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We show that F
+
A

is not a P -family: Let k0 := 0 and let x0 := ω be the first move
of the MAIDEN, and let s0 be DEATH’s response. In general, if sn is DEATH’s nth

move, then the MAIDEN chooses kn+1 such that kn+1 ≥ max(sn), |tkn+1 | = n+1,
and tkn ⊆ tkn+1 , and then she plays

xn+1 = {i ∈ ω : tkn+1 ⊆ si}.

Obviously, for every n ∈ ω we have xn+1  xn. Moreover, all moves of the
MAIDEN are legal:

CLAIM. For every n ∈ ω, xn ∈ F
+
A

.

PoC Firstly, for every n ∈ ω, xn has infinite intersection with infinitely many mem-
bers of A0. Indeed, xn ∩ xf is infinite whenever f |n = tkn . Secondly, for every
z ∈ FA there are finitely many y0, . . . , yk ∈ A such that (y0 ∪ . . . ∪ yk)c ⊆∗ z.
Now, for xn let xf ∈ A0 \ {y0, . . . , yk} such that xf ∩ xn is infinite. Then, since
xf ∩ (y0 ∪ . . . ∪ yk) is finite, xf ⊆∗ z. Hence, xn ∩ z is infinite which shows that
xn ∈ F

+
A

. ⊣Claim

By the MAIDEN’s strategy,
⋃
n∈ω tkn = f for some particular function f ∈ ωω.

Moreover,
⋃
n∈ω sn ⊆ xf ∈ A0, and since subsets of members of A0 do not belong

to F
+
A

,
⋃
n∈ω sn /∈ F

+
A

. Hence, DEATH loses the game, no matter what he is
playing, which shows that the MAIDEN has a winning strategy in the game G∗

F
+

A

. In

other words, the happy family F
+

A
is not a P -family. ⊣

The Rudin–Keisler Ordering of Ultrafilters over ω

In this section, we introduce an ordering on the set of all ultrafilters over ω. For this,
we first define the image of an ultrafilter under a function f : ω → ω.

For f ∈ ωω and an ultrafilter V ⊆ P(ω), let

f(V ) :=
{
x ⊆ ω : ∃y ∈ V

(
f [y] ⊆ x

)}
.

We leave it as an exercise to the reader to show that

f(V ) =
{
x ⊆ ω : f−1[x] ∈ V

}
,

where f−1[x] := {n ∈ ω : f(n) ∈ x
}

.

FACT 11.20. If V ⊆ P(ω) is an ultrafilter over ω and U = f(V ), then U is also
an ultrafilter over ω.

Proof. Since f−1[ω] = ω, we get ω ∈ U , and since f−1[∅] = ∅, we get ∅ /∈ U .



The Rudin–Keisler Ordering of Ultrafilters over ω 295

If x ⊆ x′ and x ∈ f(V ) (i.e., x ∈ U ), then f [y0] ⊆ x for some y0 ∈ V , and
therefore f [y0] ⊆ x′, which shows that x′ ∈ f(V ) (i.e., x′ ∈ U ).

If x, x′ ∈ f(V ) (i.e., x, x′ ∈ U ), then f−1[x], f−1[x′] ∈ V , and since V is an
ultrafilter,

(
f−1[x] ∩ f−1[x′]

)
∈ V . Now, since f−1[x] ∩ f−1[x′] = f−1[x ∩ x′],

we get x ∩ x′ ∈ f(V ) (i.e., x ∩ x′ ∈ U ). ⊣

The so-called Rudin–Keisler ordering “≤RK” on the set of ultrafilters over ω is now
defined as follows:

U ≤RK V : ⇐⇒ ∃f ∈ ωω
(
U = f(V )

)

Furthermore, for ultrafilters U ,V ⊆ P(ω) we define

U ≡RK V : ⇐⇒ U = f(V ) for some bijection f ∈ ωω.

FACT 11.21. (a) The relation “≤RK” is reflexive and transitive.

