Shelah-Type Permutation Models

Shelah's Models of the First Type

The set of atoms of the first type of Shelah's permutation models is built by induction, where every atom encodes certain sets of atoms on a lower level. In this section, we shall give an example of such a model, where the atoms encode finite sequences.

The atoms of the model are constructed as follows:

- (α) A_0 is an arbitrary infinite set of atoms.
- (β) \mathscr{G}_0 is the group of all permutations of A_0 .
- $(\gamma) A_{n+1} := A_n \,\dot\cup\, \big\{ (n+1,p,\varepsilon) : p \in \bigcup_{k=0}^{n+1} A_n^k \wedge \varepsilon \in \{0,1\} \big\}.$
- (δ) \mathscr{G}_{n+1} is the subgroup of the permutation group of A_{n+1} containing all permutations σ for which there are $\pi_{\sigma} \in \mathscr{G}_n$ and $\varepsilon_{\sigma} \in \{0, 1\}$ such that

$$\sigma(x) = \begin{cases} \pi_{\sigma}(x) & \text{if } x \in A_n, \\ (n+1, \pi_{\sigma}(p), \varepsilon_{\sigma} + 2\varepsilon) & \text{if } x = (n+1, p, \varepsilon), \end{cases}$$

where for $p = \langle p_0, \ldots, p_{l-1} \rangle \in \bigcup_{0 \le k \le n+1} A_n^k, \pi_{\sigma}(p) := \langle \pi_{\sigma}(p_0), \ldots, \pi_{\sigma}(p_l) \rangle$ and $+_2$ denotes addition modulo 2.

Let $A := \bigcup \{A_n : n \in \omega\}$ be the set of atoms and let Aut(A) be the group of all permutations of A. Then

$$\mathscr{G} := \left\{ H \in \operatorname{Aut}(A) : \forall n \in \omega \left(H |_{A_n} \in \mathscr{G}_n \right) \right\}$$

is a group of permutations of A. Let \mathscr{F} be the filter on \mathscr{G} generated by $\{\operatorname{fix}_{\mathscr{G}}(E) : E \in \operatorname{fin}(A)\}$ (which happens to be normal) and let \mathcal{V}_p (p for pairs) be the class of all hereditarily symmetric objects.

The proof of the following fact is left as an exercise to the reader.

FACT 7.18. For each $n \in \omega$, the set A_n belongs to \mathcal{V}_p . In particular, the function

$$f: \omega \to \mathscr{P}(A)$$
$$n \longmapsto A_n$$

is an injective function which belongs to \mathcal{V}_p . Moreover, for each atom $a \in A$ there exists a least number $n \in \omega$ such that $a \in A_n$. In particular, there exists a surjection $f : A \twoheadrightarrow \omega$ which belongs to \mathcal{V}_p .

Now, we are ready to prove the following

PROPOSITION 7.19. Let \mathfrak{m} denote the cardinality of the set of atoms A of \mathcal{V}_p . Then $\mathcal{V}_p \models \operatorname{seq}(\mathfrak{m}) < [\mathfrak{m}]^2$.

Proof. First we show that $\mathcal{V}_p \models \operatorname{seq}(\mathfrak{m}) \leq [\mathfrak{m}]^2$. For this it is sufficient to find a one-to-one function $f \in \mathcal{V}_p$ from $\operatorname{seq}(A)$ into $[A]^2$. We define such a function as follows. For a finite sequence $s = \langle a_0, \ldots, a_{l-1} \rangle \in \operatorname{seq}(A)$ let

$$f(s) := \{ (n_0 + \ldots + n_{l-1} + 1, s, 0), (n_0 + \ldots + n_{l-1} + 1, s, 1) \},\$$

where for each $i \in l$, n_i is the smallest number such that $a_i \in A_{n_i}$. For any $\pi \in \mathscr{G}$ and $s = \langle a_0, \ldots, a_{l-1} \rangle \in \operatorname{seq}(A)$ we have $\pi f(s) = f(\pi(s))$ and therefore, the function f is as desired and belongs to \mathcal{V}_p .

