
Chapter 15

Models of Finite Fragments of Set Theory

In this chapter we provide the model-theoretical tools which will be crucial to un-
derstand independence proofs. The main result in this chapter is the construction of
a countable transitive set-model of a finite fragment of ZFC within some model of
Set Theory.

Basic Model-Theoretical Facts

Let L be an arbitrary but fixed language. Two L -structures M and N with domain
A and B, respectively, are called isomorphic if there is a bijection f : A → B

between A and B which has the following properties:

• for each constant symbol c ∈ L :

f
(

cM
)

= cN

• for n-ary relation symbols R ∈ L :

RM(a1, . . . , an) ⇐⇒ RN
(

f(a1), . . . , f(an)
)

• for n-ary function symbols F∈L :

f
(

FM(a1, . . . , an)
)

= FN
(

f(a1), . . . ,f(an)
)

If the L -structures M and N are isomorphic and f : A → B is the corresponding
bijection, then for all a1, . . . , an ∈ A and each formula ϕ(x1, . . . , xn) we have

M � ϕ(a1, . . . , an) ⇐⇒ N � ϕ
(

f(a1), . . . , f(an)
)

.

This shows that isomorphic L -structures are essentially the same, except that their
elements have different “names”, and therefore, isomorphic structures are usually
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2 15 Models of Finite Fragments of Set Theory

identified. For example the dihedral group of order six and S3 (i.e., the symmetric
group of order six) are isomorphic; whereas C6 (i.e., the cyclic group of order six)
is not isomorphic to S3 (e.g., consider ϕ(x1, x2) ≡ x1◦x2 = x2◦x1).

If N and M are L -structures and B ⊆ A, then N is said to be an elementary

substructure of M, denoted N ≺ M, if for every formulaϕ(x1, . . . , xn) and every
b1, . . . , bn ∈ B:

N � ϕ(b1, . . . , bn) ⇐⇒ M � ϕ(b1, . . . , bn).

For example the linearly ordered set (Q, <) is an elementary substructure of
(R, <). On the other hand, (Z, <) is not an elementary substructure of (Q, <), e.g.,
the formula ∃z(0 < z < 1) is false in (Z, <) but true in (Q, <).

The key point in construction of elementary substructures of a given structure
M with domain A is the following fact: A structure N with domain B ⊆ A is an
elementary substructure of M if and only if for every formula ϕ(u, x1, . . . , xn) and
all b1, . . . , bn ∈ B:

∃a ∈ A : M � ϕ(a, b1, . . . , bn) ⇐⇒ ∃b ∈ B : M � ϕ(b, b1, . . . , bn).

Notice that the implication from the right to the left is obviously true (sinceB ⊆ A).
Equivalently we see that N ≺ M if for every formula ϕ(u, x1, . . . , xn) and all
b1, . . . , bn ∈ B:

∀a ∈ A : M � ϕ(a, b1, . . . , bn) ⇐⇒ ∀b ∈ B : M � ϕ(b, b1, . . . , bn).

Notice that in this case, the implication from the left to the right is obviously true.

The following theorem—which we state without proof—is somewhat similar to
COROLLARY 15.4 below, even though it goes beyond ZFC (see RELATED RE-
SULT 86). However, it is not used later, but it is a nice consequence of the char-
acterisation of elementary submodels given above.

THEOREM 15.1 (LÖWENHEIM–SKOLEM THEOREM). Every infinite model for a
countable language has a countable elementary submodel. In particular, every model
of ZFC has a countable elementary submodel.

The Reflection Principle

Instead of aiming for a set model of all of ZFC, we can restrict our attention to finite

fragments of ZFC (i.e., to finite sets of axioms of ZFC), denoted by ZFC
∗.

We will see that for every finite fragment ZFC∗ of ZFC, in any model V � ZFC

we find a countable set which is a model of ZFC∗; but before we can state this result
we have to give some further notions from model theory.

Let V � ZFC, let M ∈ V be any set, and let M = (M,∈) be an ∈-structure
with domain M . An ∈-structure M = (M,∈), where M ∈ V is a set, is called a



The Reflection Principle 3

set model. Notice that this definition of model is slightly different to the one given
in Chapter ??, where we defined models with respect to a set of formulae.