(b) The relation “≡RK” is an equivalence relation on the set of ultrafilters over ω.

Proof. (a) For the identity function ι : ω → ω we obviously have ι(U ) = U ,
hence, U ≤RK U . Furthermore, if f(W ) = V and g(V ) = U for some functions
f, g ∈ ωω, then g◦f(W ) = U , hence, U ≤RK V and V ≤RK W implies U ≤RK W .

(b) Notice that if f, g ∈ ωω are bijections, then f−1, g−1, and f◦g are also bi-
jections. From this observation it follows easily that the relation “≡RK” is reflex-
ive, symmetric, and transitive (e.g., if f(U ) = V , where f is a bijection, then
f−1(V ) = U ). ⊣

The following lemma will be crucial in the proof of THEOREM 11.23.

LEMMA 11.22. For any ultrafilter U ⊆ P(ω) and any function f ∈ ωω we have

f(U ) = U −→ {n ∈ ω : f(n) = n} ∈ U .

Proof. Let f ∈ ωω be an arbitrary but fixed function and let U ⊆ P(ω) be an
ultrafilter such that f(U ) = U . We consider the following three sets:

D := {n ∈ ω : f(n) < n} (decreasing)

E := {n ∈ ω : f(n) = n} (equal)

I := {n ∈ ω : f(n) > n} (increasing)

Since U is an ultrafilter, exactly one of the sets D,E, I belongs to U . If E ∈ U ,
then we are done. So, we have to show that neither D nor I belongs to U .
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Assume towards a contradiction that D ∈ U . Then for every n ∈ D we consider
the sequence 〈fk(n) : k ∈ ω〉 where f0(n) := n and fk+1(n) := f

(
fk(n)

)
. By the

definition ofD, for every n ∈ D there is a least kn ∈ ω such that fkn(n) /∈ D. Then
D is the disjoint union of the sets D′ := {n ∈ D : kn is odd} and D′′ := {n ∈ D :
kn is even}, and since U is an ultrafilter and by assumption D ∈ U , exactly one
of these two sets belongs to U . Now, since f(D′) = D′′ and f(D′′) = D′, this is a
contradiction to f(U ) = U , which shows that D /∈ U .

So, assume towards a contradiction that I ∈ U . Then for every n ∈ I we consider
again the sequence 〈fk(n) : k ∈ ω〉. If, for n ∈ I , there is a k ∈ ω such that
fk(n) /∈ I , then let kn be the least such number; otherwise, let kn := ω. Then I is
the disjoint union of the sets I0 := {n ∈ I : kn ∈ ω} and Iω := {n ∈ I : kn = ω}.
Since U is an ultrafilter and I ∈ U (by assumption), exactly one of the sets I0 and
Iω belongs to U . If I0 ∈ U , then exactly one of the sets I ′0 := {n ∈ I0 : kn is odd}
and I ′′0 := {n ∈ I0 : kn is even} belongs to U ; but since f(I ′0) = I ′′0 and f(I ′′0 ) =
I ′0, this is a contradiction to f(U ) = U . So, I0 /∈ U , which implies that Iω ∈ U .
Now, for each n ∈ Iω there exists a least number mn ∈ Iω such that there is a
k ∈ ω with fk(mn) = n. Let I ′ω :=

{
n ∈ Iω : ∃k ∈ ω

(
f2k+1(mn) = n

)}
and

I ′′ω :=
{
n ∈ Iω : ∃k ∈ ω

(
f2k(mn) = n

)}
. Since the two sets I ′ω and I ′′ω are disjoint

and their union is Iω , either I ′ω or I ′′ω belongs to U , but not both. Furthermore, we
get f(I ′ω) = I ′′ω and f(I ′′ω) = I ′ω, which is again a contradiction to f(U ) = U . So,
Iω also does not belong to U , which shows that I /∈ U .

