordinal formula. 

(8) I f A  is a C-K ordinal formula, then Suc (A) is a C-K ordinal formula. 

(9) I f  ~tufx. R(n) is a C-K ordinal formula and 

~tufx . R(n) < ;tufx. R(S(n) )  

for each positive integer n, then ?tufx. u(R) is a C-K ordinal formula~. 

(10) A formula is a C-K ordinal formula only if compelled to be so by 
(6)-(9). 

t If we also allow ~xufx. u(R) to be a C-K ordinal formula when 
aufx.n(R) cony aufx.S(n, R) 

for all n, then the formulae for sum, product and exponentiation of C-K ordinal formulae 
can be much simplified. For instance, if A and B represent a and/3, then 

hufx. B(u, f, A(u, f, x)) 

represents a-i-f3. Property (6) remains true. 
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The representation of ordinals by formulae is described by (11)-(15). 

(11) If A cony B and A represents a, then B represents a. 

(12) U represents 1. 

(13) If A represents a, then Suc (A) represents a + 1. 

(14) If 2ufx. R(n) represents a n for each positive integer n, then 
2ufx. u(R) represents the upper bound of the sequence al, a2, %, ... .  

(15) A formula represents an ordinal only when compelled to do so by 
(11)-(14). 

We denote any ordinal represented by A by E,  without prejudice to 
the possibility that more than one ordinal may be represented by A. We 
shall write A ~ B to mean A < B or A conv B. 

In proving properties of C-K ordinal formulae we shall often use a kind 
of analogue of the principle of transfinite induction. If r is some property 
and we have: 

(a) If A conv B and r then r 

(b) r 

(c) If r then r (A)), (7.5) 

(d) If r and )~ufx. R ( n ) <  ),ufx. R(S(n)) for each 
positive integer n, then r 

then r for each C-K ordinal formula A. To prove the validity of this 
principle we have only to observe that the class of formulae A satisfying 
r is one of those of which the class of C-K ordinal formulae was defined 
to be the smallest. We can use this principle to help us to prove : ~  

(i) Every C-K ordinal formula is convertible to the form 2ufx. B, 
where B is in normal form. 

(ii) There is a method by which for any C-K ordinal formula, we can 
determine into which of the forms U, Suc (Aufx. B), Aufx.u(R) (where u 
is free in R) it is convertible, and by which we can determine B, R. In 
each case B, R are unique apart from conversions. 

(iii) If A represents any ordinal, EA is unique. 
A ~ B, then '~A ~ ~.a. 

If F,A, ~B exist and 
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(iv) If A, B, C are C-K ordinal formulae and B < A, C < A, then either 
B < C ,  C < B ,  or BconvC.  

(v) A formula A is a C-K ordinal formula if: 

(h) U ~ A ,  

(B) If  ~ufx. u ( R ) ~  A and n is a positive integer, then 

2ufx. R(n)<2ufx. R(S(n)), 
(C) For any two W.F.F. B, C with B < A ,  C < A  we have 

B < C ,  C < B ,  or BconvC,  but never B < B ,  

(D) There is no infinite sequence B1, Be, ... for which 

Bp < Br_l < A  

for each r. 

(vi) There is a formula H such that, if A is a C-K ordinal formula, then 
H(A) is an ordinal formula representing the same ordinal. H(A) is not 
an ordinal formula unless A is a C-K ordinal formula. 

Proof of (i). Take r to be " A  is convertible to the form ~ufx. B, 
where B is in normal form ". The conditions (a) and (b) are trivial. For 
(c), suppose that  A cony 2ufx. B, where B is in normal form; then 

Suc (A) cony Aufx .f(B) 

and f(B) is in normal form. For (d) we have only to show that  u(R) has a 
normal form, i.e. that  R has a normal form; and this is true since 
R(1) has a normal form. 

Proof of (ii). Since, by hypothesis, the formula is a C-K ordinal formula 
we have only to perform conversions on it until it is in one of the forms 
described. I t  is not possible to convert it into two of these three forms. 
For suppose that  2ufx . f (A(u ,  f, x)) conv 2ufx. u(R) and is a C-K ordinal 
formula; it is then convertible to the form 2ufx. B, where B is in normal 
form. But the normal form of 2ufx. u(R) can be obtained by conversions 

and that  of ~ufx.f(A(u, f, x)) by conversions on A(u, f, x)(as fol- R, o n  

lows from Church and Rosser [ 1 ], Theorem 2); this, however, would imply 
that  the formula in question had two normal forms, one of form 2ufx. u(S) 
and one of form 2ufx .f(C), which is impossible. Or let U cony 2ufx. u(R), 
where R is a well formed formula with u as a free variable. We may 

suppose R to be in normal form. :Now U is 2ufx.u(2y.f(y(I, x))). By 
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R is identical with ,~y .f (y(I, x)), which does not have u as a (A), p. 165, 
free variable. I t  now remains to show only that  if 

Suc (2ufx. B) cony Suc (2ufx. B') and 2ufx. u(R) cony 2ufx. u(R'), 

then B cony B' and R cony R'. 

If Sue (~ufx. B) conv Sue (~ufx. B'), 

then ~ufx .f(B) cony 2ufx .f(B') ; 

but both of these formulae can be brought to normal form by conversions 
on B, B' and therefore B cony B'. The same argument applies in the case 
in which 2ufx. u(R) cony 2ufx. u(R'). 

Proof of (iii). To prove the first half, take r to be "EA is unique ". 
Then (7.5) (a) is trivial, and (b) follows from the fact that  U is not convertible 
either to the form Suc (A) or to 2ufx.u(R), where R has u as a free variable. 
For (c): Suc (A) is not convertible to the form 2ufx. u(R); tile possibility 
that  Suc (A) represents an ordinal on account of (12) or (14) is therefore 
eliminated. By (13), Suc (A) represents a ' + l  if A' represents a' and 
Suc (A) cony Suc (A'). If we suppose that  A represents a, then A, A', being 
C-K ordinal formulae, are convertible to the forms 2ufx. B, ~ufx. B'; but 
then, by (ii), B cony B', i.e. A cony A', and therefore a -- a' by the hypo- 
thesis r Then Esuc(A)----a'+l is unique. For (d): 2ufx.u(R) is not 
convertible to the form Suc (A) or to U if R has u as a free variable. If  
hufx. u (R) represents an ordinal, it is so therefore in virtue of (14), possibly 
together with (11). Now, if 2ufx.u(R)conv2ufx.u(R'), then R convR',  
so that  the sequence 2ufx. R(1), 2ufx, R(2) . . . .  in (14) is unique apart from 
conversions. Then, by the induction hypothesis, the sequence al,  a2, a a, ... 
is unique. The only ordinal that  is represented by ~ufx. u(R) is the upper 
bound of this sequence; and this is unique. 

For the second half we use a type of argument rather different from our 
transfinite induction principle. The formulae B for which A < B form 
the smallest class for which: 

Suc (A) belongs to the class. 
If  C belongs to the class, then Suc (C) belongs to it. 
If 1ufx. R (n) belongs to the class and 

Aufx. a(n)  < Aufx. R(m), (7.6) 

where m, n are some positive integers, then Aufx.u(R) belongs 
to it. 

If C belongs to the class and C cony C', then C' belongs to it. 

~104]] 



1938.] SYSTEMS OF LOGIC BASED ON ORDINALS. 185 

I t  will be sufficient to prove that  the class of formulae B for which 
either EB does not exist or EA < Es satisfies the conditions (7.6). Now 

ESuc (A) - -  'W'A-~- 1 > '~'A, 

Esur > Ec ~ EA if C is in the class. 

If  E~uS~. R(n) does not exist, then EAuf~.u(~) does not exist, and therefore 
Aufx u(R) is in the class If ~ exists and is greater than EA, and . . . .  h u f x .  R(n) 
Aufx. R(n) < Aufx. R(m), then 

~ �9 ~ W--'Xufx. R(n) M'A, ~-~ uf.r. u ( R )  . ~ "~ 

so that  ~ufx.u(R) belongs to the class. 

Proof of (iv). We prove this by induction with respect to A. Take 
~(A) to b e "  whenever B <: A and C < A then B ~ C or C ~ B or B cony C'". 
r follows from the fact that  we never have B <: U. I fwe have r and 
B ~ Suc (A), then either B ~ A or B cony A ; for we can find D such that  
B ~ D, and then D ~ Suc (A) can be proved without appealing either to 
(1) or (5); (4) does not apply, so we must have D conv A. Then, if 
B < S~c (A) and C ~ Suc (A), we have four possibilities, 

B convA, C convA, 

BconvA, C < A ,  

B < A, C cony A, 

B ~ A ,  C < A .  

In the first case B conv C, in the second C ~ B, in the third B ~ C, and in 
the fourth the induction hypothesis applies. 

Now suppose that  Aufx. R(n) is a C-K ordinal formula, that  

Aufx. R(n) < Aufx. R(S(n>) and ~(R(n>), 

for each positive integer n, and that  A conv ;~ufx. u(R). Then, if B < A, 
this means that  B ~Aufx. R(n) for some n; if we have also C < A, 
then B < ;~ufx. R(q), C < ;~ufx. R(q) for some q. Thus, for these B and C, 
the required result follows from r R(q)). 

Proof of (v). The conditions (C), (D) imply that  the classes of inter- 
convertible formulae B, B < A are well-ordered by the relation " <  ". 
We prove (v) by (ordinary) transfinite induction with respect to the order 
type a of the series formed by these classes ; (a is, in fact, the solution of the 
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equation l q-~ :-EA, but we do not need this). We suppose then that  
(v) is true for all order types less than a. If  E < A, then E satisfies the condi- 
tions of (v) and the corresponding order type is smaller: E is therefore a 
C-K ordinal formula. This expresses all consequences of the induction 
hypothesis that  we need. There are three cases to consider: 

(x) a = O. 

(y) a -  13+ 1. 

(z) a is of neither of the forms (x), (y). 

In case (x) we must have A cony U on account of (A). In case (y) there is 
a formula D such that  D < A, and B ~< D whenever B < A. The relation 
D < A must hold in virtue ofeither (1), (2), (3), or (4). I t  cannot be in virtue 
of (4) ; for then there would be B, B < A, D < B contrary to (C), taken in 
conjunction with the definition of D. If  it is in virtue of (3), then a is the 
upper bound of a sequence a 1, a 2, ... of ordinals, which are increasing 

by reason of (iii) and the conditions 2tufx. R(n)< 2ufx. R(S(n)) in ( B ) .  

This is inconsistent with a -  13+ 1. This means that  (2) applies [after we 
have eliminated (1) by suitable conversions on A, D] and we see that  
A conv Suc (D) ; but, since D < A, D is a C-K ordinal formula, and A must 
therefore be a C-K ordinal formula by (8). Now take case (z). I t  is 
impossible for A to be of the form Suc (D), for then we should have B < D 
whenever B < A, and this would mean that  we had case (y). Since U < A, 
there must be an F such tha t  F < A is demonstrable either by (2) or by 
(3) (after a possible conversion on A);  it must of course be demonstrable 
by (3). Then A is of the form 2ufx.u(R). By (3), (B) we see tha t  
~,ufx. R(n) < A for each positive integer n; each ~ufx. R(n) is therefore a 
C-K ordinal formula. Applying (9), (B) we see that  A is a C-K ordinal 
formula. 

Proof of (vi). To prove the first half, it is sufficient to find a method 
whereby from a C-K ordinal formula A we can find the corresponding 
ordinal formula ~.  For then there is a formula H 1 such tha t  H l(a) conv p 
if a is the  G.R. of A and p is that  of f~. H is then to be defined by 

H->)~a. form (Hl (Gr (a ) ) )  . 

The method of finding ~ may be replaced by a method of finding f](m, n), 
given A and any two positive integers m, n. We shall arrange the method 
so that,  whenever A is not an ordinal formula, either the calculation of the 
values does not terminate or else the values are not consistent with 
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f] being an ordinal formula. In this way we can prove the second half 
of (vi). 