Now, let V be an arbitrary but fixed model of ZFC and let M = (M,∈) be a set
model. For any formula ϕ we define M � ϕ by induction on the complexity of the
formula ϕ:

• M � x = y ⇐⇒ V � {x, y} ∈M ∧ (x = y)

• M � x ∈ y ⇐⇒ V � {x, y} ∈M ∧ (x ∈ y)

• M � ψ1 ∧ ψ2 ⇐⇒ M � ψ1 and M � ψ2

• M � ¬ψ ⇐⇒ M 2 ψ

• M � ∃xψ ⇐⇒ V � ∃x (x ∈M ∧ ψ)

From this definition we get that if ϕ(x1, . . . , xn) is a formula and a1, . . . , an ∈M ,
then M � ϕ(a1, . . . , an) is the same as V � ϕ(a1, . . . , an), except that the bound
variables of ϕ just range over M . Notice that the interpretation of the non-logical
symbol “∈” remains unchanged for sets in M . Furthermore, notice that also the sets
themselves remain unchanged (which will not be the case for example when we
apply MOSTOWSKI’S COLLAPSING THEOREM 15.3).

For a set model M = (M,∈) and a set of formulae Φ, M � Φ means M � ϕ for
each formula ϕ ∈ Φ. If Φ is a set of formulae and for each formula ϕ ∈ Φ we have

M � ϕ ⇐⇒ V � ϕ,

then we say that M reflects Φ.
The following theorem shows that if ZFC is consistent, then for any finite frag-

ment ZFC∗ ⊆ ZFC there is a set which reflects ZFC∗.

THEOREM 15.2 (REFLECTION PRINCIPLE). Let ZFC
∗ ⊆ ZFC be an arbitrarily

large but finite fragment of ZFC.

(a) If V � ZF, then there exists an ordinal γ ∈ ΩV, such that Vγ reflects ZFC
∗.

(b) Let V � ZFC and let M0 ∈ V be a non-empty countable set. Then there exists
a countable set M ∈ V such that M ⊇M0 and M reflects ZFC

∗.

Proof. Let V be a model of ZF, let ZFC∗ ⊆ ZFC be finite fragment of ZFC, and let
ψ0, . . . , ψm be an enumeration of the finitely many sentences in ZFC

∗. Then

ψ ≡
m
∧

j=0

ψj

is a single sentence. Since for every sentence there is an equivalent sentence in
prenex normal form, by renaming the variables and by adding some auxiliary vari-
ables, we can build a sentence

ϕ̄ ≡ ∃y0∀x1∃y1∀x2 · · · ∀xk∃yk ϕ(x1, . . . , xk, y0, . . . , yk)



4 15 Models of Finite Fragments of Set Theory

which is equivalent to ψ such that free(ϕ) ⊆ {x1, . . . , xk, y0, . . . , yk} and ϕ is
quantifier free.

The crucial point in the proof of part (a) is to show that for any existential formula
∃yϕ̃(x, y) which holds in V and any set V ∈ V, there exists a set V ′ ⊇ V in V

which contains a so-called witness for ∃yϕ̃(x, y), i.e., there is a set a ∈ V ′ such
that for all b ∈ V , (V ′,∈) � ϕ̃(a, b).

We proceed now as follows: Firstly, by the TRANSFINITE RECURSION THEO-
REM ?? we define a sequence of ordinals 〈αn ∈ Ω : n ∈ ω〉 in V, where α0 is an
arbitrary ordinal and

αn+1 :=
⋂
{

α ∈ Ω : ∃y0 ∈ Vα ∀x1 ∈ Vαn
∃y1 ∈ Vα · · ·

· · · ∀xk ∈ Vαn
∃yk ∈ Vα ϕ(x1, . . . , xk, y0, . . . , yk)

}

.

Let γ :=
⋃

n∈ω αn; then

Vγ =
⋃

n∈ω

Vαn

and by construction we get

V � ∃y0 ∈ Vγ ∀x1 ∈ Vγ · · · ∃yk ∈ Vγ ϕ(x1, . . . , xk, y0, . . . , yk) .

Therefore, the set Vγ reflects the sentence ϕ̄, and since ϕ̄ is equivalent to ψ, which
is just the conjunction of the sentences in ZFC

∗, we get that Vγ reflects ZFC∗, which
completes the proof of part (a).