Since U is an ultrafilter and D ∪ E ∪ I belongs to U , but neither D nor I belongs
to U , we get that E belongs to U , which completes the proof. ⊣

The following result shows that up to “≡RK-equivalence”, the Rudin–Keisler order-
ing “≤RK” is antisymmetric.

THEOREM 11.23. For all ultrafilters U ,V ⊆ P(ω) we have

(U ≤RK V ∧ V ≤RK U ) −→ U ≡RK V .

Proof. Assume that U ≤RK V and V ≤RK U and let f, g ∈ ωω be such that
f(V ) = U and g(U ) = V . Notice that f◦g(U ) = U . So, by LEMMA 11.22,
there is an x0 ∈ U such that for all n ∈ x0, f◦g(n) = n, i.e., f◦g|x0 is the identity
function. Hence, g|x0 as well as f |g[x0] is one-to-one, i.e., f and g are both bijections
between the sets x0 and g[x0]. Now, we show that there exists a set x′0 ⊆ x0 in U

such that g|x′
0

can be extended to a bijection g̃ ∈ ωω. If |ω \ x0| = |ω \ g[x0]|, take
any bijection h between ω \x0 and ω \g[x0]. Then, for x′0 := x0, g̃ := g∪h has the
required properties. Otherwise, the set x0 must be infinite and we can split x0 into
two disjoint infinite parts x′0 and x′′0 where x′0 belongs to U . In this case, take any
bijection h between the two infinite sets ω \ x′0 and ω \ g[x′0] and let g̃ := g ∪ h.

Since g̃ ∈ ωω is a bijection, x′0 ∈ U , g(U ) = V , and g|x′
0
= g̃|x′

0
, we get that

g̃[x′0] ∈ V . It remains to show that this implies g̃(U ) = V . Since g(U ) = V , we
get
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{
g[x] : x ∈ U

}
⊆ V and

{
g−1[y] : y ∈ V

}
⊆ U .

Furthermore, by construction of g̃ we have g|x′
0
= g̃|x′

0
. Now, for every y ∈ V let

y′ := y ∩ g̃[x′0] and let x′ := g̃−1[y′]. Then y′ ∈ V , x′ ∈ U , and g̃[x′] ⊆ y, which
shows that g̃(U ) = V . ⊣

For the sake of completeness we give the following

FACT 11.24. For any ultrafilter U ⊆ P(ω) and any function f ∈ ωω we have

f(U ) ≡RK U −→ ∃x ∈ U
(
f |x is one-to-one

)
.

Proof. Assume f(U ) ≡RK U , where f ∈ ωω and U ⊆ P(ω) is an ultrafilter. By
definition of “≡RK”, there exists a bijection g ∈ ωω such that g◦f(U ) = U . Hence,
by LEMMA 11.22, there is an x0 ∈ U such that g◦f |x0 is the identity function, and
since g|f [x0] is one-to-one, f |x0 is also one-to-one. ⊣

So far, we have not seen an example of an ultrafilter W ⊆ [ω]ω which is neither a
P -point nor a Q-point. The following result gives now such an example.

THEOREM 11.25. For any ultrafilters U ,V ⊆ [ω]ω there is an ultrafilter W ⊆
[ω]ω, which is neither a P -point nor a Q-point, such that

U ≤RK W and V ≤RK W .

Proof. In a first step we construct an ultrafilter W ⊆ [ω]ω which is above U and
V , and in a second step we show that W is neither a P -point nor a Q-point.

Firstly, let

W
∗ =

{
X ⊆ ω × ω :

{
a ∈ ω : {b ∈ ω : 〈a, b〉 ∈ X} ∈ V

}
∈ U

}
.