Let Ls be a formula such tha t  Ls(A) enumerates the classes of formulae 
B, B < A [i.e. if B < A there is one and only one positive integer n for which 
Ls(A, n ) c o n v B ] .  Then the rule for finding the value of f](m, n ) i s  as 
follows : ~  

First  determine whether U ~< A and whether A is convertible to the form 
r(Suc, U). This terminates if A is a C-K ordinal formula. 

I f  A conv r(Suc, U) and either m ~ r-+- 1 or n ~ r-k 1, then the value is 4. 
I f  m < n ~ r + l ,  the value is 2. I f n < m ~ r + l ,  the value is 1. I f  
m -- n ~ r-k 1, the value is 3. 

I f  A is not  convertible to this form, we determine whether either A or 
Ls(A, m) is convertible to the form hufx.u(R); and if either of them is, we 

verify tha t  hufx. R(n) ~ ~,ufx. R ( S ( n ) ) .  We shall eventually come to 
an affirmative answer if A is a C-K ordinal formula. 

Having checked this, we determine concerning m and n whether 
Ls(A, m) < Ls(A, n), Ls(A, n) < Ls(A, m), or m -- n, and the value is to 
be accordingly 1, 2, or 3. 

I f  A is a C-K ordinal formula, this process certainly terminates.  
To see tha t  the values so calculated correspond to an ordinal formula, and 
one representing EA, first observe tha t  this is so when EA is finite. In the 
other case (iii) and (iv) show tha t  EB determines a one-one correspondence 
between the ordinals fi, 1 ~/3  ~ EA, and the classes of interconvertible 
formulae B, B < A. If  we take G(m, n) to be Ls(A, m) -< Ls(A, n), we see 
tha t  G(m, n) is the ordering relation of a series of order type t EA and on the 
other hand tha t  the values of f](m, n) are related to G(m, n) as on p. 179. 

To prove the second half suppose tha t  A is not  a C-K ordinal formula. 
Then one of the conditions (A)-(D) in (v) must  not  be satisfied. I f  (A) is 
not  satisfied we shall not obtain a result even in the calculation of f](1, 1). 
I f  (B) is not  satisfied, we shall have for some positive integers p and q, 

Ls(A, p) conv ~,ufx. u(R) 

but  not  ~ufx. R ( q ) < 2 u f x .  R(S(q)). Then the process of calculating 
f~(p, q) will not  terminate.  In case of failure of (C) or (D) the values 
of f](m, n) may all be calculable, but  if so conditions (a)-(f), p. 179, 
will be violated. Thus, if A is not a C-K ordinal formula, then H(A) is 
not  an ordinal formula. 

t The order type is f~, where 1 + f 3 -  "~A; but B -  "=A' since Y'A is infinite. 
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I propose now to define three formulae Sum, Lim, Inf of importance in 
connection with ordinal formulae. Since they are comparatively simple, 
they will fi)r once be given almost in full. The formula Ug is one with the 
property that Ug(m) is convertible to the formula representing the largest 
odd integer dividing m: it is not given in full. P is the predecessor 
function; P (S(m))convm.  P(1)conv 1. 

Bd ->Aww'aa'x.Al(Af .w(a,a,w'(a',a', f)), x, 4), 

Sum --> ~ww' pq. Bd (w, w', Hf(p), Hf(q), 

Al(p, Al(q,w'(Hf(p), Hf(q)), 1), A1 (S(q), w(Hf(p), . f (q) ) ,  2 ) ) ) ,  

Lim->~zpq.()~ab.Bd(z(a), z(b),Ug(p), Ug(q), Al(Dt(a, b)-~Dt(b,a), 

Dt,a, b,, z(a, Ug,p), Ug(q,)))}(w,2,  p,, w(2, q)), 

Inf ->2wapq A1 ()~f .w(a, p, w(a, q, f) ), w(p, q), 4). 

The essential properties of these formulae are described by: 

Al(2r--1, m, n)convm, Al(2r, m, n)convn, 

Hf(2m) conv m, Hf(2m-- l) conv m, 

Bd(~, ~', a, a', x)cony 4, unless both 

~(a, a) conv 3 and Q'(a', a') conv 3, 

it is then convertible to x. 

If ~, ~'  are ordinal formulae representing a, fl respectively, then 
Sum(Q, ~') is an ordinal formula representing a-~fl. If Z is a W.F.F. 
enumerating a sequence of ordinal formulae representing al, a2, ..., then 
Lim (Z) is an ordinal formula representing the infinite sum al-~-a2-~-a a .... 
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If  f] is an ordinal formula representing a, then Inf  (f  t) enumerates a 
sequence of ordinal formulae representing all the ordinals less than a 
without  repetitions other than  repetitions of the ordinal 0. 

To prove tha t  there is no general method for determining about a formula 
whether it is an ordinal formula, we use an argument akin to tha t  leading 
to the Burali-Forti  paradox;  but  the emphasis and the conclusion are 
different. Let us suppose tha t  such an algorithm is available. This 
enables us to obtain a recursive enumeration f]l, ~-).,, ... of the ordinal 
formulae in normal form. There is a formula Z such tha t  Z (n )cony  ~n. 
Now Lim (Z) represents an ordinal greater than any represented by an ft , ,  
and it has therefore been omit ted from the enumeration. 

This argument  proves more than was originally asserted. In fact, it 
proves that ,  if we take any class E of ordinal formulae in normal form, such 
that ,  if A is any ordinal formula, then there is a formula in E representing 
the same ordinal as A, then there is no method whereby one can determine 
whether a W.F.F.  in normal form belongs to E. 

8. Ordinal logics. 

An ordinal logic is a W.F.F.  A such that  A (Q) isa logic formula whenever 
t~ is an ordinal formula. 

This definition is intended to bring under one heading a number of 
ways of constructing logics which have recently been proposed or which 
are suggested by recent advances. In this section I propose to show how 
to obtain some of these ordinal logics. 

Suppose tha t  we have a class W of logical systems. The symbols used 
in each of these systems are the same, and a class of sequences of symbols 
called " fo rmu lae"  is defined, independently of the particular system in 
W. The rules of procedure of a system C define an axiomatic subset of 
the formulae, which are to be described as the "provable formulae of G ". 
Suppose further tha t  we have a method whereby, from any system C 
of W, we can obtain a new system C', also in IV, and such tha t  the set of 
provable formulae of C' includes the provable formulae of C (we shall be 
most interested in the case in which they are included as a proper subset). 
I t  is to be understood tha t  this " m e t h o d "  is an effective procedure 
for obtaining the rules of procedure of C' from those of C. 

Suppose tha t  to certain of the formulae of W we make number- 
theoretic theorems correspond: by modifying the definition of formula, we 
may suppose tha t  this is donef or all formulae. We shall say that  one of the 
systems C is valid if the provabili ty of a formula in C implies the t ru th  
of the corresponding number-theoretic theorem. Now let the relation of 
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C' to C be such that  the validity of C implies the validity of C', and let 
there be a, valid system C O in W. Finally, suppose that,  given any 
computable sequence C~, C2, ... of systems in W, the " l imi t  sys tem",  in 
which a formula is provable if and only if it is provable in one of the systems 
Cr also belongs to W. These limit systems are to be regarded, not as 
flmctions of the sequence given in extension, but as functions of the rules 
of formation of their terms. A sequence given in extension may be 
described by various rules of formation, and there will be several corre- 
sponding limit systems. Each of these may be described as a limit system 
of the sequence. 

In these circumstances we may construct an ordinal logic. Let us 
associate positive integers with the systems in such a way that  to each C 
there corresponds a positive integer me, and that  mc completely describes 
the rules of procedure of C. Then there is a W.F.F. K, such tha t  

K(mc) cony me, 

for each C in W, and there is a W.F.F. 0 such that,  if D(r )conv me,. for 
each positive integer r, then 0(D) conv me, where C is a limit system of 
C~, C~., . . . .  With each system C of W it is possible to associate a logic 
formula Lc: the relation between them is that,  if G is a formula of W and 
the number-theoretic theorem corresponding to G (assumed expressed in 
the conversion calculus form) asserts tha t  B is dual, then Lc(B) conv 2 if 
and only if G is provable in C. There is a W.F.F. G such tha t  

G(mc) conv Lc 

for each C of W. Put  

N-->,~a. G(a(O, K, mc, o)). 
I assert that  N(A) is a logic formula for each C-K ordinal formula A, and 
that,  if A ~ B, then N(B) is more complete than N(A), provided that  there 
are formulae provable in C' but not in C for each valid C of W. 

To prove this we shall show that  to each C-K ordinal formula A there 
corresponds a unique system C[A] such tha t :  

(i) A(O, K, moo)convmc:[A], 
and that  it further satisfies: 

(ii) C[U] is a limit system of Co', Co', ..., 

(iii) C[Suc (A)] is (C[A])', 

(iv) C[Aufx. u(R)] is a limit system of C[Aufx. R(1)], C[hufx. R(2)], ..., 
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A and 2ufx.u(R) being assumed to be C-K ordinal formulae. The 
uniqueness of the system follows from the fact that mc determines C 
completely. Let us try to prove the existence of C[A] for each C-K ordinal 
formula A. As we have seen (p. 182) it is sufficient to prove 

(a) C[U] exists, 

(b) if C[A] exists, then C[Suc (A)] exists, 

(c) if C[,~ufx. R(1)], C[)~ufx. R(2)], ... exist, then C[aufx.u(R)] exists. 

Proof of (a). 

{2y.K(y(I, mco))I (n)eonvK(mco)eonvmco. 

for all positive integers n, and therefore, by the definition of {9, there is a 
system, which we call C[U] and which is a limit system of Co', Co', ..., 
satisfying 

But, on the other hand, 

U(O, K, me0)convO()~y.K(y(I, me0))). 

This proves (a) and incidentally (ii). 

Proof of (b). 

Suc (A, O, K, moo)conv K(A(O, K, moo)) 

conv K(mc[A]) 

conv m(c[A])'. 

Hence C[Suc (A)] exists and is given by (iii). 

Proof of (c). 

{{Aufx. R}(O, K, The0)} (n)cony {Aufx. R(n)}(O, K, me0) 

conv mc[~u/x. R(n)] 

by hypothesis. Consequently, by the definition of O, there exists a C 
which is a limit system of 

C[~ufx. R(1)], C[~ufx. R(2)], ..., 
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and satisfies 

O({Aufx. u(R)}(O, K, mco))cony me. 

We define C[?tufx. u(R)] to be this C. We then have (iv) and 

{aufx. u(R)}(0, K, meo) eonv 0({,~ufx. R}(0, K, mco)) 

cony mci~,ufz.u(l~)]. 

This completes the proof of the properties (i)-(iv). From (ii), (iii), (iv), 
the fact that C o is valid, and that C' is valid when C is valid, we infer that  
C[A] is valid for each C-K ordinal formula A: also that  there are more 
formulae provable in C[B] than in C[A] when A < B. The truth of our 
assertions regarding N now follows in view of (i) and the definitions of N 
and G. 

We cannot conclude that N is an ordinal logic, since the formulae A 
are C-K ordinal formulae; but the formula H enables us to obtain an 
ordinal logic from N. By the use of the formula Gr we obtain a formula 
Tn such that, if A has a normal form, then Tn (A) enumerates the G.R.'s 
of the formulae into which A is convertible. Also there is a formula Ck such 
that, if h is the G.R. of a formula H(B), then Ck(h) conv B, but otherwise 
Ck(h) cony U. Since H(B) is an ordinal formula only if B is a C-K ordinal 

Ck(Tn(~), n)) is a C-K ordinal formula for each ordinal formula formula, 
% 

~) and each integer n. For many ordinal formulae it will be convertible 
to U, but, for suitable (~)., it will be convertible to any given C-K ordinal 
formula. If  we put 

A->Awa. I' ()in. N( Ck(Tn(w, n) ) ) ,  a) ,  

A is the required ordinal logic. In fact, on account of the properties of 
F, A_(t), A) will be convertible to 2 if and only if there is a positive integer 
n such that  

.>), A)coov: 

If f] eonv H(B), there will bean  integer n such that  Ck(Tn(f2, n)) \ conv B, 
and then 

N (o I A>. 
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/ \ 
For n, CktTn(  , oonvortiblo to V or to B, where 

eonvH(B).  Thus A_(f~, A) eonv 2 if ~ eonvH(B) and N(B, A) cony 2 
or if N(U, A)cony 2, but  not in any other case. 

