We show that $\mathscr{F}_{\mathscr{A}}^+$ is not a *P*-family: Let $k_0 := 0$ and let $x_0 := \omega$ be the first move of the MAIDEN, and let s_0 be DEATH's response. In general, if s_n is DEATH's n^{th} move, then the MAIDEN chooses k_{n+1} such that $k_{n+1} \ge \max(s_n), |t_{k_{n+1}}| = n+1$, and $t_{k_n} \subseteq t_{k_{n+1}}$, and then she plays

$$x_{n+1} = \{ i \in \omega : t_{k_{n+1}} \subseteq s_i \}.$$

Obviously, for every $n \in \omega$ we have $x_{n+1} \subsetneq x_n$. Moreover, all moves of the MAIDEN are legal:

CLAIM. For every $n \in \omega, x_n \in \mathscr{F}_{\mathscr{A}}^+$.

PoC Firstly, for every $n \in \omega$, x_n has infinite intersection with infinitely many members of \mathscr{A}_0 . Indeed, $x_n \cap x_f$ is infinite whenever $f|_n = t_{k_n}$. Secondly, for every $z \in \mathscr{F}_{\mathscr{A}}$ there are finitely many $y_0, \ldots, y_k \in \mathscr{A}$ such that $(y_0 \cup \ldots \cup y_k)^{\mathsf{c}} \subseteq^* z$. Now, for x_n let $x_f \in \mathscr{A}_0 \setminus \{y_0, \ldots, y_k\}$ such that $x_f \cap x_n$ is infinite. Then, since $x_f \cap (y_0 \cup \ldots \cup y_k)$ is finite, $x_f \subseteq^* z$. Hence, $x_n \cap z$ is infinite which shows that $x_n \in \mathscr{F}_{\mathscr{A}}^+$.

By the MAIDEN's strategy, $\bigcup_{n \in \omega} t_{k_n} = f$ for some particular function $f \in {}^{\omega}\omega$. Moreover, $\bigcup_{n \in \omega} s_n \subseteq x_f \in \mathscr{A}_0$, and since subsets of members of \mathscr{A}_0 do not belong to $\mathscr{F}_{\mathscr{A}}^+$, $\bigcup_{n \in \omega} s_n \notin \mathscr{F}_{\mathscr{A}}^+$. Hence, DEATH loses the game, no matter what he is playing, which shows that the MAIDEN has a winning strategy in the game $\mathcal{G}_{\mathscr{F}_{\mathscr{A}}^+}^*$. In other words, the happy family $\mathscr{F}_{\mathscr{A}}^+$ is not a *P*-family. \dashv

The Rudin–Keisler Ordering of Ultrafilters over ω

In this section, we introduce an ordering on the set of all ultrafilters over ω . For this, we first define the image of an ultrafilter under a function $f : \omega \to \omega$.

For $f \in {}^{\omega}\omega$ and an ultrafilter $\mathscr{V} \subseteq \mathscr{P}(\omega)$, let

$$f(\mathscr{V}) := \left\{ x \subseteq \omega : \exists y \in \mathscr{V} (f[y] \subseteq x) \right\}.$$

We leave it as an exercise to the reader to show that

$$f(\mathscr{V}) = \{ x \subseteq \omega : f^{-1}[x] \in \mathscr{V} \},\$$

where $f^{-1}[x] := \{ n \in \omega : f(n) \in x \}.$

FACT 11.20. If $\mathscr{V} \subseteq \mathscr{P}(\omega)$ is an ultrafilter over ω and $\mathscr{U} = f(\mathscr{V})$, then \mathscr{U} is also an ultrafilter over ω .

Proof. Since $f^{-1}[\omega] = \omega$, we get $\omega \in \mathscr{U}$, and since $f^{-1}[\emptyset] = \emptyset$, we get $\emptyset \notin \mathscr{U}$.

If $x \subseteq x'$ and $x \in f(\mathcal{V})$ (*i.e.*, $x \in \mathcal{U}$), then $f[y_0] \subseteq x$ for some $y_0 \in \mathcal{V}$, and therefore $f[y_0] \subseteq x'$, which shows that $x' \in f(\mathcal{V})$ (*i.e.*, $x' \in \mathcal{U}$).