Then W ∗ is a non-principal ultrafilter over ω × ω. To see this, notice first that ∅ /∈
W ∗, that ω×ω ∈ W ∗, that W ∗ ⊆ [ω×ω]ω (this is because U ,V ⊆ [ω]ω), and that
X ∈ W ∗ and X ⊆ X ′ ⊆ ω × ω implies X ′ ∈ W ∗. Furthermore, let X0 ⊆ ω × ω
be such that X0 /∈ W ∗. Then

{
a ∈ ω : {b ∈ ω : 〈a, b〉 ∈ X0} ∈ V

}
/∈ U ,

which implies, since U is an ultrafilter, that

{
a′ ∈ ω : {b ∈ ω : 〈a, b〉 ∈ X0} /∈ V

}
∈ U ,

and consequently, since V is an ultrafilter, we get

{
a′ ∈ ω : {b′ ∈ ω : 〈a′, b′〉 /∈ X0} ∈ V

}
∈ U ,
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which shows that (ω × ω) \X0 ∈ W ∗. Finally, let j0 : ω × ω → ω be a bijection.
Then W :=

{
j0[X ] : X ∈ W ∗

}
is an ultrafilter over ω. In order to show that W is

above both ultrafilters U and V , we work with W ∗ and define the projections πU

and πV by stipulating

πU : P(ω × ω) −→ P(ω)

X 7−→
{
a ∈ ω : ∃b ∈ ω(〈a, b〉 ∈ X)

}

πV : P(ω × ω) −→ P(ω)

X 7−→
{
b ∈ ω : ∃a ∈ ω(〈a, b〉 ∈ X)

}

We leave it as an exercise to the reader to show that U = πU [W ∗] and that V =
πV [W ∗]. Now, we define f, g ∈ ωω by stipulating

f : ω → ω

n 7→ πU

(
{j0−1(n)}

)

g : ω → ω

m 7→ πV

(
{j0−1(m)}

)

where j0 is as above. Then, since
{
j0
−1[z] : z ∈ W

}
= W ∗ and U =

{
πU (X) :

X ∈ W ∗
}

, for every x0 ∈ U there are X0 ∈ W ∗ and z0 ∈ W , such that X0 =

j0
−1[z0] and πU (X0) = x0, i.e., πU

(
j0
−1[z0]

)
= x0. Hence, f [z0] = x0 where

z0 ∈ W , and since x0 ∈ U was arbitrary, we get f(W ) = U . This shows that
U ≤RK W —the relation V ≤RK W is shown similarly.

It remains to prove that W is neither a P -point nor a Q-point. We work again with
the ultrafilter W ∗ ⊆ [ω×ω]ω and show that W ∗ is neither a P -point nor a Q-point.

W ∗ is not a Q-point: Firstly, let

D :=
{
〈a, b〉 ∈ ω × ω : a ≤ b

}
.

Notice that D belongs to W ∗. Now, define π : ω × ω ։ D by stipulating

π(〈a, b〉) =
{
〈a, b〉 if a ≤ b,

〈a, a〉 otherwise,

and for each m ∈ ω, let

um :=
{
〈a, b ∈ ω × ω : π(〈a, b〉) = 〈a,m〉

}
.

Then {um : m ∈ ω} is a partition of ω × ω where each um is finite—in fact,
|um| = 2m+ 1. Assume towards a contradiction that W ∗ is a Q-point. Then there
is a YQ ∈ W ∗ such that for each m ∈ ω, |YQ ∩ um| ≤ 1. Since W ∗ is an ultrafilter,
(YQ∩D) ∈ W ∗. Above we have seen that V = πV [W ∗], so, for yQ := πV (YQ∩D)
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we get that yQ ∈ V . Furthermore, by definition of W ∗ and since (YQ ∩D) ∈ W ∗,
for each n0 ∈ yQ we get that the set

Vn0 :=
{
m ∈ ω : 〈n0,m〉 ∈ (YQ ∩D)

}

belongs to the ultrafilter V . Now, if n0 and n′0 are distinct members of yQ, then
Vn0 ∩ Vn′

0
∈ V , in particular, Vn0 ∩ Vn′

0
is non-empty. Let m0 be an element of

Vn0 ∩ Vn′
0
. Then 〈n0,m0〉 and 〈n′0,m0〉 are two distinct elements of YQ ∩D which

both belong to um0 . So, |YQ ∩ um0 | ≥ 2, which contradicts our assumption and
shows that W ∗ is not a Q-point.