We may now specialize and consider particular classes W of systems. 
First let us t ry  to construct the ordinal logic described roughly in the 
introduction. For W we take the class of systems arising from the system 
of Principia Mathematicat by adjoining to it axiomatic (in the sense 
described on p. 167) sets of axionls~:. Godel has shown that  primitive 
reeursive relationsw can be expressed by means of formulae in P. In fact, 
there is a rule whereby, given the reeursion equations defining a primitive 
recursive relation, we can find a formulall 9/Ix0, ..., z0] such that  

9g [f(,,,1) 0, ..., f(mr) 0] 
is provable in P if F(m 1, ..., m,.) is true, and its negation is provable other- 
wise. Further,  there is a method by which we can determine about a 
formula ~I[x 0 . . . .  , z0] whether it arises from a primitive reeursive relation in 
this way, and by which we can find the equations which defined the relation. 
Formulae of this kind will be called recursion formulae. We shall make use 
of a property tha t  they possess, which we cannot prove formally here with- 
out giving their definition in %11, bug which is essentially trivial. Db[x 0, Y0] 
is to stand for a certain reeursion formula such tha t  Db[f'm)0, .f(")0] is 
provable in P if m = 2n and its negation is provable otherwise. Suppose 
tha t  ~I[x0], ~[x0] are two reeursion formulae. Then the theorem which 
I am assuming is tha t  there is a reeursion relation ~','t, '~[x0] such tha t  
we can prove 

g~t,~[Xo]--= (~Yo)((Db[xo, Yo]. ~t[Yo])V (Db[fxo, fYo]. ~[Yo])) (8.1) 
in P. 

"t" W h i t e h e a d  and  Russell  [1 ]. The axioms and rules of procedure  of a similar sys tem 
P will be found in a convenien t  form in GSdel [1], and  I tbllow G6del. The symbols  
for the  na tu ra l  numbers  in P are 0, f O ,  f r o  . . . .  , fc,,iO . . . .  Variables wi th  the suffix " 0 "  s tand  
for na tu ra l  numbers .  

~: I t  is somet imes regarded as necessary tha t  the set of axioms used should be computable ,  
the  in ten t ion  being t h a t  i t  should be possible to verit~ of a formula r epu ted  to be an axiom 
whe the r  it real ly  is so. We  can ob ta in  tile same effect wi th  axiomat ic  sets of axioms ill 
this  way.  I n  the  rules of  procedure  describing which are the  axioms, we incorporate  a 
m e t h o d  of  enumera t ing  them,  and  we also in t roduce  a rule t h a t  in the  main  par t  of the  
deduct ion,  whenever  we wri te  down an axiom as such, we mus t  also wri te  down its posit ion 
in the  enumera t ion .  I t  is possible to ver i fy whe ther  this  has been done correctly.  

w A re la t ion F ( m  1 . . . .  , m,.) is p r imi t ive  recursive if it  is a necessary and  sufficient 
condi t ion for the  vanish ing  of a p r imi t ive  recursive funct ion r  1 . . . . .  m, . ) .  

II Capital  German  le t ters  will be used to s t and  for variable  or unde te rmined  formulae 
in P .  An expression such as ~1[~, ~] s tands  for the resul t  of subs t i tu t ing  ~ and  1~ 
for x 0 and  Y0 in ~1. 

s~R. 2. VOL. 45.  ~tO. 2241 .  0 
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The significant formulae in any of our extensions of P are those of the 
form 

(Xo)(3Yo) ~t[Xo, Y0], (8.2) 

where ~[x o, Yo] is a recursion formula, arising from the relation R(m, n) 
let us say. The corresponding number-theoretic theorem states tha t  for 
each natural  number m there is a natural  number n such tha t  R(m, n) is 
true. 

The systems in W which are not valid are those in which a formula of 
the form (S. 2) is provable, but  at  the same time there is a natural  number, 
m say, such that,  for each natural  number n, R(m, n) is false. This means 
to say tha t  ~ ~t [fr 0, fr 0] is provable for each natural  number  n. Since 
(S.2) is provable, (3x0)~t[fim~0, Yo] is provable, so tha t  

(3Yo) 9g[f(m)0, Yo], ~ 9g[f("*)0, 0], ~ 9g[f(m)0, f0], ... (8.3) 

are all provable in the system. We may simplify (8.3). For a given m we 
may prove a formula of the form ~t[fr Yo] = ~3[Y0] in P, where ~3[xo] 
is a recursion formula. Thus we find tha t  a necessary and sufficient 
condition for a system of W to be valid is tha t  for no recursion formula 
!3[x0] are all of the formulae 

(~Xo) ~[Xo], ~ , ~ [ o ] ,  ,~ ~ [ /o ]  . . . .  (s .  4) 

provable. An important  consequence of this is that,  if 

~I[Xo], ~2[Xo], o..: ~,[r~ [Xo] 

are recursion formulae, if 

(3xo) ~l[Xo] v ... v (3xo) ~,,[xo] (8.5) 

is provable in C, and C is valid, then we can prove ~r[/(a)0] in C for soine 
natural  numbers r, a, where 1 ~ r ~ n. Let us define -~ to be the formula 

(~Xo) ~[Xo] v ... v (3Xo) ~r[XO] 

and then define ~r[xo] recursively by the condition tha t  ~l[xo] is 9gl[Xo] 
and ~r+l[Xo] be ~,,~,+l[Xo]. Now I say tha t  

~ , ~  (3Xo)~,[Xo] (s. 6) 
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is provable for 1 ~< r ~< n. I t  is clearly provable for r = 1: suppose it 
to be provable for a given r. We can prove 

(Yo)(3Xo) Db [xo, Yo] 

and 

from which we obtain 

(Yo)(3Xo) Db[fiCo, fYo], 

and 

@r[Y0] ~ (3x0)((Db[xo, Yo]. ~r[Yo]) v (Db[fx0, fYo]. ~tr+~[Yo])) 

~r+l[Y0] :::) (3Xo)((Db[xo, Yo]. er[Yo])v (Db [fx o, fYo]. ~+~[Yo])). 

These together with (8.1) yield 

(3Yo)~r[Yo]V (3Yo) ~r+l[Y0] ~ (-~X0) ~(i'~, ~t~+I[X0], 

which is sufficient to prove (8.6) for r §  1. Now, since (8.5) is provable 
iff C, (3x0)~[Xo] must  also be provable, and, since C is valid, this means 
tha t  ~,~[f(m)0] must  be provable for some natural  number m. From (8.1) 
and the definition of ~[Xo] we see tha t  this implies that  ~r[f(a)O] is 
provable for some natural  numbers a and r, 1 ~ r ~ n. 

To any system C of W we can assign a primitive recursive relation 
Pc(m, n) with the intuitive meaning "m is the G.R. of a proof of the 
formula whose G.R. is n ". We call the corresponding recursion formula 
Proofc[xo, Yo] (i.e. Proofc[f<m)O, f(n)0] is provable when Pc(m, n) is true, 
and its negation is provable otherwise). We can now explain what  is the 
relation of a system C' to its predecessor C. The set of axioms which we 
adjoin to P to obtain C' consists of those adjoined in obtaining C, together 
with all formulae of the form 

(3x0) Proofc[x o, f(m)0] ~ ~, (8.7) 

where m is the G.R. of ~. 
We want  to show tha t  a contradiction can be obtained by assuming C' 

to be invalid but  C to be valid. Let us suppose tha t  a set of formulae of 
the form (8.4) is provable in C'. Let ~1, ~2, ..., ~k be those axioms of 
C' of the form (8.7) which are used in the proof of (3x0)~[Xo]. We may 
suppose tha t  none of them is provable in C. Then by the deduction 
theorem we see tha t  

( ~ .  ~ . . .  ~k) ~ (3xo) ~ [Xo] (s.s) 
o2 
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is provable in C. Let ~t l be (3Xo) Proofc[xo, f(m,)O]~ ~t. Then from (8.8) 
we find tha t  

(3x0) Proofc [x 0, f(~,)0] v ... v (_=x0) Proofc Ix0, ]'(rap 0] v (3x 0) ~ [x 0] 

is provable in C. I t  follows from a result which we have just  proved 
tha t  either ~[f(c)0] is provable for some natural  number c, or else 
Proofc[f ('0 O, f(m~)0] is provable in C for some natural  number u and some 
l, 1 ~ l ~ k : but this would mean tha t  ~l is provable in C (this is one of the 
points where we assume the validity of C) and therefore also in C', con- 
t rary to hypothesis. Thus ~ [fie)0] must be provable in C';  but  we are also 
assuming ~ [ f ( c ) 0 ]  to be provable in C'. There is therefore a contra- 
diction in C'. Let us suppose tha t  the axioms ~t~', ..., ~k", of the form 
(8.7), when adjoined to C are sufficient to obtain the contradiction and 
that  none of these axioms is tha t  provable in C. Then 

~ ' v  ~ ~2' v . . .v  ~ ~k" 

is provable in C, and if ~t' is (3x0) Proofc[x 0, j'('~/)0] ~ ~t' theu 

(3x 0] Proofc [x 0, f(m")O] v ... v (3x 0) Proof [x 0, f(m*") O] 

is provable in C. But, by repetition of a previous argument,  this means 
tha t  ~l' is provable for some l, 1 ~ 1 ~ k', contrary to hypothesis. This 
is the required contradiction. 

We may now construct an ordinal logic in the manner described on 
pp. 190-193. We shall, however, carry out the construction in rather  more 
detail, and with some modifications appropriate to the particular case. 
Each system C of our set W may be described by means of a W.F.F.  Mc 
which enumerates the G.R.'s of the axioms of C. There is a W.F.F.  E 
such that,  if a is the G.I~. of some proposition ~, then E(Mc, a) is con- 
vertible to the G.R. of 

(3Xo) Proofc[Xo, f(a)o]  :::} ~. 

If  a is not the G.R. of any proposition in .P, theu E(Mc, a ) i s  to be 
convertible to the G.R. of 0 - - 0 .  From E we obtain a W.F.F.  K such 
tha t  K(Mc, 2 n ~  1) conv Me(n), K(Mc, 2n) cony E(Mc, n). The successor 
system C' is defined by K(Mc)convMc'. Let us choose a formula G 
such tha t  G(Mc, A)conv 2 if and only if the number-theoretic theorem 
equivalent to " A  is dua l"  is provable in C. Then we define Ap by 

This is an ordinal logic provided tha t  P is valid. 
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Another ordinal logic of this type has in effect been introduced by 
Church ~. Superficially this ordinal logic seems to have no more in common 
with Ap than that  they both arise by the method which we have described, 
which uses C-K ordinal formulae. The initial systems are entirely 
different. However, in the relation between C and C' there is an 
interesting analogy. In Church's method the step from C to C' is performed 
by means of subsidiary axioms of which the most important  (Church [2], 
p. 88, lm) is almost a direct translation into his symbolism of the rule that  
we may take any formula of the form (8.4) as an axiom. There are other 
extra axioms, however, in Church's system, and it is therefore not unlikely 
that  it is in some respects more complete than Ap. 

There are other types of ordinal logic, apparently quite unrelated to the 
type tha t  we have so far considered. I have in mind two types of ordinal 
logic, both of which can be best described directly in terms of ordinal 
formulae without any reference to C-K ordinal formulae. I shall describe 
here a specimen A H of one of these types of ordinal logic. Ordinal logics 
of this kind were first considered by Hilbert (Hilbert [1], 183ff), and have 
also been used by Tarski (Tarski [ 1 ], 395 if) ; see also G(~del [1], foot-note 
48 a. 