In order to prove part (b), we first carry out the construction in the proof of
part (a) in a model V � ZFC. By construction, we get a sequence of ordinals 〈αn ∈
Ω : n ∈ ω〉, where α0 is such that M0 ∈ Vα0

, as well as a set Vγ which reflects ϕ̄.
By the Axiom of Choice, there is a well-ordering “<” of Vγ . For every non-empty
set X ⊆ Vγ let µX be the <-minimal element of X . By induction on ω, for every
n ∈ ω we define a set Mn as follows: For each i with 0 ≤ i ≤ k define the function
hn,i : (Mn)

i → Vαn+1
by stipulating

hn,i
(

〈x1, . . . , xi〉
)

7→

µ
{

y ∈ Vαn+1
: ∀xi+1∃yi+1 · · · ∀xk∃yk ϕ

(

x1, . . . , xk, hn,0(∅), . . .

. . . hn,i−1(〈x1, . . . , xi−1〉), y, yi+1, . . . , yk
)}

,

and define
Mn+1 :=Mn ∪

⋃

0≤i≤k

hn,i
[

(Mn)
i
]

.

Finally, let M :=
⋃

n∈ωMn. Then, since for every n ∈ ω, Mn is a countable set in
V, also M is countable in V. Moreover, by construction we get that M reflects the
sentence ϕ̄. Hence, M reflects ZFC∗, which completes the proof of part (b). ⊣

The REFLECTION PRINCIPLE 15.2 can be considered as a kind of ZFC-version
of the LÖWENHEIM–SKOLEM THEOREM 15.1, and even though it is weaker than
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that theorem, it has many interesting consequences and important applications, es-
pecially for consistency proofs.

Some remarks:

(1) Notice that the set Vγ constructed in part (a) is a transitive set, whereas the
countable set constructed in part (b) is in general not transitive: For example if
ZFC

∗ is rich enough to define ω1 as the smallest uncountable ordinal and the
countable set M reflects ZFC∗, then M cannot be transitive, since otherwise,
ω1 ∩M would not be countable in V.

(2) Let ZFC∗ be a finite fragment of ZFC and assume that ZFC∗ ⊢ ϕ (for some
sentenceϕ). Further, assume thatM reflects ZFC∗ and let M = (M,∈). Then,
in the model-theoretic sense, M � ZFC

∗, and consequently, M � ϕ.
As we will see later, this is the first step in order to show that a given sentence
ϕ is consistent with ZFC: By the COMPACTNESS THEOREM ?? it is enough
to show that whenever Φ ⊆ ZFC is a finite fragment of ZFC, then Φ + ϕ has
a model. Let Φ be an arbitrary but fixed finite set of axioms of ZFC. Now,
let M ∈ V be a set which reflects a certain finite fragment ZFC∗ ⊆ ZFC,
where ZFC

∗ makes sure that the model M = (M,∈) can be extended within
V to a generic set model M[X ] such that M[X ] � Φ + ϕ. Then, since Φ was
arbitrary, this shows that ϕ is consistent with ZFC. This method is explained
in great detail in the next chapter.

Countable Transitive Models of Finite Fragments of ZFC

As mentioned above, the model of a finite fragment of ZFC constructed in the proof
of the REFLECTION PRINCIPLE 15.2 can be countable or transitive, but in general
not both. However, as a consequence of the following result, in any ground model
V � ZFC and for every finite fragment ZFC∗ ⊆ ZFC there is a countable transitive
set model of ZFC

∗. In order to state the theorem, we first have to introduce the
following notion: A set modelM = (M,∈) is called extensional if for all x, y ∈M

we have
M � x = y ⇐⇒ M � ∀z(z ∈ x↔ z ∈ y) .