W ∗ is not a P -point: For each n ∈ ω, let

un :=
{
〈n,m〉 : m ∈ ω

}
.

Then {un : n ∈ ω} is a partition of ω × ω. Assume towards a contradiction that
there is an XP ∈ W ∗ such that for each n ∈ ω, XP ∩ un is finite. Let xP :=
πU (XP ) be the projection of XP . Then, since XP ∈ W ∗, xP ∈ U . Now, since V

contains only infinite sets andXP ∩un is finite for each n ∈ ω, we get that for each
n0 ∈ xP , {m ∈ ω : 〈n0,m〉 ∈ XP } is finite and therefore does not belong to V .
Consequently, XP /∈ W ∗, which contradicts our assumption and shows that W ∗ is
not a P -point. ⊣

The next result shows that Ramsey ultrafilters are minimal with respect to the
Rudin–Keisler ordering.

FACT 11.26. If U ,U ′ ⊆ [ω]ω are ultrafilters, where U is a Ramsey ultrafilter,
then

U
′ ≤RK U −→ U ≡RK U

′ .

Proof. Assume that U ′ ≤RK U , where U is a Ramsey ultrafilter. By definition
of “≤RK”, there exists a function f ∈ ωω, such that f(U ) = U ′, and since U is
a Ramsey ultrafilter, by PROPOSITION 11.14 (c), there exists an x ∈ U such that
f |x is constant or one-to-one. If f |x is constant, then the ultrafilter f(U ) would
be principal, which contradicts the fact that f(U ) = U ′ and U ′ ⊆ [ω]ω. So, f |x
is one-to-one. With similar arguments as in the proof of THEOREM 11.23 we find
an x′ ⊆ x in U such that f |x′ can be extended to a bijection f̄ ∈ ωω, such that
f̄(U ) = U ′, which shows that U ≡RK U ′. ⊣

In order to state the following lemma—which will play a key role in the construction
of a model of ZFC in which there are up to Rudin–Keisler equivalence just finitely
many Ramsey ultrafilters (cf. PROPOSITION 27.6)—we first have to define a certain
game: Let U ,V ⊆ [ω]ω be two free families. Then the game GU

V
is the composition

of the games GU and G∗
V

, visualised by the following figure:



300 11 Happy Families and Their Relatives

MAIDEN x0 ∈ U y1 ∈ V x2 ∈ U y3 ∈ V

. . .

DEATH t0 ∈ [x0]
<2 s1 ∈ [y1]

<ω t2 ∈ [x2]
<2 s3 ∈ [y3]

<ω

The rules for GU
V

are as follows: For each i ∈ ω, x2i ∈ U , y2i+1 ∈ V , t2i is either
the empty set or a singleton {a2i} with a2i ∈ x2i, and s2i+1 is a finite subset of
y2i+1. Finally, DEATH wins the game GU

V
if and only if

⋃{t2i : i ∈ ω} ∈ U and⋃{s2i+1 : i ∈ ω} ∈ V .

LEMMA 11.27. Let U be a Ramsey ultrafilter and V be a P -point. Then U ≤RK V

if and only if the MAIDEN has a winning strategy in the game GU
V

.

Proof. (⇒) First we show that if U ≤RK V , then the MAIDEN has a winning strat-
egy σ in the game GU

V
. So, assume that U ≤RK V and let f ∈ ωω be such that

f(V ) = U . Since V is a P -point, there exists a set y0 ∈ V such that f is finite-to-
one on y0. Let x0 := f [y0]; then x0 ∈ U and define σ(∅) := x0. Assume now that
t0 ∈ [x0]