If $x, x' \in f(\mathcal{V})$ (i.e., $x, x' \in \mathcal{U}$), then $f^{-1}[x], f^{-1}[x'] \in \mathcal{V}$, and since \mathcal{V} is an ultrafilter, $(f^{-1}[x] \cap f^{-1}[x']) \in \mathcal{V}$. Now, since $f^{-1}[x] \cap f^{-1}[x'] = f^{-1}[x \cap x']$, we get $x \cap x' \in f(\mathcal{V})$ (i.e., $x \cap x' \in \mathcal{U}$).

The so-called **Rudin–Keisler ordering** " \leq_{RK} " on the set of ultrafilters over ω is now defined as follows:

$$\mathscr{U} \leq_{\mathsf{RK}} \mathscr{V} : \iff \exists f \in {}^{\omega} \omega (\mathscr{U} = f(\mathscr{V}))$$

Furthermore, for ultrafilters $\mathscr{U}, \mathscr{V} \subseteq \mathscr{P}(\omega)$ we define

$$\mathscr{U} \equiv_{\mathsf{RK}} \mathscr{V} : \iff \mathscr{U} = f(\mathscr{V}) \text{ for some bijection } f \in {}^{\omega}\omega.$$

FACT 11.21. (a) The relation " \leq_{RK} " is reflexive and transitive.

(b) The relation " \equiv_{RK} " is an equivalence relation on the set of ultrafilters over ω .

Proof. (a) For the identity function $\iota : \omega \to \omega$ we obviously have $\iota(\mathscr{U}) = \mathscr{U}$, hence, $\mathscr{U} \leq_{\mathsf{RK}} \mathscr{U}$. Furthermore, if $f(\mathscr{W}) = \mathscr{V}$ and $g(\mathscr{V}) = \mathscr{U}$ for some functions $f, g \in {}^{\omega}\omega$, then $g \circ f(\mathscr{W}) = \mathscr{U}$, hence, $\mathscr{U} \leq_{\mathsf{RK}} \mathscr{V}$ and $\mathscr{V} \leq_{\mathsf{RK}} \mathscr{W}$ implies $\mathscr{U} \leq_{\mathsf{RK}} \mathscr{W}$.

(b) Notice that if $f, g \in {}^{\omega}\omega$ are bijections, then f^{-1}, g^{-1} , and $f \circ g$ are also bijections. From this observation it follows easily that the relation " \equiv_{RK} " is reflexive, symmetric, and transitive (e.g., if $f(\mathscr{U}) = \mathscr{V}$, where f is a bijection, then $f^{-1}(\mathscr{V}) = \mathscr{U}$).

The following lemma will be crucial in the proof of THEOREM 11.23.

LEMMA 11.22. For any ultrafilter $\mathscr{U} \subseteq \mathscr{P}(\omega)$ and any function $f \in {}^{\omega}\omega$ we have

$$f(\mathscr{U}) = \mathscr{U} \longrightarrow \{n \in \omega : f(n) = n\} \in \mathscr{U}.$$

Proof. Let $f \in {}^{\omega}\omega$ be an arbitrary but fixed function and let $\mathscr{U} \subseteq \mathscr{P}(\omega)$ be an ultrafilter such that $f(\mathscr{U}) = \mathscr{U}$. We consider the following three sets:

$$D := \{n \in \omega : f(n) < n\} \quad \text{(decreasing)}$$
$$E := \{n \in \omega : f(n) = n\} \quad \text{(equal)}$$
$$I := \{n \in \omega : f(n) > n\} \quad \text{(increasing)}$$

Since \mathscr{U} is an ultrafilter, exactly one of the sets D, E, I belongs to \mathscr{U} . If $E \in \mathscr{U}$, then we are done. So, we have to show that neither D nor I belongs to \mathscr{U} .

Assume towards a contradiction that $D \in \mathscr{U}$. Then for every $n \in D$ we consider the sequence $\langle f^k(n) : k \in \omega \rangle$ where $f^0(n) := n$ and $f^{k+1}(n) := f(f^k(n))$. By the definition of D, for every $n \in D$ there is a least $k_n \in \omega$ such that $f^{k_n}(n) \notin D$. Then D is the disjoint union of the sets $D' := \{n \in D : k_n \text{ is odd}\}$ and $D'' := \{n \in D : k_n \text{ is over}\}$, and since \mathscr{U} is an ultrafilter and by assumption $D \in \mathscr{U}$, exactly one of these two sets belongs to \mathscr{U} . Now, since f(D') = D'' and f(D'') = D', this is a contradiction to $f(\mathscr{U}) = \mathscr{U}$, which shows that $D \notin \mathscr{U}$.

