Partialordnungen und Martin-Axiom

Musterlösung

- **0.** Sei $\mathbb{P} = (P, \leq)$ eine Forcingpartialordnung. Zeige, dass folgendes gilt:
 - (a) Ist $D \subseteq P$ offen dicht und $A \subseteq D$ eine maximale Antikette in D (d.h. für alle $p \in D$ existiert ein $q \in A$, so dass p und q kompatibel sind), dann ist A eine maximale Antikette in P.
 - (b) Ist $A \subseteq P$ eine maximale Antikette in P, dann ist $D = \{q \in P : \exists r \in A (q \ge r)\}$ eine offen dichte Teilmenge von P.

Beweis:

- (a) Es ist klar, dass A eine Antikette ist. Wie zeigen Maximalität: Für alle $p \in P$ gibt es $r \in D$ mit $r \geq p$. Also gibt es $q \in A$ so, dass q kompatibel mit r ist, d.h. es gibt $s \in P$ so, dass $q \leq s \geq r$, also $q \leq s \geq p$, d.h. q ist kompatibel mit p. Da p beliebig war, folgt Maximalität von A.
- (b) D ist offen, denn ist $q \in D$, so gibt es $r \in A$ mit $q \ge r$. Ist weiter $p \in P$ mit $p \ge q$, dann folgt $p \ge r$ und somit $p \in D$. D ist dicht, denn ist $q \in P$, dann gibt es ein $r \in A$ kompatibel mit r, d.h. es gibt $s \in P$ so, dass $q \le s \ge r$. Also ist $s \in D$ mit $s \ge q$.
- **1.** Eine Menge $\mathscr{B} \subseteq [\omega]^{\omega}$ ist eine Basis eines nicht-trivialen Ultrafilters $\mathscr{U} \subseteq [\omega]^{\omega}$, falls gilt:

$$\mathscr{U} = \left\{ x \in [\omega]^\omega : \exists y \in \mathscr{B}(y \subseteq x) \right\}$$

Die Ultrafilter-Zahl u ist die kleinste Kardinalität einer Ultrafilterbasis. Das heisst:

$$\mathfrak{u}=\min\bigl\{|\mathscr{B}|:\mathscr{B}\subseteq[\omega]^\omega \text{ ist eine Basis eines nicht-trivialen Ultrafilters}\bigr\}$$

Zeige:

$$MA \Longrightarrow \mathfrak{u} = \mathfrak{c}$$

Hinweis: Verwende die Partialordnung mit den Bedingungen (s, x), wobei $s \in \text{fin}(\omega)$ und $x \in \mathcal{B}$, wobei $\mathcal{B} \subseteq [\omega]^{\omega}$ eine Filterbasis der Kardinalität $< \mathfrak{c}$ ist, und definiere:

$$(s,x) \le (t,y) :\iff s \subseteq t \land x \supseteq y \land t \setminus s \subseteq x$$

Beweis:

Wir zeigen, dass die Filterbasis \mathcal{B} keine Ultrafilterbasis ist.

Sei $\mathbb{P}=(P,\leq)$ die besagte Partialordnung. Dann erfüllt \mathbb{P} die countable chain condition, denn $\operatorname{fin}(\omega)$ ist abzählbar und es gilt:

$$\forall x, y \in \mathcal{B}: \exists z \in \mathcal{B}: z \subseteq x \cap y, \text{ also } (s, x) \leq (s, z) \geq (s, y).$$

(Entsprechend ist \mathbb{P} sogar σ -centred.)

Definiere die folgenden Mengen:

$$\forall y \in \mathcal{B}: \ E_y := \{(s, x) \in P \mid x \subseteq y\} \quad \text{und} \quad \forall n \in \omega: \ D_n := \{(s, x) \in P \mid |s| \ge n\}$$

Es ist leicht zu sehen, dass $\mathscr{D} := \{D_n\}_{n \in \omega} \cup \{E_y\}_{y \in \mathscr{B}}$ eine Familie der Kardinalität $< \mathfrak{c}$ von offen-dichten Mengen ist. Das heisst, nach MA gibt es einen \mathscr{D} -generischen Filter G. Definiere

$$x_G := \bigcup \{ s \in fin(\omega) \mid \exists x \in \mathscr{B} : (s, x) \in G \}$$

Zunächst gilt, dass $x_G \in [\omega]^{\omega}$, denn für jedes $n \in \omega$ schneidet G die offen-dichte Menge D_n . Weiter gilt für alle $y \in \mathcal{B}$, dass $x_G \subseteq^* y$.

Beweis. (von LISA RICCI)

Sei $y \in \mathcal{B}$ beliebig, $(s_0, x_0) \in G \cap E_y$, also $x_0 \subseteq y$. Da G ein Filter ist, gilt:

$$\forall (s, x) \in G : \exists (s', x') \in G : (s, x) \le (s', x') \ge (s_0, x_0)$$

Somit haben wir $s \setminus s_0 \subseteq s' \setminus s_0 \subseteq x_0 \subseteq y$. Nach Definition von x_G folgt also: $x_G \setminus s_0 \subseteq y$, was zu beweisen war.

Seien $z_1, z_2 \in [x_G]^{\omega}$ mit $z_1 \cap z_2 = \emptyset$. Weder z_1 noch $\omega \setminus z_1$ können im von \mathscr{B} erzeugten Filter sein. Also erzeugt \mathscr{B} keinen Ultrafilter, was zu zeigen war.