Suppose that  we have selected a particular ordinal formula ~. We shall 
construct a modification P~ of the system P of G(~del (see foot-note t 
on p. 193. We shall say that  a natural number n is a type if it is either even 
or 2p--  1, where ~(p,  p) cony 3. The definition of a variable in P is to be 
modified by the condition that  the only admissible subscripts are to be the 
types in our sense. Elementary expressions are then defined as in P :  in 
particular the definition of an elementary expression of type 0 is un- 
changed. An elementary formula is defined to be a sequence of symbols 
of the form ~m !~,, where !~,  !~ are elementary expressions of types m, 
n satisfying one of the conditions (a), (b), (c). 

(a) m and n are both even and m exceeds n, 

(b) m is odd and n is even, 

(c) m -  2p--1,  n - -  2q--1, and ~(p,  q) cony 2. 

With these modifications the formal development of P a  is the same as 
tha t  of P. We want, however, to have a method of associating number- 
theoretic theorems with certain of the formulae of P~. We cannot take 
over directly the association which we used in P. Suppose that  G is a 

t In outline Church [l], 279-280. In greater detail Church [2], Chap. X. 
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formula in P interpretable as a number-theoretic theorem in the way 
described in the course of constructing Ap (p. 193). Then, if every type 
suffix in G is doubled, we shall obtain a formula in P~ which is to be 
interpreted as the same number-theoretic theorem. By the method of 
w 6 we can now obtain from P a  a formula L~ which is a logic formula 
if P~ is valid; in fact, given s there is a method of obtaining L~, so 
that  there is a formula AB such that  AH(t2) cony L~ for each ordinal 
formula s 

Having now familiarized ourselves with ordinal logics by means of 
these examples we may begin to consider general questions concerning 
them. 

9. Completeness questions. 
The purpose of introducing ordinal logics was to avoid as far as possible 

the effects of G(~del's theorem. It  is a consequence of this theorem, 
suitably modified, that  it is impossible to obtain a complete logic formula, 
or (roughly speaking now) a complete system of logic. We were able, 
however, from a given system to obtain a more complete one by the 
adjunction as axioms of formulae, seen intuitively to be correct, but which 
the G0de! theorem shows are unprovablet  in the original system; from 
this we obtained a yet more complete system by a repetition of the 
process, and so on. We found that  the repetition of the process gave us 
a new system for each C-K ordinal formula. We should like to know 
whether this process suffices, or whether the system should be extended 
in other ways as well. If it were possible to determine about a W.F.F. 
in normal form whether it was an ordinal formula, we should know for 
certain that  it was necessary to make extensions in other ways. In fact 
for any ordinal formula A it would then be possible to find a single logic 
formula L such that, if A(~, A) conv 2 for some ordinal formula ~, then 
L(A) cony 2. Since L must be incomplete, there must be formulae A for 
whichA(~,  A) is not convertible to 2 for any ordinal formula ~. However, 
in view of the fact, proved in w 7, that  there is no method of determining 
about a formula in normal form whether it is an ordinal formula, the 
case does not arise, and there is still a possibility that  some ordinal 
logics may be complete in some sense. There is a quite natural way of 
defining completeness. 

Definition of completeness of an ordinal logic. We say that  an ordinal 
logic A is complete if corresponding to each dual formula A there is an 
ordinal formula ~)a such that  A(~A, A)cony2.  

f In  the case of P we adjoined all of the axioms (3x0) Proof Ix0, f("')0] D ~ ,  where m 
is the  G.R, of ~i the GSdel theorem shows that  s o m e  of them are unprovable in P.  
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As has been explained in w 2, the reference in the definition to the 
existence of ~lx for each A is to be understood in the same naive way as 
any reference to existence in mathematics. 

There is room for modification in this definition: we might require 
that  there is a formula X such that  X(A)cony ~A, X(A) being an ordinal 
formula whenever A is dual. There is no need, however, to discuss the 
relative merits of these two definitions, because in all cases in which we 
prove an ordinal logic to be complete we shall prove it to be complete even 
in the modified sense; but in cases in which we prove an ordinal logic 
to be incomplete, we use the definition as it stands. 

In the terminology of w 6, A is complete if the class of logics A(~) is 
complete when :1 runs through all ordinal formulae. 

There is another completeness property which is related to this one. 
Let us for the moment describe an ordinal logic A as all inclusive if to each 
logic formula L there corresponds an ordinal formula ~(L) such that  
A(~}(L)) is as complete as L. Clearly every all inclusive ordinal logic is 
complete; for, if A is dual, then S(A) is a logic with A in its extent. But, 
if A is complete and 

Ai->Akw. F(Ara.8 (4, 8(2, k(w, V ( N m ( r ) ) ) ) ~ - 8 ( 2 ,  Nm(r, a ) ) ) ) ,  

then Ai(A) is an all inclusive ordinal logic. For, if A is in the extent of 
A(F~A) for each A, and we put ~(L)-~ ~V(L), then I say that, if B is in the 
extent of L, it must be in the extent of Ai(A, O~,.)). In fact, we see that  
Ai(A, ~V(L), B) is convertible to 

FOra.8(4, 8(2, A(~v(i.), V ( N m ( r ) ) ) ) ~ 8 ( 2 ,  Nm(r, a ) ) ) ,  B ) .  

For suitable n, Nm(n)convL and then 

Nm (n, B) conv 2, 

and therefore, by the properties of F and 

Ai (A, ~VtL), B) conv 2. 

Conversely Ai(A, :IV(L), B) can be convertible to 2 only if both Nm(n, B) 
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/ 
and A(~v(L), V / N m ( n ) ) ) a r e  convertible to 2 for some positive integer 

but, ifA(~v(L), V(Nm(n) ) ) cony2 ,  then N m ( n ) m u s t  be a logic, and, n ;  

since Nm(n, B)cony2,  B must be dual. 
I t  should be noticed that  our definitions of completeness refer only to 

number-theoretic theorems. Although it would be possible to introduce 
formulae analogous to ordinal logics which would prove more general 
theorems than number-theoretic ones, and have a corresponding definition 
of completeness, yet, if our theorems are too general, we shall find that  our 
(modified) ordinal logics are never complete. This follows from the 
argument of w 4. If our "oracle"  tells us, not whether any given number- 
theoretic statement is true, but whether a given formula is an ordinal 
formula, the argument still applies, and we find that  there are classes of 
problem which cannot be solved by a uniform process even with the help 
of this oracle. This is equivalent to saying that  there is no ordinal logic 
of the proposed modified type which is complete with respect to these 
problems. This situation becomes more definite if we take formulae 
satisfying conditions (a)-(e), (f') (as described at the end of w 12) instead 
of ordinal formulae; it is then not possible for the ordinal logic to be 
complete with respect to any class of problems more extensive than the 
number-theoretic problems. 

We might hope to obtain some intellectually satisfying system of 
logical inference (for the proof of number-theoretic theorems) with some 
ordinal logic. G(~del's theorem shows that  such a system cannot be 
wholly mechanical; but with a complete ordinal logic we should be able 
to confine the non-mechanical steps entirely to verifications that  particular 
formulae are ordinal formulae. 

We might also expect to obtain an interesting classification of number- 
theoretic theorems according to "depth  ". A theorem which required an 
ordinal a to prove it, would be deeper than one which could be proved by 
the use of an ordinal fl less than a. However, this presupposes more than 
is justified. We now define 

Invariance of ordinal logics. An ordinal logic A is said to be in- 
variant up to an ordinal a if, whenever ~l, ~ '  are ordinal formulae repre- 
senting the same ordinal less than a, the extent of A(~) is identical with 
the extent of A([l'). An ordinal logic is invariant if it is invariant up 
to each ordinal represented by an ordinal formula. 

Clearly the classification into depths presupposes that  the ordinal 
logic used is invariant. 
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Among the questions that  we should now like to ask are 

(a) Are there any complete ordinal logics? 

(b) Are there any complete invariant ordinal logics? 

To these we might have added "are  all ordinal logics complete ? ";  but 
this is trivial; in fact, there are ordinal logics which do not suffice to 
prove any number-theoretic theorems whatever. 

We shall now show that  (a) must be answered affirmatively. In fact, 
we can write down a complete ordinal logic at once. Put  

Od->~a. 1 2finn. Dt(f(m),f(n))} (~s. ~(~r.r(I, a(s)), 1, s))) 

and Comp->~wa.~(w, Od(a)). 

I shall show that  Comp is a complete ordinal logic. 

For if, Comp (~, A) conv 2, then 

conv Od (A) 

conv~mn. Dt(P(~r.r(I, A(m)), 1, m), c2(Ar.r(I, A(n)), 1, n ) ) ) .  

~ (m,  n) has a normal form if ~ is an ordinal formula, so that  then 

has a normal form ; this means that  r ( / ,  A(m))  cony 2 some r, i.e. 
A(m) cony2. Thus, if Comp(~, A)cony2 and ~ is an ordinal formula, 
then A is dual. Comp is therefore an ordinal logic. Now suppose con- 
versely tha t  A is dual. I shall show that  Od(A) is an ordinal formula 
representing the ordinal oJ. For 

conv 1 (m) conv m, 

Od(A, m, n)conv Dt(m, n), 

i.e. Od(A) is an ordinal formula representing the same ordinal as Dt. But 

Comp (Od(A), A)conv ~(Od(A), Od(A))conv 2. 

This proves the completeness of Comp. 
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Of course Comp is not the kind of complete ordinal logic tha t  we should 
really wish to use. The use of Comp does not make it any easier to see 
that  A is dual. In fact, if we really want  to use an ordinal logic a proof, 
of completeness for that  particular ordinal logic will be of little value ; the 
ordinals given by the completeness proof will not be ones which can easily 
be seen intuitively to be ordinals. The only value in a completeness proof 
of this kind would be to show that,  if any objection is t o  be raised against 
an ordinal logic, it must be on account of something more subtle than 
incompleteness. 

The theorem of completeness is also unexpected in that  the ordinal 
formulae used are all formulae representing r This is contrary to our 
intentions in constructing Ap for instance; implicitly we had in mind large 
ordinals expressed in a simple manner. Here we have small ordinals 
expressed in a very complex and artificial way. 

Before trying to solve the problem (b), let us see how far Ap and A H are 
invariant. We should certainly not expect Ap to be invariant, since the 
extent of Ap([2) will depend on whether C2 is convertible to a formula of the 
form H(A) : but suppose that  we call an ordinal logic A "  C-K invariant up 

a "  if the extent o f A ( H ( A ) ) i s  the same as the extent of A ( H ( B ) )  when- to 
ever A and B are C-K ordinal formulae representing the same ordinal less 
than a. How far is Ap C-K invariant ? I t  is not difficult to see tha t  it is 
C-K invariant up to any finite ordinal, tha t  is to say up to co. I t  is also 
C-K invariant up to co-t-1, as follows from the fact that  the extent of 

is the set-theoretic sum of the extents of 

However, there is no obvious reason for believing that  it is C-K invariant  
up to co-+-2, and in fact it is demonstrable that  this is not the case (see the 
end of this section). Let us find out what happens if we t ry  to prove 
tha t  the extent of 

is the same as the extent of 
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where hufx. u(R1) and 2ufx. u(Rg) are two C-K ordinal formulae repre- 
senting co. We should have to prove that  a formula interpretable as a 

number-theoretic theorem is provable in CFSuc()~ufx.u(R1))] if, and 

onlyif, it is provable in C [Sue (~ufx.u(R2))]. Now C ~Suc(~ufx.u(Ri)) ]  
is obtained from C[2ufx. u(Ri) ] by adjoining all axioms of the form 

(3x0) ProofcE~f,.u(R,)] [x 0, f(~)0) ~ ~, (9.1) 

where m is the G.R. of ~, and C[Suc(&ufx.u(R2))7 is obtained from 
C[Aufx. u(R2)] by adjoining all axioms of the form 

(3x0) Proofc[x~/~.u(R~)] [x 0, f(~)0] ~ i~. (9.2) 

The axioms which must be adjoined to P to obtain C[2ufx. u(R1)] are 
essentially the same as those which must be adjoined to obtain the system 
C[2ufx. u(R2)] : however the rules of procedure which have to be applied 
before these axioms can be written down are in general quite different in the 
two cases. Consequently (9.1) and (9.2) are quite different axioms, 
and there is no reason to expect their consequences to be the same. 
A proper understanding of this will make our treatment of question 
(b) much more intelligible. See also footnote :~ on page 193. 