Now, let $g \in \mathcal{V}_p$ be a function from $[A]^2$ to seq(A) and let E_g be a finite support of g. We show that g is not one-to-one. Since E_g is finite, there is a number n_g such that $E_g \subseteq A_{n_g}$. By extending E_g if necessary, we may assume that if $(n+1, \langle a_0, \ldots, a_{l-1} \rangle, \varepsilon) \in E_g$, then also a_0, \ldots, a_{l-1} belong to E_g as well as the atom $(n+1, \langle a_0, \ldots, a_{l-1} \rangle, 1-\varepsilon)$ (this assumption will be needed later).

Choose two distinct elements $x, y \in A_0 \setminus E_g$ such that $g(\{x, y\}) \neq \langle \rangle$. If there are no such elements, then g is not one-to-one and we are done. So, we may assume that for some positive integer $l \in \omega$:

$$g(\{x,y\}) = \langle a_0, \dots, a_{l-1} \rangle$$

Now, we are in at least one of the following cases:

- (1) $\forall i \in l (a_i \in E_g)$
- (2) $\exists i \in l (a_i \in \{x, y\})$
- (3) $\exists i \in l (a_i \in A_0 \setminus (E_q \cup \{x, y\}))$
- (4) $\exists i \in l (a_i \in A \setminus (E_q \cup A_0))$

If we are in case (1), then let $\pi \in \operatorname{fix}(E_g)$ be such that $\pi x \notin \{x, y\}$. To see that such a $\pi \in \operatorname{fix}(E_g)$ exists, recall that by our assumption, E_g has the property that whenever $(n + 1, \langle a_0, \ldots, a_{l-1} \rangle, \varepsilon) \in E_g$, also $a_0, \ldots, a_{l-1} \in E_g$. Now, $\pi g(\{x, y\}) = g(\{x, y\})$ (since $\pi \in \operatorname{fix}(E_g)$), but $\pi\{x, y\} \neq \{x, y\}$. Hence, g is not a one-to-one function.

If we are in case (2), then let $\pi \in \text{fix}(E_g)$ be such that $\pi x = y$ and $\pi y = x$. Notice that since $\{x, y\} \cap E_g = \emptyset$, such a permutation π exists. Now, by the choice of π , on the one hand we have $\pi\{x, y\} = \{x, y\}$, i.e., $g(\{x, y\}) = g(\pi\{x, y\})$, but on the other hand, for some $i \in l$ we have $a_i \in \{x, y\}$, which implies $a_i \neq \pi a_i$. To see this, notice that for example $a_i = x$ implies $\pi a_i = y$. Therefore, E_g is not a support of g which contradicts the choice of E_q .

If we are in case (3), then there is an $i \in l$ such that

$$a_i \in A_0 \setminus (E_g \cup \{x, y\}).$$

Now, take an arbitrary $b_i \in A_0 \setminus (E_g \cup \{x, y\})$ which is distinct from a_i and let $\pi \in \text{fix}(E_g \cup \{x, y\})$ be such that $\pi a_i = b_i$ and $\pi b_i = a_i$ (notice that such a permutation π exists). By the choice of π , on the one hand we have $\pi\{x, y\} =$

Shelah-Type Permutation Models

 $\{x, y\}$, i.e., $g(\{x, y\}) = g(\pi\{x, y\})$, but on the other hand, $\pi a_i = b_i$ and $b_i \neq a_i$, i.e., $g(\{x, y\}) \neq \pi g(\{x, y\})$. Therefore, E_g is not a support of g which contradicts the choice of E_g .

If we are in case (4), then there is an $i \in l$ such that

$$a_i \in A \setminus (E_g \cup A_0).$$

In particular, $a_i = (n + 1, p, \varepsilon)$ for some $n \in \omega$, $p \in seq(A)$, and $\varepsilon \in \{0, 1\}$. Furthermore, let $\pi \in fix(E_g \cup \{x, y\})$ be such that

$$\pi(n+1, p, \varepsilon) = (n+1, p, 1-\varepsilon)$$

To see that such a π exists, recall that by our assumption, E_g has the property that whenever $(n + 1, s, \varepsilon) \in E_g$ for some $s \in \text{seq}(A)$, also $(n + 1, s, 1 - \varepsilon) \in E_g$. Now we have $\pi\{x, y\} = \{x, y\}$ but $\pi g(\{x, y\}) \neq g(\{x, y\})$. Therefore, E_g is not a support of g.

So, in all four cases, either g is not one-to-one or E_g is not a support of g, which completes the proof. \dashv