<2 is the first move of DEATH. Since f is finite-to-one on y0, f−1[t0] ∩ y0
is finite. Let

y1 := y0 \
(
max(f−1[t0] ∩ y0) + 1

)

and define σ(∅, x0, t0) := y1. Assume that s1 ∈ [y1]
<ω is the second move of

DEATH. Then let
x2 := f [y1] \

(
max(f [s1]) + 1

)

and define σ(∅, x0, t0, y1, s1) := x2. The next moves of the MAIDEN are

y3 := y1 \
(
max(f−1[t2] ∩ y1) + 1

)
and x4 := f [y3] \

(
max(f [s3]) + 1

)
,

respectively. Proceeding in this way we finally get

⋃

i∈ω

t2i ∈ U ⇐⇒
⋃

i∈ω

s2i+1 /∈ V ,

which shows that DEATH loses the game whenever the MAIDEN plays according
to the strategy σ—no matter what he plays. Hence, σ is a winning strategy for the
MAIDEN.

(⇐) By contraposition we show that if U �RK V , then no strategy σ for the
MAIDEN is a winning strategy. For this we first combine the proofs of THEO-
REM 11.17 (a) & (b) and then use the premise that U �RK V .

Let σ be any strategy for the MAIDEN in the game GU
V

. We have to show that
DEATH can win. Let x0 := σ(∅) (i.e., x0 ∈ U ), let X0 := {x0}, and for positive
integers n, x ∈ Xn if and only if for some k < n there are t0, t2, . . . , t2k ⊆ n and
s1, s3, . . . , s2k+1 ⊆ n such that x = σ(x0, t0, y1, . . . , s2k+1), where for all i ≤ k
we have:
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t2i ∈ [x2i]
<2 where x2i = σ(x0, t0, y1 . . . , s2i−1) ,

and
s2i+1 ∈ [y2i+1]

<ω where y2i+1 = σ(x0, t0, y1 . . . , t2i) .

Similarly, for n ∈ ω we define Yn by stipulating y ∈ Yn if and only if for some
k ≤ n there are t0, t2, . . . , t2k ⊆ n and s1, s3, . . . , s2k−1 ⊆ n such that y =
σ(x0, t0, y1, . . . , t2k), where for all i ≤ k we have:

t2i ∈ [x2i]
<2 where x2i = σ(x0, t0, y1 . . . , s2i−1) ,

and
s2i−1 ∈ [y2i−1]

<ω where y2i−1 = σ(x0, t0, y1 . . . , t2i−2) .

Recall that by the rules of the game, DEATH can always play ∅. Clearly, for every
n ∈ ω, both sets Xn and Yn are finite subsets of U and V , respectively. Hence, for
each n ∈ ω,

⋂
Xn ∈ U and

⋂
Yn ∈ V . Moreover, since both ultrafilters U and V

are P -points, there are sets x∗ ∈ U and y∗ ∈ V , and a strictly increasing function
f ∈ ωω with f(0) > 0 such that for all n ∈ ω,

x∗ \ f(n) ⊆
⋂
Xn and y∗ \ f(n) ⊆

⋂
Yn .

Let k0 := f(0), and in general, for m ∈ ω, let km+1 := f(km). Furthermore,
for m ∈ ω, let um := [km, km+1). Since U is a Ramsey ultrafilter, there is a set
x = {am : m ∈ ω} in U such that for each m ∈ ω, um ∩ x = {am}. Define the
two sets S ,T ⊆ [ω]ω by stipulating

S ∈ S : ⇐⇒ {am : m ∈ S} ∈ U ,

T ∈ T : ⇐⇒
⋃

{um : m ∈ T } ∈ V .

Notice that for any S, S′ ∈ S we have S ∩ S′ ∈ S , in particular, S ∩ S′ ∈ [ω]ω;
similarly for T, T ′ ∈ T . In fact, since U and V are ultrafilters, S and T are
ultrafilters, too. We show now that due to the fact that U �RK V , the two ultrafilters
S and T can be separated. For this we prove the following two claims.

CLAIM 1. There are S ∈ S and T ∈ T such that S ∩ T = ∅.