Now let us turn to AA. This ordinal logic is invariant. Suppose that  f~, 
f~' represent the same ordinal, and suppose that  we have a proof of a number- 
theoretic theorem G in P~. The formula expressing the number-theoretic 
theorem does not involve any odd types. Now there is a one-one corre- 
spondence between the odd types such that  if 2m-- 1 corresponds to 2m'-- 1 
and 2n-- 1 to 2n'--  1 then f~(m, n) cony 2 implies ~ '  (m', n') cony 2. Let us 
modify the odd type-subscripts occurring in the proof of G, replacing each 
by its mate in the one-one correspondence. There results a proof in PI2' 
with the same end formula G. That is to say that  if G is provable in P~ it 
is provable in Pl2'. AH is invariant. 

The question (b) must be answered negatively. Much more can be 
proved, but we shall first prove an even weaker result which can be 
established very quickly, in order to illustrate the method. 

I shall prove that  an ordinal logic A cannot be invariant and have the 
property that  the extent of  A(fl) is a strictly increasing function of the 
ordinal represented by fl. Suppose that  A has these properties; then we 
shall obtain a contradiction. Let A be a W.F.F. in normal form and with- 
out free variables, and consider the process of carrying out conversions on 
A(1) until we have shown it convertible to 2, then converting A(2) to 2, 
then A (3) and so on: suppose that  after r steps we are still performing the 
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conversion on A(mr). There is a formula Jh  such tha t  Jh(A,  r) conv m r 
for each positive integer r. Now let Z be a formula such that ,  for each 
positive integer n, Z(n) is an ordinal formula representing r and suppose 

t obe  a member o f the  e x t e n t o f A ( S u c I L i m ( Z ) )  ) b u t n o t  of the extent  B 

of A(L mIZ/). 

then K* is a complete logic. For, if A is dual, then 

represents the ordinal oJ~+l, and therefore K * ( A ) c o n v 2 ;  but, if A(c) 
is not convertible to 2, then 

represents an ordinal not exceeding ~ +  1, and K*(A) is therefore not. 
convertible to 2. Since there are no complete logic formulae, this proves 
our assertion. 

We may now prove more powerful results. 

Incompleteness theorems. (A) I f  an ordinal logic A is invar iant  up to 
an ordinal a, then for any ordinal formula f~ representing an ordinal fl, 
fl < a, the extent  of A(f~) is contained in the (set-theoretic) sum of the 
extents of the logics A(P), where P is finite. 

(B) If  an ordinal logic A is C-K invariant  up to an ordinal a, then for 
any C-K ordinal formula A representing an ordinal fl, fl < a, the extent  of 
A ( H ( A ) )  is contained in the (set-theoretic) sum of the extents  of the 

A / H ( F ) ) ,  where F is a C-K ordinal formula logics representing an ordinal 
less than  co ~. 

Proof of (A). I t  is sufficient to prove that ,  if ~ represents an ordinal y, 
~< y < a, then the extent  of A(~)  is contained in the set-theoretic sum of 

the extents of the logics A(~)'), where ~ '  represents an ordinal less than  7. 
The ordinal ~ must  be of the form 70+P, where p is finite and represented by 
P say, and ~'o is not the successor of any ordinal and is not less than  ~o. 
There are two cases to consider; 70 ~ r and Y0 >/2~o. In each of them we 
shall obtain a contradiction from the assumption tha t  there is a W.F.F.  
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B such that  A (~, B) conv 2 whenever ~ represents ~,, but  is not convertible 
to 2 if ~ represents a smaller ordinal. Let us take first the case Y0 ~ 2o~. 
Suppose that  ~ '0--~ and tha t  ~1 is an ordinal formula representing 
~,1. Let A be any W.F.F. with a normal form and no free variables, and let 
Z be the class of those positive integers which are exceeded by all integers 
n for which A(n) is not convertible to 2. Let E be the class of integers 
2p such tha t  ~(p,  n)conv 2 for some n belonging to Z. The class E, 
together with the class Q of all odd integers, is constructively enumerable. 
I t  is evident that  the class can be enumerated with repetitions, and since 
it is infinite the required enumeration can be obtained by striking out the 
repetitions. There is, therefore, a formula En such tha t  En(~ ,  A, r) runs 
through the formulae of the class E+Q without repetitions as r runs 
through the positive integers. We define 

Rt->2wamn. Sum(Dt, w, En (w, a, m), En(w, a, n)) .  

Then Rt (~ l ,  A) is an ordinal formula which represents )'0 if A is dual, but 
a smaller ordinal otherwise. In fact 

g t ( a~ ,  A, m, n)cony {Sum(Dr, ax)) (En(a~ ,  A, m), En(~l ,  A, n)) .  

Now, if A is dual, E +  Q includes all integers m for which 

{Sum(Dt, ~)1)} (m, m) conv 3. 

(This depends on the particular form that  we have chosen for the formula 
Sum.) Put t ing " E n ( ~ l ,  A, p) cony q "  for M(p, q), we see that  condition 
(7.4) is satisfied, so that  R t (~ l ,  A) is an ordinal formula representing ~0. 
But, if A is not dual, the set E + Q consists of all integers m for which 

{Sum(Dt, ~1)} (m, r) cony 2, 

where r depends only on A. In this case Rt(~2x, A) is an ordinal formula 
representing the same ordinal as I n f ( S u m ( D t ,  ~1), r ) ,  and this is 
smaller than ~'o. Now consider K: 

If  A is dual, K(A)is convertible to 2 since Sum (Rt(a,, A), P) represents 
if A is not dual, it is not convertible to 2, since Sum (Rt(a,, A), P) 

, %  J 

But, 
then represents an ordinal smaller than ~,. In K we therefore have a 
complete logic formula, which is impossible. 

Now we take the case ~0 -- w. We introduce a W.F.F. Mg such that  if 
n is the D.N. of a computing machine A/, and if by the m-th complete 
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configuration of ,t't the figure 0 has been printed, then Mg(n, m) is 
convertible to ,~pq.Al(4(P, 2p+2q), 3, 4)  (which is an ordinal formula 
representing the ordinal 1), but if 0 has not been printed it is convertible to 
~tpq.p(q, I, 4) (which represents 0). Now consider 

novor print  O, thon Lim Mgr rovro ont  If  the machine and 

Sum (Lim(Mg(n)),  P ) represen ts  7. This means that  M(n) i s  convert- 

ible to 2. If, however, .... ~t.never prints 0, Sum(Lim(Mg(n)) ,  P) represents 

a finite ordinal and M(n) is not convertible to 2. In M we therefore 
have means of determining about a machine whether it ever prints 0, 
which is impossible t (Turing [1], w This completes the proof of (A). 

Proof of (B). I t  is sufficient to prove that, if C represents an ordinal 7, 
~ < 7 <  a, then the extent o f A ( H ( C ) ) i s  included in the set-theoretic sum 
of the extents of A (H(G)) ,  where G represents an ordinal less than 7. We 
obtain a contradiction from the assumption that  there is a formula B 
which is in the extent of A ( H ( G ) ) i f  G represents 7, but not if it 
represents any smaller ordinal. The ordinal ~, is of the form ~A-to2-4-~, 
where ~ < co 2. Let D be a C-K ordinal formula representing 8 and 
~tufx. Q (u, f, A(u, f, x) ) one representing a + ~ whenever A represents a. 

We now define a formula Hg. Suppose that  A is a W.F.F. in normal 
form and without free variables; consider the process of carrying out con- 
versions on A ( 1 ) until it is brought into the form 2, then converting A (2) to 
2, then A(3), and so on. Suppose that  at the r-th step of this process we 
are doing the nr-th step in the conversion of A(m~). Thus, for instance, if 
A is not convertible to 2, m~ can never exceed 3. Then Hg(A, r) is to be 
convertible to ~tf.f(mr, nr) for each positive integer r. Put  

Sq--->Admn n(Suc, m(,~aufx.u(,~y.y(Suc, a(u, f, x)) ), d(u, f, x))), 

M--->.)taufx. 0 (u, f, u(Ay.Hg(a, y, Sq(D)))), 
KI ~ a . A  (M(a), B), 
t This part  of the argument can equally well be based on the impossibility of deter- 

mining about two W.F.F.  whether they are interconvertible. (Church [3], 363.) 
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then I say that  K1 is a complete logic formula. Sq (D, m, n) is a C-K 
ordinal formula representing 3-+-m~o-+-n, and therefore Hg(A ,  r, Sq(D)) 
represents an ordinal ~ which increases steadily with increasing r, and 
tends to the limit 3+oJ ~ if A is dual. Further  

H g ( A ,  r, Sq(D)) < H g ( A ,  S(r), Sq(D)) 

/ 

a C-K ordinal formula and represents the limit of the sequence ~1, ~2, ~3, .... 
This is 3~-co 2 if A is dual, but a smaller ordinal otherwise. Likewise 
M(A) represents ~ if A is dual, but is a smaller ordinal otherwise. The 

only  

if A is dual, and this implies that  K1 is a complete logic formula,, as was 
asserted. But  this is impossible and we have the required contradiction. 

As a corollary to (A) we see that  A~ is incomplete and in fact that  the 
extent of AH(Dt) contains the extent of AH(~) for any ordinal formula ~. 
This result, suggested to me first by the solution of question (b), may also 
be obtained more directly. In fact, if a number-theoretic theorem can be 
proved in any particular P~, it can also be proved in Pamn.m(,~,I, 4)" The 
formulae describing number-theoretic theorems in P do not involve more 
than a finite number of types, type 3 being the highest necessary. The 
formulae describing the number-theoretic theorems in any P a  will be 
obtained by doubling the type subscripts. Now suppose that  we have a 
proof of a number-theoretic theorem G in P~ and that  the types occurring 
in the proof are among 0, 2, 4, 6, q, t2, t3, .... We may suppose that  
they have been arranged with all the even types preceding all the odd 
types, the even types in order of magnitude and the type 2m-- 1 preceding 
2n--1 if gl(m, n )conv2 .  Now let each t r be replaced by 10-+-2r through- 
out the proof of G. We thus obtain a proof of G in P~,,,~.(n, z, 4). 

As with problem (a), the solution of problem (b) does not require the 
use of high ordinals [e.g. if we make the assumption that  the extent of 
A(~)  is a steadily increasing function of the ordinal represented by ~ we 
do not have to consider ordinals higher than oJ-+-2]. However, if we 
restrict what  we are to call ordinal formulae in some way, we shall have 
corresponding modified problems (a) and (b) ; the solutions will presumably 
be essentially the same, but will involve higher ordinals. Suppose, for 
example, tha t  Prod is a W.F.F. with the property that  Prod(~)l, ~2) is an 
ordinal formula representing a 1 a~ when ~1, ~ are ordinal formulae repre- 
senting a~, a~. respectively, and suppose that  we call a W.F.F. a 1-ordinal 
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formula when it is convertible to the form Sum (Prod(f l ,  Dt), P) ,  where 
~, P are ordinal formulae of which P represents a finite ordinal. We may 
define 1-ordinal logics, I-completeness and 1-invariance in an obvious way, 
and obtain a solution of problem (b) which differs from the solution in the 
ordinary case in that  the ordinals less than to ~ take the place of the finite 
ordinals. More generally the cases that  I have in mind are covered by 
the following theorem. 

Suppose that  we have a class V of formulae representing ordinals in 
some manner which we do not propose to specify definitely, and a subset t 
U of the class V such that :  

(i) There is a formula �9 such that  if T enumerates a sequence of members 
of U representing an increasing sequence of ordinals, then (1) (T) is a member 
of U representing the limit of the sequence. 

(ii) There is a formula E such that  E(m, n) is a member of U for each 
pair of positive integers m, n and, if it represents ~,,,, ,~, then %,, ,~ < E,,,, ,: if 
either m < m' or m -- m', n < n'. 

(iii) There is a formula G such that, if A is a member of U, then G(A) is 
a member of U representing a larger ordinal than does A, and such that  
G ( E ( m ,  n) )  always represents an ordinal not larger than E,,,,,~+I. 