In other words, M is extensional if and only if M satisfies the Axiom of Extensional-

ity. For an example of a set model M = (M,∈) which is not extensional, consider
the set M =

{

∅, {{∅}}
}

. Because there is no z ∈M such that z ∈ {{∅}}, we have
M � ∀z

(

z ∈ ∅ ↔ z ∈ {{∅}}
)

, but M 2 ∅ = {{∅}}.
Since set models which are not extensional do not satisfy the Axiom of Exten-

sionality, and since the Axiom of Extensionality is essential in the concept of sets,
non-extensional set models are not of any use. For non-transitive set models, the sit-
uation is different. On the one hand, every model of Set Theory must be transitive,
on the other hand, as we have seen above, there are set models of arbitrarily large
finite fragments of ZFC which are not transitive. However, as will see now, every
extensional set model is isomorphic to a transitive model.
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THEOREM 15.3 (MOSTOWSKI’S COLLAPSING THEOREM). Let V � ZFC, let
M ∈ V be a set, and let M = (M,∈) be an extensional set model of a finite
fragment ZFC∗ ⊆ ZFC (i.e., the Axiom of Extensionality belongs to ZFC

∗). Then
there exists a unique mapping π : M → V in V, such that the set N := π[M ] is
transitive (in V) and the set models N = (N,∈) and M are isomorphic, i.e., the
mapping π :M → N is bijective and for all x, y ∈M , y ∈ x↔ π(y) ∈ π(x).

Proof. Notice first that if M = ∅, then M is already transitive and we are done. So,
let us assume that M is a non-empty set in V. Since π[M ] must be transitive and
for all x, y ∈M we must have y ∈ x↔ π(y) ∈ π(x), we get that for every x ∈M ,
π(x) = {π(y) : y ∈ x ∩M}. By the Axiom of Foundation (which holds in V), there
is an x0 ∈ M such that x0 ∩M = ∅, and since M is extensional, x0 is unique;
let A0 = {x0}. By the properties of π, π(x0) = ∅, i.e., we do not have any other
options to define π(x0). If, for some α ∈ Ω,Aα is already defined andM \Aα 6= ∅,
then let

Xα :=
{

x ∈M \Aα : x ∩ (M \Aα) = ∅
}

,

and let Aα+1 := Aα ∪ Xα. By the properties of π, for each x ∈ Xα, π(x) =
{π(y) : y ∈ x ∩M} (again, there are no other options to define π(x) for x ∈ Xα).
Finally, if, for some limit ordinal α, Aβ is already defined for each β ∈ α, then let
Aα :=

⋃

β∈αAβ . Now, for some λ ∈ κ+, where κ = |M |, M =
⋃

α∈λAα and we
define N := π[M ].

As mentioned above, the mapping π :M → N is unique, and it remains to show
that π is a bijection and that N is transitive: By definition of N , π : M → N is
surjective. To see that π is also injective, let x, y ∈ M be two distinct elements.
Then, since M is extensional, there exists a set z ∈ M which belongs to either x
or y but not both, which implies that also π(z) belongs to either π(x) or π(y) but
not both. Hence, π(x) 6= π(y). To see that N is transitive, take an arbitrary u ∈ N .
Since N = π[M ], there is an xu ∈ M such that π(xu) = u, and by the properties
of π we get that u = {π(y) : y ∈ xu ∩M}, hence, u ⊆ N . ⊣

As an immediate consequence we get

COROLLARY 15.4. Let V be a model of ZFC, let ZFC
∗ be a finite fragment of

ZFC, and let M = (M,∈) be a countable set model of ZFC
∗ where M ∈ V. If

ZFC
∗ contains the Axiom of Extensionality, then there is a countable transitive set

N ∈ V such that N = (N,∈) is isomorphic to M, (in particular, N � ZFC
∗).

Proof. Because Axiom of Extensionality belongs to ZFC
∗ and M � ZFC

∗, M is ex-
tensional. Thus, by MOSTOWSKI’S COLLAPSING THEOREM 15.3, there is a transi-
tive setN ∈ V such that M andN = (N,∈) are isomorphic, and since π :M → N

is a bijection, N is countable. ⊣

Let ZFC∗ be any finite fragment of ZFC and let V be a model of ZFC. Then, by
the REFLECTION PRINCIPLE 15.2??, there is a countable set M in V that reflects
ZFC

∗ and for M = (M,∈) we have M � ZFC
∗. Thus, by COROLLARY 15.4,
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there is a countable transitive set N that reflects ZFC∗. In other words, for any finite
fragment ZFC∗  ZFC there is a countable transitive model N in V such that
N � ZFC

∗.

