Die Menge der Atome im zweiten Fraenkel Modell besteht aus einer abzählbaren Menge von paarweise disjunkten 2-elementigen Mengen:

$$A = \bigcup_{n \in \omega} P_n$$
, wobei $P_n = \{a_n, b_n\}$ (für $n \in \omega$).

Sei \mathscr{G} die Gruppe aller Permutationen von A welche alle Paarmengen P_n erhält, d.h.

$$\pi(\{a_n,b_n\})=\{a_n,b_n\}\quad \text{ für alle }\pi\in\mathscr{G} \text{ und jedes }n\in\omega\,.$$

Weiter sei $I_{\rm fin}$ die Menge aller aller endlichen Teilmengen von A. Dann ist $I_{\rm fin}$ ein normales Ideal und der Filter, der durch $I_{\rm fin}$ generiert wird, ist ein normaler Filter. Schliesslich sei \mathcal{V}_{F_2} das entsprechende Permutationsmodell, das sogenannte zweite Fraenkel Permutationsmodell.

- **30.** Zeige: Für jedes $n \in \omega$ ist die Menge P_n in \mathcal{V}_{F_2} .
- 31. Zeige: Die Menge $\{P_n : n \in \omega\}$ der Paarmengen ist abzählbar in \mathcal{V}_{F_2} .
- **32.** Zeige, dass KÖNIGS LEMMA in \mathcal{V}_{F_2} nicht gilt.
- 33. Zeige, dass die Menge der Atome A in \mathcal{V}_{F_2} überabzählbar ist.
- **34.** Sei m die Kardinalität der Menge der Atome in \mathcal{V}_{F_2} .

Zeige:
$$\mathcal{V}_{F_2} \models 2^{\mathfrak{m}} = 2^{\aleph_0} \cdot \operatorname{fin}(\mathfrak{m})$$