We define a V-ordinal logic to be a W.F.F. A such that  A(A) is a logic 
whenever A belongs to V. A is V-invariant if the extent of A(A) depends 
only on the ordinal represented by A. Then it is not 13ossible for a 
V-ordinal logic A to be V-invariant and have the property that, if Ci 
represents a greater ordinal than C: (C 1 and C9. both being members of U), 
then the extent of A(Cl) is greater than the extent of A(C~). 

We suppose the contrary. Let B be a formula belonging to the extent 

of A (  ((1)()~r.E(r, 1) ) ) )  but not to the extent of A ( ~ ( ~ r . E ( r ,  1))) ,  

and let 

Then K' is a complete logic. For 

Hg(A, r, E) conv E(m r , nr). 

t The subset U wholly supersedes V in what follows. The introduction of V serves 
to emphasise the fact that  the set of ordinals represented by members of U may have gaps. 
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E(mr, nr) is a sequence of V-ordinal formulae representing an increasing 
sequence of ordinals. Their limit is represented by r  r, E) ) ;  
let us see what this limit is. First  suppose tha t  A is dual:  then m r tends to 
infinity as r tends to infinity, and r Hg(A, r, E))  therefore represents 

the same ordinal as (1)()~r.E(r, 1)). In this case we must have 

K' (A) cony 2. 

Now suppose that  A is not dual: m r is eventually equal to some constant 
number, a say, and (l)()~r.Hg(A, r, E))  represents the same ordinal 
as (l)(Ar. E(a, r)) ,  which is smaller than that  represented by (I)(2r. E(r, 1)). 

therefore belong to the extent of A(G(~P()tr.Hg(A,r, E)) )),  B cannot 

and K' (A) is not convertible to 2. We have proved that  K' is a complete 
logic, which is impossible. 

This theorem can no doubt be improved in many ways. However, it 
is sufficiently general to show that,  with almost any reasonable notation 
for ordinals, completeness is incompatible with invariance. 

We can still give a certain meaning to the classification into depths with 
highly restricted kinds of ordinals. Suppose that  we take a particular 
ordinal logic A and a particular ordinal formula ~F representing the ordinal 
a say (preferably a large one), and that  we restrict ourselves to ordinal 
formulae of the form Inf(~F, a). We then have a classification into depths, 
but  the extents of all the logics wh{ch we so obtain are contained in the 
extent  of a single logic. 

We now a t tempt  a problem of a rather different character, that  of the 
completeness of Ap. I t  is to be expected that  this ordinal logic is complete. 
I cannot at present give a proof of this, but  I can give a proof that  it is 
complete as regards a simpler type of theorem than the number-theoretic 
theorems, viz. those of form "O(x) vanishes identically", where O(x) is 
primitive reeursive. The proof will have to be much abbreviated since we 
do not wish to go into the formal details of the system P. Also there is a 
certain lack of definiteness in the problem as at present stated, owing to 
the fact tha t  the formulae G, E, M R were not completely defined. Our 
at t i tude here is tha t  it is open to the sceptical reader to give detailed 
definitions for these formulae and then verify that  the remaining details 
of the proof can be filled in, using his definition. I t  is not asserted that  
these details can be filled in whatever be the definitions of G, E, MR 
consistent with the properties already required of them, only that  they 
can be filled in with the more natural  definitions. 

sEx~. 2. VOL. 45. ~O. 2242. P 
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I shall prove the completeness theorem in the following form. If  
~[xo] is a recursion formula and if !~ [0], ~ [f0], ... are all provable in P, then 
there is a C-K ordinal formula A such that  (x0)!~[x0] is provable in the 
system pA of logic obtained from P by adjoining as axioms all formulae 
whose G.R.'s are of the form 

(provided they represent propositions). 
First let us define the formula A. Suppose that  D is a W.F.F. with the 

property that  D (n) cony 2 if ~ If(n-l) 0] is provable in P, but D (n) cony 1 
if ~ ~[f('~-l)0] is provable in P (P is being assumed consistent). Let 0 
be defined by 

and let Vi be a formula with the properties 

Vi(2) conv 2u. u(Suc, U), 

Vi(1) conv 2u . u ( I ,  (9 (Suc)). 

The existence of such a formula is established in Kleene [1], corollary on 
p. 220. Now put 

A-> Suc (Ar 

] assert that  A*, A are C-K ordinal formulae whenever it is true that  
i~[0], i~[f0], ... are all provable in P. For in this case A* is ,~ufx. u(R), 
where 

->;~y. Vi (D(y), y, u, f, x), R 

and then 

Aufx. R(n) cony )tufx. Vi (D(n), n, u, f, x )  

conv )~ufx. Vi (2, n, u, f, x) 

cony 2ufx. (2n. n(Suc, U)}(n, u, f, x) 
conv),ufx.n(Suc, U, u f, x), which is a C-K ordinal formula, 

and 

~ufx. S(n, Suc, U, u, f, x)conv Suc (/~ufx. n(Suc, U, u, f, x)).  
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These relations hold for an arbitrary positive integer n and therefore A* 
is a C-K ordinal formula [condition (9) p. 181] : it follows immediately 
tha t  A is also a C-K ordinal formula. I t  remains to prove that  (xo)13[Xo] 
is provable in pA. To do this it is necessary to examine the structure of 
A* in the case in which (Xo) !3 [x0] is false. Let us suppose tha t  ~ 13[f(a-i)0] 
is true, so tha t  D(a) cony 1, and let us consider B where 

B -->,~ufx. Vi (D(a),  a, u, f, x). 

If  A* was a C-K ordinal formula, then B would be a member of its 
fundamental  sequence; but 

B conv Aufx. Vi(l, a, u, j', x) 

co.v u:<. . ( , ,  O( uc))l(a, u, :, x) 

conv)tufx. O(Suc, u, j', x) 

conv~tufx,{)tu.u(O(u))}(Suc, u, f ,x)  

conv lufx. Suc (O(Suc), u, f, x )  

convSuc(2tufx. O(Suc, u , f , x ) )  

cony Suc (B). (9.3) 

This, of course, implies tha t  B < B and therefore tha t  B is no C-K ordinal 
formula. This, although fundamental  in the possibility of proving our 
completeness theorem, does not form an actual step in the argument. 
Roughly speaking, our argument amounts to this. The relation (9.3) 
implies tha t  the system pB is inconsistent and therefore tha t  pA, is 
inconsistent and indeed we can prove in P (and a fortiori in pA) tha t  

(x0) ~[Xo] implies the inconsistency of pA*. On the other hand in pA 
we can prove the consistency of pA*. The inconsistency of p s  is proved 
by the G0del argument.  Let us return to the details. 

The axioms in P~ are those whose G'R. 's are of the form 

e 2  
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When we replace B, by Suc(B), this becomes 

Suc(B, ),mn.m(w(2, n), w(3, n)~,, K, Mp, r)  

conv K(B(2mn. m 

convB(2mn.,n(w(2, n), w(3, n)) ,  K, Mp, p) 

if r egnv 2p-~ 1, 

if r conv 2p. 

When we remember the essential property of the formula E, we see tha t  
the axioms of pB include all fornmlae of the form 

(3Xo) ProofpB [x o, f(q) 0] D ~, 

where q is the G.R. of the formula ~. 
Let b be the G.R. of the formula !~. 

(3Xo) (3yo) {Proofpa [x o, Yo]. Sb [z o, z o, Yo]}. (u) 

Sb[xo, Yo, Zo] is a particular recursion formula such that  Sb[f(o0, f(m)0,fim0] 
holds if and only if n is the G.R. of the result of substituting tim)0 for z o in 
the formula whose G.R. is 1 at all points where z o is free. Let p be the G.R. 
of the formula ft. 

'~ (~-Xo)(3Yo){Pr~176 Yo] .Sb [fib)0, fib)0, Yo]}" 

Then we have as an axiom in P 

(3Xo) ProofpB [Xo, tip) 0] D ~, 

and we can prove in pA 

(Xo) {Sb [fib)0, fib)O, XO] ~- X o -- f(P)0}, 

since ~ is the result of substituting f(b)0 for z o in !~ ; hence 

(9.4) 

(3y o) ProofpB [y o, tiP)0] (9.5) 

is provable in P. Using (9.4) again, we see that  ff can be proved in pB. 
But, if we can prove ~ in pB, then we can prove its provability in p B  the 
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proof being in P ;  i.e. we can prove 

(3x 0) ProofrB [x o, f(v)0] 

in P (since p is the G.R. of g). But this contradicts (9.5), so that, if 

~ [f(a-1) 0] 

is true, we can prove a contradiction in p s  or in pA*. Now I assert that  
the whole argument up to this point can be carried through formally in 
the system P, in fact, that, if c is the G.R. of ~ (0--  0), then 

(Xo) 13 Ix0) D (3Vo) ProofrA* [v 0, fC~)0] (9.6) 

is provable in P. I shall not at tempt to give any more detailed proof of 
this assertion. 

The formula 

(Bxo) ProofpA, [x o, f(c)0] D ~ (0 -- 0) (9.7) 
is an axiom in pa. Combining (9.6), (9.7) we obtain (x0) ~[x0] in px. 

This completeness theorem as usual is of no value. Although it shows, 
for instance, that  it is possible to prove Fermat 's  last theorem with Ap (if 
it is true) yet the t ruth of the theorem would really be assumed by taking 
a certain formula as an ordinal formula. 

That Ap is not invariant may be proved easily by our general theorem; 
alternatively it follows from the fact that, in proving our partial complete- 
ness theorem, we never used ordinals higher than co-t-1. This fact can 
also be used to prove that  Ap is not C-K invariant up to oJq-2. 

10. The continuum hypothesis. A digression. 

The methods of w 9 may be applied to problems which are constructive 
analogues of the continuum hypothesis problem. The continuum 
hypothesis asserts that  2,m -- ~1, in other words that, if ~ol is the smallest 
ordinal a greater than co such that  a series with order type a cannot be 
put into one-one correspondence with the positive integers, then the 
ordinals less than ~o~ can be put into one-one correspondence with the sub- 
sets of the positive integers. To obtain a constructive analogue of this 
proposition we may replace the ordinals less than oJ~ either by the ordinal 
formulae, or by the ordinals represented by them; we may replace the 
subsets of the positive integers either by the computable sequences of 
figures 0, 1, or by the description numbers of the machines which compute 
these sequences. In the manner in which the correspondence is to be set 
up there is also more than one possibility. Thus, even when we use only 

~133]] 



214 A . M .  TtrRrSG [June 16, 

one kind of ordinal formula, there is still great ambiguity concerning 
what  the constructive analogue of the continuum hypothesis should be. 
I shall prove a single result in this connection J'. A number of others 
may be proved in the same way. 

We ask " I s  it possible to find a computable function of ordinal formulae 
determining a one-one correspondence between the ordinals represented by 
ordinal formulae and the computable sequences of figures 0, 1 ? " More 
accurately, " I s  there a formula F such that  if gl is an ordinal formula and 
n a positive integer then F(f~, n) is convertible to 1 or to 2, and such tha t  
F(f~, n) cony F (fl', n) for each positive integer n, if and only if fl and fl '  
represent the same ordinal ? " The answer is "No ", as will be seen to 
be a consequence of the following argument:  there is no formula F such 
that  F(fl) enumerates one sequence of integers (each being 1 or 2) when f~ 
represents aJ and enumerates another sequence when f~ represents 0. If  
there is such an F, then there is an a such that  F(f~, a )cony (Dt, a) if fl 
represents ~o but F(f~, a) and F(Dt, a )are  convertible to different integers 
(1 or 2) if f~ represents 0. To obtain a contradiction from this we introduce 
a W.F.F.  Gm not unlike Mg. If  the machine A~ whose D.N. is n has 
printed 0 by the time the m-th complete configuration is reached then 

Gm (n, m) cony 2mn . m (n, I ,  4) ; 

(n, m) conv 2pq. AI(4(P,  2pq- 2q), 3, 4).  otherwise Gm Now consider 

F(Dt, a )and  F ( L i m ( G m ( n ) ) ,  a) .  If..'t't never prints 0, L i m ( G m ( n ) )  repre- 

sents the ordinal ~o. Otherwise it represents 0. Consequently these two 
formulae are convertible to one another if and only if At never prints 0. 
This gives us a means of determining about any machine whether it ever 
prints 0, which is impossible. 