So, assume towards a contradiction that $I \in \mathscr{U}$. Then for every $n \in I$ we consider again the sequence $\langle f^k(n) : k \in \omega \rangle$. If, for $n \in I$, there is a $k \in \omega$ such that $f^k(n) \notin I$, then let k_n be the least such number; otherwise, let $k_n := \omega$. Then I is the disjoint union of the sets $I_0 := \{n \in I : k_n \in \omega\}$ and $I_\omega := \{n \in I : k_n = \omega\}$. Since \mathscr{U} is an ultrafilter and $I \in \mathscr{U}$ (by assumption), exactly one of the sets I_0 and I_ω belongs to \mathscr{U} . If $I_0 \in \mathscr{U}$, then exactly one of the sets $I'_0 := \{n \in I_0 : k_n \text{ is odd}\}$ and $I''_0 := \{n \in I_0 : k_n \text{ is even}\}$ belongs to \mathscr{U} ; but since $f(I'_0) = I''_0$ and $f(I''_0) =$ I'_0 , this is a contradiction to $f(\mathscr{U}) = \mathscr{U}$. So, $I_0 \notin \mathscr{U}$, which implies that $I_\omega \in \mathscr{U}$. Now, for each $n \in I_\omega$ there exists a least number $m_n \in I_\omega$ such that there is a $k \in \omega$ with $f^k(m_n) = n$. Let $I'_\omega := \{n \in I_\omega : \exists k \in \omega (f^{2k+1}(m_n) = n)\}$ and $I''_\omega := \{n \in I_\omega : \exists k \in \omega (f^{2k}(m_n) = n)\}$. Since the two sets I'_ω and I''_ω are disjoint and their union is I_ω , either I'_ω or I''_ω belongs to \mathscr{U} , but not both. Furthermore, we get $f(I'_\omega) = I''_\omega$ and $f(I''_\omega) = I'_\omega$, which is again a contradiction to $f(\mathscr{U}) = \mathscr{U}$. So, I_ω also does not belong to \mathscr{U} , which shows that $I \notin \mathscr{U}$.

Since \mathscr{U} is an ultrafilter and $D \cup E \cup I$ belongs to \mathscr{U} , but neither D nor I belongs to \mathscr{U} , we get that E belongs to \mathscr{U} , which completes the proof. \dashv

The following result shows that up to " \equiv_{RK} -equivalence", the Rudin–Keisler ordering " \leq_{RK} " is antisymmetric.

THEOREM 11.23. For all ultrafilters $\mathscr{U}, \mathscr{V} \subseteq \mathscr{P}(\omega)$ we have

$$(\mathscr{U} \leq_{\mathsf{RK}} \mathscr{V} \land \mathscr{V} \leq_{\mathsf{RK}} \mathscr{U}) \longrightarrow \mathscr{U} \equiv_{\mathsf{RK}} \mathscr{V}.$$

Proof. Assume that $\mathscr{U} \leq_{\scriptscriptstyle RK} \mathscr{V}$ and $\mathscr{V} \leq_{\scriptscriptstyle RK} \mathscr{U}$ and let $f, g \in {}^{\omega}\omega$ be such that $f(\mathscr{V}) = \mathscr{U}$ and $g(\mathscr{U}) = \mathscr{V}$. Notice that $f \circ g(\mathscr{U}) = \mathscr{U}$. So, by LEMMA 11.22, there is an $x_0 \in \mathscr{U}$ such that for all $n \in x_0$, $f \circ g(n) = n$, *i.e.*, $f \circ g|_{x_0}$ is the identity function. Hence, $g|_{x_0}$ as well as $f|_{g[x_0]}$ is one-to-one, *i.e.*, f and g are both bijections between the sets x_0 and $g[x_0]$. Now, we show that there exists a set $x'_0 \subseteq x_0$ in \mathscr{U} such that $g|_{x'_0}$ can be extended to a bijection $\tilde{g} \in {}^{\omega}\omega$. If $|\omega \setminus x_0| = |\omega \setminus g[x_0]|$, take any bijection h between $\omega \setminus x_0$ and $\omega \setminus g[x_0]$. Then, for $x'_0 := x_0$, $\tilde{g} := g \cup h$ has the required properties. Otherwise, the set x_0 must be infinite and we can split x_0 into two disjoint infinite parts x'_0 and x''_0 where x'_0 belongs to \mathscr{U} . In this case, take any bijection h between the two infinite sets $\omega \setminus x'_0$ and $\omega \setminus g[x'_0]$ and let $\tilde{g} := g \cup h$.