Proof of Claim 1. If there are S ∈ S and T ∈ T such that S ∩ T is finite, then
S′ = S \ (S ∩ T ) is in S and S′ ∩ T = ∅. So, assume towards a contradiction that
for all S ∈ S and T ∈ T we have |S ∩ T | = ω.

First we show that this implies that for all S ∈ S and T ∈ T , S ∩ T ∈ S ∩ T ,
and consequently we get S = T . Indeed, if S0 ∩ T0 /∈ S for some S0 ∈ S

and T0 ∈ T , then S′0 := ω \ (S0 ∩ T0) belongs to S , and since S is a filter,
S′0 ∩ S0 ∈ S . Hence, (S′0 ∩ S0) ∩ T0 = S′0 ∩ (S0 ∩ T0) = ∅ and for S := S′0 ∩ S0

in S and T = T0 in T we have S ∩ T = ∅, which contradicts our assumption.
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Now we show that S = T implies U ≤RK V , which contradicts the fact that
U �RK V : Let g ∈ ωω be such that for allm ∈ ω we have g[um] := {am}. Then for
each y ∈ V we get g[y] ∈ U . To see this, notice that the set {m ∈ ω : y∩um 6= ∅}
belongs to T and therefore, by the definition of g and since S = T , we get
g[y] ∈ U . So, g(V ) = U , which implies that U ≤RK V . ⊣Claim 1

CLAIM 2. There are S ∈ S and T ∈ T such that S ∩ T = ∅ and for all distinct
m,m′ ∈ S ∪ T , |m −m′| ≥ 2, where |m −m′| denotes the absolute value of the
difference m−m′.

Proof of Claim 2. By CLAIM 1 there are S̃ ∈ S and T̃ ∈ T such that S̃ ∩ T̃ = ∅.
Let A := {2k : k ∈ ω} and B := {2k + 1 : k ∈ ω}. Then either the set S̃ ∩ A or
the set S̃ ∩B belongs to S ; similarly, either the set T̃ ∩A or the set T̃ ∩B belongs
to T . Without loss of generality, let us assume S̃ ∩ A ∈ S .

If T̃ ∩ A ∈ T , let S0 := S̃ ∩ A and T0 := T̃ ∩ A. Then S0 ∈ S , T0 ∈ T , and
because S and T are disjoint, S0 and T0 are disjoint subsets of A and for all distinct
m,m′ ∈ S0 ∪ T0 we have |m−m′| ≥ 2.

If T̃ ∩A /∈ T , then T̃ ∩B ∈ T . Now, by the definition of S and T , and since U

and V are filters, the sets

xA := {a2k : k ∈ ω} and yB :=
⋃

{u2k+1 : k ∈ ω}

belong to U and V , respectively. Let g+, g− ∈ ωω be functions such that for all
k ∈ ω we have: g+[u2k+1] := {a2k+2}, g−[u2k+1] := {a2k}, and g+[u2k+1] =
g−[u2k] := {0}. In particular, we get g+[yB] = xA \ {a0} and g−[yB] = xA, i.e.,
both sets g+[yB] and g−[yB] belong to U . On the other hand, since U �RK V , we
have that neither g+(V ) = U nor g−(V ) = U . Hence, there are y+, y− ∈ [yB]

ω

which belong to V such that neither g+[y+] nor g−[y−] belongs to U . So, for ȳ :=
y+ ∩ y− we get that ȳ ⊆ yB , ȳ ∈ V , and

g+[ȳ] /∈ U and g−[ȳ] /∈ U .

Now, since U is an ultrafilter and g+[ȳ] /∈ U , we get (ω \ g+[ȳ]) ∈ U , which
implies that x+ := xA ∩ (ω \ g+[ȳ]) belongs to U ; similarly, we get that x− :=
xA ∩ (ω \ g−[ȳ]) belongs to U . For x̄ := x+ ∩ x− we get x̄ ⊆ xA, x̄ ∈ U , and

g+[ȳ] ∩ x̄ = ∅ and g−[ȳ] ∩ x̄ = ∅ .