Results of this kind have of course no real relevance for the classical 
continuum hypothesis. 

11. The purpose of ordinal logics. 

Mathematical reasoning may be regarded rather schematically as 
the exercise of a combination of two faculties:~, which we may call 
intuition and ingenuity. The activity of the intuition consists in making 
spontaneous judgments which are not the result of conscious trains 

t A suggestion to consider this problem came to me indirectly from F. Bernstein. 
A related problem was suggested by  P. Bernays. 

$ We are leaving out of account tha t  most  impor tan t  faculty which distinguishes topics 
of interest from others; in fact, we are regarding the function of the mathemat ic ian  a s  

simply to determine the t ru th  or falsity of propositions. 
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of reasoning. These judgments are often but by no means invariably 
correct (leaving aside the question what is meant by "correct").  
Often it is possible to find some other way of verifying the correctness of an 
intuitive judgment. We may, for instance, judge that  all positive integers 
are uniquely factorizable into primes; a detailed mathematical argument 
leads to the same result. This argument will also involve intuitive judg- 
ments, but they will be less open to criticism than the original judgment 
about factorization. I shall not at tempt to explain this idea of "in- 
tui t ion" any more explicitly. 

The exercise of ingenuity in mathematics consists in aiding the intuition 
through suitable arrangements of propositions, and perhaps geometrical 
figures or drawings. I t  is intended that  when these are really well 
arranged the validity of the intuitive steps which are required cannot 
seriously be doubted. 

The parts played by these two faculties differ of course from occasion 
to occasion, and from mathematician to mathematician. This arbitrariness 
can be removed by the introduction of a formal logic. The necessity for 
using the intuition is then greatly reduced by setting down formal rules for 
carrying out inferences which are always intuitively valid. When working 
with a formal logic, the idea of ingenuity takes a more definite shape. In 
general a formal logic, will be framed so as to admit a considerable variety 
of possible steps in any stage in a proof. Ingenuity will then determine 
which steps are the more profitable for the purpose of proving a particular 
proposition. In pre-G0del times it was thought by some that  it would 
probably be possible to carry this programme-to such a point that  all the 
intuitive judgments of mathematics could be replaced by a finite number 
of these rules. The necessity for intuition would then be entirely 
eliminated. 

In our discussions, however, we have gone to the opposite extreme and 
eliminated not intuition but ingenuity, and this in spite of the fact that  our 
aim has been in much the same direction. We have been trying to see how 
far it is possible to eliminate intuition, and leave only ingenuity. We do 
not mind how much ingenuity is required, and therefore assume it to be 
available in unlimited supply. In our metamathematical discussions we 
actually express this assumption rather differently. We are always able 
to obtain from the rules of a formal logic a method of enumerating the 
propositions proved by its means. We then imagine that  all proofs 
take the form of a search through this enumeration for the theorem for 
which a proof is desired. In this way ingenuity is replaced by patience. 
In these heuristic discussions, however, it is better not to make this 
reduction, 
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In consequence of the impossibility of finding a formal logic which wholly 
eliminates the necessity of using intuition, we naturally turn to "non- 
constructive" Systems of logic with which not all the steps in a proof are 
mechanical, some being intuitive. An example of a non-constructive logic 
is afforded by any ordinal logic. When we have an ordinal logic, we are 
in a position to prove number-theoretic theorems by the intuitive steps of 
recognizing formulae as ordinal formulae, and the mechanical steps of 
carrying out conversions. What  properties do we desire a non-constructive 
logic to have if we are to make use of it for the expression of mathematical 
proofs ? We want it to show quite clearly when a step makes use of intui- 
tion, and when it is purely formal. The strain put on the intuition should 
be a minimum. Most important of all, it must be beyond all reasonable 
doubt that  the logic leads to correct results whenever the intuitive steps 
are correct t. I t  is also desirable that  the logic shall be adequate for the 
expression of number-theoretic theorems, in order that  it may be used in 
metamathematical  discussions (cf. w 5). 

Of the particular ordinal logics that  we have discussed, AH and Ap cer- 
tainly will not satisfy us. In the case Of AH we are in no better position than 
with a constructive logic. In the case of Ap (and for that  matter  also AH) 
we are by no means certain that  we shall never obtain any but true results, 
because we do not know whether all the number-theoretic theorems provable 
in the system P are true. To take As as a fundamental non-constructive 
logic for metamathematical  arguments would be most unsound. There 
remains the system of Church which is free from these objections. I t  is 
probably complete (although this would not necessarily mean much) and 
it is beyond reasonable doubt that  it always leads to correct results:~. In 
the next section I propose to describe another ordinal logic, of a very 
different type, which is suggested by the work of Gentzen and which 
should also be adequate for the formalization of number-theoretic theorems. 
In particular it should be suitable for proofs of metamathematical theorems 
(of. w 5). 

t This requirement  is very vague. I t  is not  of course intended tha t  the criterion of 
the correctness of the intui t ive steps be the correctness of the final result. The meaning 
becomes clearer ff each intuit ive step is regarded as  a judgment  t ha t  a par t icular  proposi- 
t ion is true.  In  the  case of an ordinal  logic it is a lways a judgment  tha t  a formula is a n  
ordinal formula,  and  this is equivalent  to judging tha t  a number- theoret ic  proposition is 
t rue .  In  this case then the requirement  is tha t  the reputed ordinal logic/8 a n  ord ina l  logic. 

++ This ordinal logic arises from a certain system C O in essentially t h e  s a m e  w a y  as  
Ap arose from P.  By an argument  similar to one occurring in w 8 we can show t h a t  t h e  
ordinal logic leads to correct results if and only if C O is valid;  the val idi ty of C O is proved 
in Church [1], making  use of the results of Church and Rosser [lJ. 
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12. Gentzen type ordinal logics. 

In proving the consistency of a certain system of formal logic Gentzen 
(Gentzen [l ]) has made use of the principle of transfinite induction for 
ordinals less than %, and has suggested that  it is to be expected that  trans- 
finite induction carried sufficiently far would suffice to solve all problems of 
consistency. Another suggestion of basing systems of logic on transfinite 
induction has been made by Zermelo (Zermelo [1]). In this section I 
propose to show how this method of proof may be put into the form of a 

fo rmal  (non-constructive) logic, and afterwards to obtain from it an 
ordinal logic. 

We can express the Gentzen method of proof formally in this way. 
Let us take the system P and adjoin to it an axiom 9~ft with the intuitive 
meaning that  the W.F.F. fl is an ordinal formula, whenever we feel certain 
that  fl is an ordinal formula. This is a non-constructive system of logic 
which may easily be put into the form of an ordinal logic. By the method 
of w 6 we make correspond to the system of logic consisting of P with the 
axiom 9~ft adjoined a logic formula L~" Lft is an effectively calculable 
function of fl, and there is therefore a formula AG ~ such that  AGI(fl) cony Lft 
for each formula fl. AG x is certainly not an ordinal logic unless P is valid, 
and therefore consistent. This formalization of Gentzen's idea would 
therefore not be applicable for the problem with which Gentzen himself 
was concerned, for he was proving the consistency of a system weaker than 
P. However, there are other ways in which the Gentzen method of proof 
can be formalized. I shall explain one, beginning by describing a certain 
logical calculus. 

The symbols of the calculus are f, x, 1, 1, 0, S, R, F, A, E, l, | !, (,), = ,  
and the comma ",  ". For clarity we shall use various sizes of brackets 
( ,)  in the following. We use capital German letters to stand for variable 
or undetermined sequences of these symbols. 

I t  is to be understood that  the relations that  we are about to define hold 
only when compelled to do so by the conditions that  we lay down. The 
conditions should be taken together as a simultaneous inductive definition 
of all the relations involved. 

Su#xes  . 
1 is a suffix. If  ~ is a suffix then ~1 is a suffix. 

I n d . .  
x is an index. If  .~ is an index then 2P is an index, 

Numerical variables. 
Ul If  ~ is a suffix then x~ is a numerical variable. 
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Functional variables. 

I f  ~ is a suffix and 5 is an index, then f ~  is a functional variable of 
index ~. 

Arguments. 

(,) is an argument  of index 1. I f  (!~) is an argument  of index ~ and 2: is 
a term, then (!~2:,) is an argument  of index 51. 

Numerals. 

0 is a numeral.  
I f  !~ is a numeral,  then S (, ~,) is a numeral.  
In metamathemat ica l  s ta tements  we shall denote the numeral  in which 

S occurs r times by S(~)(, 0,). 

Expressions of a given index. 

A functional variable of index ~ is an expression of index ~. 
R, S are expressions of index 111, 11 respectively. 
I f  i r i s  a numeral,  then it is also an expression of index 1. 
Suppose tha t  ~!t is an expression of index ~, 22 one of index ~1 and ~ one 

of index ~nl  ; then (F@) and (A(~) are expressions of index ~, while (E@) 
and (~ 1 22) and (~ |  Jr) and ((~ ! 22 !~) are expressions of index ~1. 

.Function constants. 

An expression of index ~ in which no functional variable occurs is a 
function constant  of index ~. I f  in addition R does not occur, the ex- 
pression is called a primitive function constant. 

Terms. 

0 is a term. 
Every  numerical variable is a term. 
I f  ~ is an expression of index ~ and (!~) is an argument  of index ~, then 

~(~)  is a term. 

Equations. 

I f  2: and 27 are terms, then 2: ~ 27 is an equation. 

Provable equations. 

We define what  is meant  by the provable equations relative to a given 
set of equations as axioms. 
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(a) The provable equations include all the axioms. The axioms are of 
the form of equations in which the symbols F, A, E, ], | ! do not appear. 

(b) If  ~ is an expression of index ~n and (~) is an argument of index ~, 
then 

( r ~ )  (~xi ,  xn,  ) - ~ (~xn ,  xi,) 

is a provable equation. 

(c) If  ~ is an expression of index ~1, and (~) is an argument of index ~, 
then 

(A~)(~Xl,) = ~(, xx ~) 
is a provable equation. 

(d) If  ~ is an expression of index ~, and (~) is an argument of index ~, 
then 

( E ~ ) ( ~ X l , )  -~ ~ ( ~ )  

is a provable equation. 

(e) I f  if6 is an expression of index ~ and Y2 is one of index ~P, and (!~) 
is an argument of index ~, then 

is a provable equation. 

(f) If  ~ is an expression of index 1, then ~ (,)-- ~ is a provable equation. 

(g) If  ~ is an expression of index ~ and R one of index ~111, and (!~) an 
argument of index ~1, then 

((~ o ~ )  (~o,) = (~(~) 

and (~ | Xl,),) = ,~(!~x~, S(, x~,), (~O~)(!~x~,),) 

are provable equations. If  in addition 82 is an expression of index ~1 and 

= o  

is provable, then 

and 

(r ~ ~ ~ ~)  (~to,) = r 

are provable. 
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(h) If  2:-- 27 and II-- U' are provable, where 2:, 27, U and U' are terms, 
then U'--11 and the result of substituting 1~' for U at any particular 
occurrence in 2:--27 are provable equations. 

(i) The result of substituting any term for a particular numerical 
variable throughout a provable equation is provable. 

(j) Suppose that  ~, (~' are expressions of index ~ ,  that  (~) is an 
argument of index ~ not containing the numerical variable ~ and that  
(~(~0,)- -~ ' (~0,)  is provable. Also suppose that, if we add 

= 

to the axioms and restrict (i) so that  it can never be applied to the numerical 
variable ~, then 

becomes a provable equation; in the hypothetical proof of this equation 
this rule (j) itself may be used provided that  a different variable is chosen 
to take the part  of ~. 

Under these conditions ~ ( ~ , ) -  ~ '(~X,) is a provable equation. 