Since $\tilde{g} \in {}^{\omega}\omega$ is a bijection, $x'_0 \in \mathscr{U}$, $g(\mathscr{U}) = \mathscr{V}$, and $g|_{x'_0} = \tilde{g}|_{x'_0}$, we get that $\tilde{g}[x'_0] \in \mathscr{V}$. It remains to show that this implies $\tilde{g}(\mathscr{U}) = \mathscr{V}$. Since $g(\mathscr{U}) = \mathscr{V}$, we get

 $\{g[x]: x \in \mathscr{U}\} \subseteq \mathscr{V}$ and $\{g^{-1}[y]: y \in \mathscr{V}\} \subseteq \mathscr{U}$.

Furthermore, by construction of \tilde{g} we have $g|_{x'_0} = \tilde{g}|_{x'_0}$. Now, for every $y \in \mathscr{V}$ let $y' := y \cap \tilde{g}[x'_0]$ and let $x' := \tilde{g}^{-1}[y']$. Then $y' \in \mathscr{V}$, $x' \in \mathscr{U}$, and $\tilde{g}[x'] \subseteq y$, which shows that $\tilde{g}(\mathscr{U}) = \mathscr{V}$.

For the sake of completeness we give the following

FACT 11.24. For any ultrafilter $\mathscr{U} \subseteq \mathscr{P}(\omega)$ and any function $f \in {}^{\omega}\omega$ we have

$$f(\mathscr{U}) \equiv_{\mathsf{RK}} \mathscr{U} \longrightarrow \exists x \in \mathscr{U}(f|_x \text{ is one-to-one}).$$

Proof. Assume $f(\mathscr{U}) \equiv_{\mathsf{RK}} \mathscr{U}$, where $f \in {}^{\omega}\omega$ and $\mathscr{U} \subseteq \mathscr{P}(\omega)$ is an ultrafilter. By definition of " \equiv_{RK} ", there exists a bijection $g \in {}^{\omega}\omega$ such that $g \circ f(\mathscr{U}) = \mathscr{U}$. Hence, by LEMMA 11.22, there is an $x_0 \in \mathscr{U}$ such that $g \circ f|_{x_0}$ is the identity function, and since $g|_{f[x_0]}$ is one-to-one, $f|_{x_0}$ is also one-to-one.

So far, we have not seen an example of an ultrafilter $\mathscr{W} \subseteq [\omega]^{\omega}$ which is neither a P-point nor a Q-point. The following result gives now such an example.

THEOREM 11.25. For any ultrafilters $\mathscr{U}, \mathscr{V} \subseteq [\omega]^{\omega}$ there is an ultrafilter $\mathscr{W} \subseteq [\omega]^{\omega}$, which is neither a *P*-point nor a *Q*-point, such that

$$\mathscr{U} \leq_{\scriptscriptstyle RK} \mathscr{W} \quad and \quad \mathscr{V} \leq_{\scriptscriptstyle RK} \mathscr{W}.$$

Proof. In a first step we construct an ultrafilter $\mathscr{W} \subseteq [\omega]^{\omega}$ which is above \mathscr{U} and \mathscr{V} , and in a second step we show that \mathscr{W} is neither a *P*-point nor a *Q*-point.

Firstly, let

$$\mathscr{W}^* = \left\{ X \subseteq \omega \times \omega : \left\{ a \in \omega : \left\{ b \in \omega : \langle a, b \rangle \in X \right\} \in \mathscr{V} \right\} \in \mathscr{U} \right\}.$$