With respect to x̄ and ȳ, consider the two sets

S0 :=
{
2k ∈ ω : a2k ∈ x̄

}
and T0 :=

{
2k + 1 ∈ ω : ȳ ∩ u2k+1 6= ∅

}
.

By definition, S0 ∈ S , T0 ∈ T , and S0 ∩ T0 = ∅. Furthermore, if n ∈ T0, then
n = 2k+1 (for some k ∈ ω) and ȳ∩u2k+1 6= ∅. Hence, by definition of g+ and g−,

a2k+2 ∈ g+[ȳ] and a2k ∈ g−[ȳ] ,
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which implies that neither a2k+2 nor a2k belongs to x̄, and consequently neither
2k + 2 nor 2k belongs to S0. In other words, if n ∈ T0, then neither n + 1 nor
n − 1 belongs to S0, which shows that for all m ∈ S0 and n ∈ T0, |m − n| ≥ 2.
Furthermore, since x̄ ⊆ xA, for any distinct m,m′ ∈ x̄ we have |m − m′| ≥ 2.
Similarly, since ȳ ⊆ yB, for any distinct m,m′ ∈ ȳ we have |m −m′| ≥ 2. Thus,
S0 ∩ T0 = ∅ and for all distinct m,m′ ∈ S0 ∪ T0 we have |m − m′| ≥ 2, as
required. ⊣Claim 2

Let S0 ∈ S and T0 ∈ T be such thatS0∩T0 = ∅ and for all distinctm,m′ ∈ S∪T ,
|m − m′| ≥ 2. Consider the run 〈x0, t∗0, y1, s∗1, . . .〉 of the game GU

V
, where the

MAIDEN plays according to her strategy σ and DEATH plays

t∗2n :=

{
{am+1} if n = km, m+ 1 ∈ S0, and am+1 ∈ x∗,

∅ otherwise,

and

s∗2n+1 =

{
y∗ ∩ um+1 if n = km and m+ 1 ∈ T0,

∅ otherwise.

It is clear that
⋃
n∈ω t

∗
2n ∈ U and that

⋃
n∈ω s

∗
2n+1 ∈ V . In other words, the

MAIDEN loses the game if the moves of DEATH satisfy the rules of the game GU
V

.
To see this, notice first that for any m ∈ ω we have

x∗ \ km+1 = x∗ \ f(km) ⊆
⋂
Xkm ⊆

⋂
{x0, . . . , x2km} ⊆ x2km ,

where x0, y1 . . . , x2km are the moves played by the MAIDEN when DEATH plays
t∗0, s

∗
1 . . . , s

∗
2km−1

; and

y∗ \ km+1 = y∗ \ f(km) ⊆
⋂
Ykm ⊆

⋂
{y1, . . . , y2km+1} ⊆ y2km+1 ,

where x0, y1 . . . , x2km , y2km+1 are the moves played by the MAIDEN when DEATH

plays t∗0, s
∗
1 . . . , t

∗
2km

. By definition, for all m ∈ ω, t∗2km and s∗2km+1 are both sub-
sets of km+2—in fact, they are subsets of [km+1, km+2). Now, recall that whenever
m+ 1 ∈ S0 (m+ 1 ∈ T0), then m+ 1 /∈ T0 (m+ 1 /∈ S0) and neither m ∈ S0 nor
m ∈ T0. In particular, if m′ < m and m′ + 1,m+ 1 ∈ S0 ∪ T0, then m′ ≤ m− 2.
Hence, for n = km, m′ < m, and m+ 1 ∈ S0 ∪ T0, we get that t∗2km′

and s∗2km′+1

are both subsets of n (e.g., if m′ = m − 1, then both sets t∗2km′
and s∗2km′+1 are

empty). This shows that the moves of DEATH satisfy the rules of the game GU
V

,
which completes the proof. ⊣