(k) Suppose that  @, (~', g2 are expressions of index .~1, that  (~1) is an 
argument of index ~ not containing the numerical variable ~ and that  

~(~0,) : (~ ' (2{0,)  and R(,~(2IS(,~,),),S(,~,),):0 
are provable equations. Suppose also that, if we add 

to the axioms, and again restrict (i) so that  it does not apply to ~, then 

(~ (~[3~,) -- (~' (~3~,) (12.1) 

,ecomes a provable equation; in the hypothetical proof of (12.1) the rule 
~) may be used if a different variable takes the part of ~. 

Under these conditions (12.1) is a provable equation. 
We have now completed the definition of a provable equation relative 

:a given set of axioms. Next we shall show how to obtain an ordinal 
,,ic from this calculus. The first step is to set up a correspondence 
bween some of the equations and number-theoretic theorems, in other 
rds to show how they can be interpreted as number-theoretic theorems. 
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Let (~ be a primitive function constant of index 111. (~ describes a certain 
primitive recursive function r n), determined by the condition that, for 
all natural numbers m, n, the equation 

(, ~(m)(, 0,), S(n)(, 0,) , )--  S(r 0,) 0 

is provablc without using the axioms (a). Suppose also that  22 is an 
expression of index 5. Then to the equation 

= 0 

we make correspond the number-theoretic theorem which asserts that  for 
each natural number m there is a natural number n such that  r n) ---- 0. 
(The circumstance that  there is more than one equation to represent each 
number-theoretic theorem could be avoided by a trivial but inconvenient 
modification of the calculus.) 

Now let us suppose that. some definite method is chosen for describing 
the sets of axioms by means of positive integers, the null set of axioms being 
described by the integer 1. By an argument used in w 6 there is a W.F.F. 2] 
such that, i f r  is the integer describing a set A of axioms, then Z(r) is a logic 
formula enabling us to prove just those number-theoretic theorems which 
are associated with equations provable with the above described calculus, 
the axioms being those described by the number r. 

I explain two ways in which the construction of the ordinal logic may 
be completed. 

In the first method we make use of the theory of general recursive 
functions (Kleene [2]). Let us consider all equations of the form 

R ( ,  Son)(, 0,), S ('~) (, 0,) , )  -- SOp)(, 0,) (12.2) 

which are obtainable from the axioms by the use of rules (h), (i). I t  is a 
consequence of the theorem of equivalence of)~-definable and general recur- 
sive functions (Kleene [3]) that, if r(m, n) is any 2-definable function of two 
variables, then we can choose the axioms so that  (12.2) with p - - r ( m ,  n) is 
obtainable in this way for each pair of natural numbers m, n, and no 
equation of the form 

SOn)(, 0,) = S(')(, 0,) (m :/: n) (12 ~3) 

In particular, this is the case if r(m, n) is defined by the is obtainable. 
condition that  

~ (m,  n) conv S(p) implies p -- r(m, n), 

r(0, n ) - - l ,  all n :>0 ,  r ( 0 , 0 ) - - 2 ,  
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where fl is an ordinal formula. There is a method for obtaining the axioms 
given the ordinal formula, and consequently a formula Rec such that ,  for 
any ordinal formula ~, Rec (~) cony m, where m is the integer describing 
the set of axioms corresponding to ~l. Then the formula 

is an ordinal logic. Let us leave the proof of this aside for the present. 
Our second ordinal logic is to be constructed by a method not unlike the 

one which we used in constructing Ap. We begin by assigning ordinal for- 
mulae to all sets of axioms satisfying certain conditions. For this purpose 
we again consider tha t  part  of the calculus which is obtained by restricting 
"expressions" to be fimctional variables or R or S and restricting the 
meaning of " t e r m "  accordingly; the new provable equations are given 
by conditions (a), (h), (i), together with all extra condition (I). 

(/) The equation 

0 

is provable. 
We could design a machine which would obtain all equations of the form 

(12.2), with m :fi n, provable in this sense, and all of the form (12.3), except 
tha t  it would cease to obtain any more equations when it had once obtained 
one of the latter "contradictory" equations. From the description of the 
machine we obtain a formula fl such tha t  

[ l (m,  n) conv 2 if 

is obtained by the machine, 

~l(m, n) conv 1 if 

R (,  SOn-x)(, 0,), S('~-x)(, 0,) ,)  -- 0 

R( ,  0,), S(m-,)(, 0,) ,)  = 0 

is obtained by the machine, and 

~ (m,  m) conv 3 always. 

The formula ~ is an effectively calculable function of the set of axioms, 
and therefore also of m" consequently there is a formula M such tha t  
M(m)  conv~l when m describes the set of axioms. Now let Cm be a 
ibrmula such that,  ifb is the G.R. of a formula M(m),  then Cm(b) cony m, 
but otherwise Cm(b) cony 1. Let 

\ 
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Then AG a (f~, A) cony 2 if and only if fl cony M(m),  where m describes a set 
of axioms which, taken with our calculus, suffices to prove the equation 
which is, roughly speaking, equivalent to " A  is dual ". To prove tha t  Aa ~ 
is an ordinal logic, it is sufficient to prove tha t  the calculus with the axioms 
described by m proves only true number-theoretic theorems when fl is an 
ordinal formula. This condition on m may also be expressed in this way. 

us put  m ~ n if we can prove R(,S(m)(,O,), S(n)(, 0 , ) , ) - - 0  with (a), Let 
(h), (i), (/): the condition is tha t  m ~ n is a well-ordering of the natural  
numbers and tha t  no contradictory equation (12.3) is provable with the 
same rules (a), (h), (i), (1). Let us say tha t  such a set of axioms is 
admissible, ha  3 is an ordinal logic if the calculus leads to none but  true 
number-theoretic theorems when an admissible set of axioms is used. 

In the case of A(,~ 2, Rec (f~) describes an admissible set of axioms whenever 
fl is an ordinal fi)rmula. A Cj 2 therefore is an ordinal logic if the calculus 
leads to correct results when admissible axioms are used. 

To prove that  admissible axioms have the required property, [ do not 
a t t empt  to do more than show how interpretations can be given to the 
equations of the calculus so tha t  the rules of inference (a)-(k) become 
intuit ively valid methods of deduction, and so tha t  the interpretat ion 
agrees with our convention regarding number-theoretic theorems. 

Each expression is the name of a function, which may be only partially 
defined. The expression S corresponds simply to the successor function. 
I f  (~ is either R or a functional variable and has p ~- 1 symbols in its index, 
then it corresponds to a function g of p natural  numbers defined as follows. 
I f  (, S(r,)(, 0,), 0,), . . . ,  s(,,,)(, o , ) , )  - s(')(, o,) (~ 

is provable by the use of (a), (h), (i), (1) only, then g(h ,  r2, ..., r~) has the 
value p. I t  may not be defined for all arguments,  but  its value is always 
unique, for otherwise we could prove a "con t r ad ic to ry"  equation and 
M(m)  would then not be an ordinal formula. The functions corresponding 
to the other expressions are essentially defined by (b)-(f) .  For example, 
if g is the function corresponding to @ and g' tha t  corresponding to (F@), 
then 

g' (h ,  r2, ..., r~, l, m ) - - g ( h ,  r2, ..., rv, m, 1). 

The values of the functions are clearly unique (when defined at all) if given 
by one of (b)-(e). The case (f) is less obvious since the function defined 
appears also in the definiens. I do not t reat  the case of (@| ~), since this 
is the well-known definition by primitive recursion, but  I shall show tha t  
the values of the function corresponding to (@! ~t! $p) are unique. Without  
loss of generali ty we may suppose tha t  (~) in (f) is of index x. We have 
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then to show that,  if h(m) is the function corresponding to Y2 and r(m, n) 
tha t  corresponding to R, and k(u, v, w) is a given ftmction and a a given 
natural  number, then the equations 

l(O)--a, (a) 

do not ever assign two different values for the function l(m). Consider 
those values ofr  for which we obtain more than one value of/(r), and suppose 
tha t  there is at least one such. Clearly 0 is not one, for l(O) can be defined 
only by (a). Since the relation ~ is a well ordering, there is an integer r 0 
such that  r o ~ O, l(ro) is not unique, and if s :/: r o and l(s) is not unique then 
r 0 ~ s. We may put s -- h(ro), for, if 1 (h(ro)) were unique, then l(r0), defined 

by (fl), would be unique. But  r(h(ro), ro) -- 0 i.e. s < r o. There is, therefore, 
no integer r for which we obtain more than one value for the function l(r). 

Our interpretation of expressions as functions gives us an immediate 
interpretation for equations with no numerical variables. In general we 
interpret an equation with numerical variables as the (infinite) conjunction 
of all equations obtainable by replacing the variables by numerals. With 
this interpretation (h), (i) are seen to be valid methods of proof. In (j) the 
provability of 

when (~ (!~x x,) -- (~' (~x x,) is assumed to be interpreted as meaning tha t  
the implication between these equations holds for all substitutions of 
numerals for x~. To justify this, one should satisfy oneself tha t  these 
implications always hold when the hypothetical proof can be carried out. 
The rule of procedure (j) is now seen to be simply mathematical  induction. 
The rule (k) is a form of transfinite induction. In proving the validity of 
(k) we may again suppose (~) is of index x. Let r(m, n), g(m), gl(m), h(n) 
be the functions corresponding respectively to R, @, ~' ,  22. We shall 
prove that,  if g(O)---- g'(O)and r(h(n),  n )  -- 0 for each positive integer n and 

if g (n+  1 ) - - g ' ( n +  1)whenever g ( h ( n +  1 ) ) - - g '  (h(n-t-1)),  then g(n)--g'(n) 
for each natural  number n. We consider the class of natural  numbers for 
which g ( n ) -  g' (n) is not true. If  the class is not void it has a positive 
member n o which precedes all other members in the well ordering ~ .  But  
h(no) is another member of the class, for otherwise we should have 
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and therefore g(no) = g' (no), i.e. n o would not be in the class. This implies 

to r (h(no),  no) --  O. The class is therefore void. n 0 h(no) contrary 
I t  should be noticed that  we do not really need to make use of the fact 

that  gl is an ordinal formula. I t  suffices that  t2 should satisfy conditions 
(a)-(e) (p. 179) for ordinal formulae, and in place of (f) satisfy (f'). 

(f') There is no formula T such that  T(n) is convertible to a formula 
representing a positive integer for each positive integer n, and such that  

fl (T(n) ,  n )  conv 2, for each positive integer n for which f~(n, n) eonv 3. 

The problem whether a formula satisfies conditions (a)-(e), ( f ' ) i s  
number-theoretic. If we use formulae satisfying these conditions instead 
of ordinal formulae with As 2 or As s, we have a non-constructive logic with 
certain advantages over ordinal logics. The intuitive judgments that  
must be made are all judgments of the t ruth of number theoretic-theorems. 
We have seen in w 9 that  the connection of ordinal logics with the classical 
theory of ordinals is quite superficial. There seem to be good reasons, 
therefore, for giving attention to ordinal formulae in this modified sense. 

The ordinal logic AG 3 appears to be adequate for most purposes. I t  
should, for instance, be possible to carry out Gentzen's proof of consistency 
of number theory, or the proof of the uniqueness of the normal form of a 
well-formed formula (Church and Rosser [1]) with our calculus and a fairly 
simple set of axioms. How far this is the case can, of course, only be 
determined by experiment. 

One would prefer a non-constructive system of logic based on trans- 
finite induction rather simpler than the system which we have described. 
In particular, it would seem that  it should be possible to eliminate the 
necessity of stating explicitly the validity of definitions by primitive 
recursions, since this principle itself can be shown to be valid by transfinite 
induction. I t  is possible to make such modifications in the system, even 
in such a way that  the resulting system is still complete, but no real 
advantage is gained by doing so. The effect is always, so far as I know, 
to restrict the class of formulae provable with a given set of axioms, so 
tha t  we obtain no theorems but trivial restatements of the axioms. We 
have therefore to compromise between simplicity and comprehensiveness. 

Index  of definitions. 

No at tempt  is being made to list heavy type formulae since their 
meanings are not always constant  throughout the paper. Abbreviations 
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