Then \mathscr{W}^* is a non-principal ultrafilter over $\omega \times \omega$. To see this, notice first that $\emptyset \notin \mathscr{W}^*$, that $\omega \times \omega \in \mathscr{W}^*$, that $\mathscr{W}^* \subseteq [\omega \times \omega]^{\omega}$ (this is because $\mathscr{U}, \mathscr{V} \subseteq [\omega]^{\omega}$), and that $X \in \mathscr{W}^*$ and $X \subseteq X' \subseteq \omega \times \omega$ implies $X' \in \mathscr{W}^*$. Furthermore, let $X_0 \subseteq \omega \times \omega$ be such that $X_0 \notin \mathscr{W}^*$. Then

$$\left\{a \in \omega : \left\{b \in \omega : \langle a, b \rangle \in X_0\right\} \in \mathscr{V}\right\} \notin \mathscr{U},$$

which implies, since \mathscr{U} is an ultrafilter, that

$$\left\{a'\in\omega:\left\{b\in\omega:\left\langle a,b\right\rangle\in X_{0}\right\}\notin\mathscr{V}\right\}\in\mathscr{U},$$

and consequently, since \mathscr{V} is an ultrafilter, we get

$$\left\{a'\in\omega:\left\{b'\in\omega:\left\langle a',b'\right\rangle\notin X_0\right\}\in\mathscr{V}\right\}\in\mathscr{U}$$

which shows that $(\omega \times \omega) \setminus X_0 \in \mathscr{W}^*$. Finally, let $j_0 : \omega \times \omega \to \omega$ be a bijection. Then $\mathscr{W} := \{j_0[X] : X \in \mathscr{W}^*\}$ is an ultrafilter over ω . In order to show that \mathscr{W} is above both ultrafilters \mathscr{U} and \mathscr{V} , we work with \mathscr{W}^* and define the projections $\pi_{\mathscr{U}}$ and $\pi_{\mathscr{V}}$ by stipulating

$$\begin{aligned} \pi_{\mathscr{U}} : & \mathscr{P}(\omega \times \omega) & \longrightarrow & \mathscr{P}(\omega) \\ & X & \longmapsto & \left\{ a \in \omega : \exists b \in \omega(\langle a, b \rangle \in X) \right\} \\ \pi_{\mathscr{V}} : & \mathscr{P}(\omega \times \omega) & \longrightarrow & \mathscr{P}(\omega) \\ & X & \longmapsto & \left\{ b \in \omega : \exists a \in \omega(\langle a, b \rangle \in X) \right\} \end{aligned}$$

We leave it as an exercise to the reader to show that $\mathscr{U} = \pi_{\mathscr{U}}[\mathscr{W}^*]$ and that $\mathscr{V} = \pi_{\mathscr{V}}[\mathscr{W}^*]$. Now, we define $f, g \in {}^{\omega}\omega$ by stipulating

$$f: \omega \to \omega$$
$$n \mapsto \pi_{\mathscr{U}} \left(\{ j_0^{-1}(n) \} \right)$$
$$g: \omega \to \omega$$
$$m \mapsto \pi_{\mathscr{V}} \left(\{ j_0^{-1}(m) \} \right)$$

where j_0 is as above. Then, since $\{j_0^{-1}[z] : z \in \mathcal{W}\} = \mathcal{W}^*$ and $\mathcal{U} = \{\pi_{\mathcal{U}}(X) : X \in \mathcal{W}^*\}$, for every $x_0 \in \mathcal{U}$ there are $X_0 \in \mathcal{W}^*$ and $z_0 \in \mathcal{W}$, such that $X_0 = j_0^{-1}[z_0]$ and $\pi_{\mathcal{U}}(X_0) = x_0$, *i.e.*, $\pi_{\mathcal{U}}(j_0^{-1}[z_0]) = x_0$. Hence, $f[z_0] = x_0$ where $z_0 \in \mathcal{W}$, and since $x_0 \in \mathcal{U}$ was arbitrary, we get $f(\mathcal{W}) = \mathcal{U}$. This shows that $\mathcal{U} \leq_{\mathsf{RK}} \mathcal{W}$ —the relation $\mathcal{V} \leq_{\mathsf{RK}} \mathcal{W}$ is shown similarly.

It remains to prove that \mathscr{W} is neither a *P*-point nor a *Q*-point. We work again with the ultrafilter $\mathscr{W}^* \subseteq [\omega \times \omega]^{\omega}$ and show that \mathscr{W}^* is neither a *P*-point nor a *Q*-point.