Let us briefly discuss the preceding constructions: We start with a model V of
ZFC and an arbitrary large but finite set of axioms ZFC∗  ZFC. By the REFLEC-
TION PRINCIPLE 15.2?? there is a countable set M in V such that M = (M,∈)
is a model of ZFC∗. By applying MOSTOWSKI’S COLLAPSING THEOREM 15.3
to (M,∈) we obtain a countable transitive model N = (N,∈) in V such that the
models N = (N,∈) and M are isomorphic, and consequently, N is a model of
ZFC

∗.
It is worth mentioning that the model M = (M,∈) is a genuine submodel of V

and therefore contains the real sets of V. For example if

M � “λ is the least uncountable ordinal”

then λ = ω1, i.e., ω1 ∈ M . However, since the set M is countable in V, there are
countable ordinals in V which do not belong to the set M , and therefore not to the
model M (which implies that M is not transitive). In other words,

V � λ = ω1 ∧ ω1 ∈M ∧ |λ ∩M | = ω.

On the one hand, the model N = (N,∈) is in general not a submodel of V and
just contains a kind of copies of countably many set of V. For example if

N � “λ is the least uncountable ordinal”

then λ, which corresponds to ω1 in N, is just a countable ordinal in V. However,
since N is transitive, every ordinal in V which belongs to λ also belongs to the
set N , and therefore to the model N. In other words,

V � λ ∈ ω1 ∧ λ ∈ N ∧ λ ∩N = λ.

The relationships between the three models V, M, and N, are illustrated by the
following figure:
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As we shall see in the next chapter, countable transitive models of finite frag-
ments of ZFC play a key role in consistency and independence proofs.

NOTES

For concepts of model theory and model-theoretical terminology we refer the reader
to Hodges [? ] or to Chang and Keisler [? ]. However, the preceding results (includ-
ing proofs) can also be found in Jech [? , Chapter 12].

The LÖWENHEIM–SKOLEM THEOREM 15.1 was already discussed in the notes
of Chapter ??; the REFLECTION PRINCIPLE 15.2 was introduced by Montague [? ]
(see also Lévy [? ]); and the transitive collapse was defined by Mostowski [? ].

RELATED RESULTS

0. A model of ZF − Inf and the consistency of PA. Vω � ZF − Inf, where Inf

denotes the Axiom of Infinity, and moreover, we even have Con(PA) ⇐⇒
Con(ZF− Inf) (see Jech [? , Exercise 12.9] and Kunen [? , Chapter IV, Exer-
cise 30]).

1. Models of Z. Let Z be ZF without the Axiom Schema of Replacement. For
every limit ordinal λ > ω we have Vλ � Z (see Jech [? , Exercise 12.7] or
Kunen [? , Chapter IV, Exercise 6]).

For every infinite regular cardinal κ let Hκ := {x : |TC(x)| < κ}. The elements
of Hκ are said to be hereditarily of cardinality< κ. In particular, Hω—which coin-
cides with Vω—is the set of hereditarily finite sets and Hω1

is the set of hereditarily
countable sets.

2. Models of ZFC − P. If AC holds in V, then for all cardinals κ > ω we have
Hκ � Z − P, where P denotes the Axiom of Power Set. Moreover, for regular
cardinals κ > ω we even have Hκ � ZFC − P (see Kunen [? , Chapter IV,
Exercise 7] and Kunen [? , Chapter IV, Theorem 6.5]).

An uncountable regular cardinal κ is said to be inaccessible if for all λ < κ, 2λ < κ.
The inaccessible cardinals owe their name to the fact that they cannot be obtained
(or accessed) from smaller cardinals by the usual set-theoretical operations. To some
extent, an inaccessible cardinal is to smaller cardinals what ω is to finite cardinals
and what is reflected by the fact that Hω � ZFC− Inf (cf. Jech [? , Exercise 12.9]).
Notice that by CANTOR’S THEOREM ??, every inaccessible cardinal is a regular
limit cardinal. One cannot prove in ZFC that inaccessible cardinals exist; moreover,
one cannot even prove that uncountable regular limit cardinals exist (see Kunen [? ,
Chapter VI, Corollary 4.13] but also Hausdorff’s remark [? , p. 131]).