W* is not a Q-point: Firstly, let

$$D := \{ \langle a, b \rangle \in \omega \times \omega : a \le b \}$$

Notice that D belongs to \mathscr{W}^* . Now, define $\pi: \omega \times \omega \twoheadrightarrow D$ by stipulating

$$\pi(\langle a, b \rangle) = \begin{cases} \langle a, b \rangle & \text{if } a \le b, \\ \langle a, a \rangle & \text{otherwise,} \end{cases}$$

and for each $m \in \omega$, let

$$u_m := \left\{ \langle a, b \in \omega \times \omega : \pi(\langle a, b \rangle) = \langle a, m \rangle \right\}.$$

Then $\{u_m : m \in \omega\}$ is a partition of $\omega \times \omega$ where each u_m is finite—in fact, $|u_m| = 2m + 1$. Assume towards a contradiction that \mathscr{W}^* is a Q-point. Then there is a $Y_Q \in \mathscr{W}^*$ such that for each $m \in \omega$, $|Y_Q \cap u_m| \leq 1$. Since \mathscr{W}^* is an ultrafilter, $(Y_Q \cap D) \in \mathscr{W}^*$. Above we have seen that $\mathscr{V} = \pi_{\mathscr{V}}[\mathscr{W}^*]$, so, for $y_Q := \pi_{\mathscr{V}}(Y_Q \cap D)$

298

we get that $y_Q \in \mathscr{V}$. Furthermore, by definition of \mathscr{W}^* and since $(Y_Q \cap D) \in \mathscr{W}^*$, for each $n_0 \in y_Q$ we get that the set

$$V_{n_0} := \{ m \in \omega : \langle n_0, m \rangle \in (Y_Q \cap D) \}$$

belongs to the ultrafilter \mathscr{V} . Now, if n_0 and n'_0 are distinct members of y_Q , then $V_{n_0} \cap V_{n'_0} \in \mathscr{V}$, in particular, $V_{n_0} \cap V_{n'_0}$ is non-empty. Let m_0 be an element of $V_{n_0} \cap V_{n'_0}$. Then $\langle n_0, m_0 \rangle$ and $\langle n'_0, m_0 \rangle$ are two distinct elements of $Y_Q \cap D$ which both belong to u_{m_0} . So, $|Y_Q \cap u_{m_0}| \ge 2$, which contradicts our assumption and shows that \mathscr{W}^* is not a Q-point.

 \mathscr{W}^* is not a *P*-point: For each $n \in \omega$, let

$$u_n := \left\{ \langle n, m \rangle : m \in \omega \right\}.$$

Then $\{u_n : n \in \omega\}$ is a partition of $\omega \times \omega$. Assume towards a contradiction that there is an $X_P \in \mathcal{W}^*$ such that for each $n \in \omega$, $X_P \cap u_n$ is finite. Let $x_P :=$ $\pi_{\mathscr{U}}(X_P)$ be the projection of X_P . Then, since $X_P \in \mathcal{W}^*$, $x_P \in \mathscr{U}$. Now, since \mathscr{V} contains only infinite sets and $X_P \cap u_n$ is finite for each $n \in \omega$, we get that for each $n_0 \in x_P$, $\{m \in \omega : \langle n_0, m \rangle \in X_P\}$ is finite and therefore does not belong to \mathscr{V} . Consequently, $X_P \notin \mathscr{W}^*$, which contradicts our assumption and shows that \mathscr{W}^* is not a *P*-point.

The next result shows that Ramsey ultrafilters are minimal with respect to the Rudin–Keisler ordering.

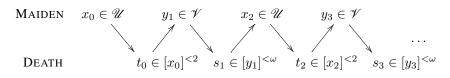
FACT 11.26. If $\mathscr{U}, \mathscr{U}' \subseteq [\omega]^{\omega}$ are ultrafilters, where \mathscr{U} is a Ramsey ultrafilter, then

$$\mathscr{U}' \leq_{\scriptscriptstyle RK} \mathscr{U} \longrightarrow \mathscr{U} \equiv_{\scriptscriptstyle RK} \mathscr{U}'$$
 .

Proof. Assume that $\mathscr{U}' \leq_{\scriptscriptstyle RK} \mathscr{U}$, where \mathscr{U} is a Ramsey ultrafilter. By definition of " $\leq_{\scriptscriptstyle RK}$ ", there exists a function $f \in {}^{\omega}\omega$, such that $f(\mathscr{U}) = \mathscr{U}'$, and since \mathscr{U} is a Ramsey ultrafilter, by PROPOSITION 11.14(c), there exists an $x \in \mathscr{U}$ such that $f|_x$ is constant or one-to-one. If $f|_x$ is constant, then the ultrafilter $f(\mathscr{U})$ would be principal, which contradicts the fact that $f(\mathscr{U}) = \mathscr{U}'$ and $\mathscr{U}' \subseteq [\omega]^{\omega}$. So, $f|_x$ is one-to-one. With similar arguments as in the proof of THEOREM 11.23 we find an $x' \subseteq x$ in \mathscr{U} such that $f|_{x'}$ can be extended to a bijection $\overline{f} \in {}^{\omega}\omega$, such that $\overline{f}(\mathscr{U}) = \mathscr{U}'$, which shows that $\mathscr{U} \equiv_{\scriptscriptstyle RK} \mathscr{U}'$.

In order to state the following lemma—which will play a key role in the construction of a model of ZFC in which there are up to Rudin–Keisler equivalence just finitely many Ramsey ultrafilters (*cf.* PROPOSITION 27.6)—we first have to define a certain game: Let $\mathscr{U}, \mathscr{V} \subseteq [\omega]^{\omega}$ be two free families. Then the game $\mathcal{G}_{\mathscr{V}}^{\mathscr{U}}$ is the composition of the games $\mathcal{G}_{\mathscr{U}}$ and $\mathcal{G}_{\mathscr{V}}^{\ast}$, visualised by the following figure:

11 Happy Families and Their Relatives



The rules for $\mathcal{G}_{\mathscr{V}}^{\mathscr{U}}$ are as follows: For each $i \in \omega$, $x_{2i} \in \mathscr{U}$, $y_{2i+1} \in \mathscr{V}$, t_{2i} is either the empty set or a singleton $\{a_{2i}\}$ with $a_{2i} \in x_{2i}$, and s_{2i+1} is a finite subset of y_{2i+1} . Finally, DEATH wins the game $\mathcal{G}_{\mathscr{V}}^{\mathscr{U}}$ if and only if $\bigcup \{t_{2i} : i \in \omega\} \in \mathscr{U}$ and $\bigcup \{s_{2i+1} : i \in \omega\} \in \mathscr{V}$.

LEMMA 11.27. Let \mathscr{U} be a Ramsey ultrafilter and \mathscr{V} be a *P*-point. Then $\mathscr{U} \leq_{\mathsf{RK}} \mathscr{V}$ if and only if the MAIDEN has a winning strategy in the game $\mathcal{G}^{\mathscr{U}}_{\mathscr{V}}$.

Proof. (\Rightarrow) First we show that if $\mathscr{U} \leq_{\scriptscriptstyle RK} \mathscr{V}$, then the MAIDEN has a winning strategy σ in the game $\mathscr{G}_{\mathscr{V}}^{\mathscr{U}}$. So, assume that $\mathscr{U} \leq_{\scriptscriptstyle RK} \mathscr{V}$ and let $f \in {}^{\omega}\omega$ be such that $f(\mathscr{V}) = \mathscr{U}$. Since \mathscr{V} is a *P*-point, there exists a set $y_0 \in \mathscr{V}$ such that f is finite-to-one on y_0 . Let $x_0 := f[y_0]$; then $x_0 \in \mathscr{U}$ and define $\sigma(\emptyset) := x_0$. Assume now that $t_0 \in [x_0]^{<2}$ is the first move of DEATH. Since f is finite-to-one on y_0 , $f^{-1}[t_0] \cap y_0$ is finite. Let

$$y_1 := y_0 \setminus (\max(f^{-1}[t_0] \cap y_0) + 1))$$

and define $\sigma(\emptyset, x_0, t_0) := y_1$. Assume that $s_1 \in [y_1]^{<\omega}$ is the second move of DEATH. Then let

$$x_2 := f[y_1] \setminus \big(\max(f[s_1]) + 1 \big)$$

and define $\sigma(\emptyset, x_0, t_0, y_1, s_1) := x_2$. The next moves of the MAIDEN are

$$y_3 := y_1 \setminus \left(\max(f^{-1}[t_2] \cap y_1) + 1 \right) \text{ and } x_4 := f[y_3] \setminus \left(\max(f[s_3]) + 1 \right),$$

respectively. Proceeding in this way we finally get

$$\bigcup_{i\in\omega}t_{2i}\in\mathscr{U}\quad\Longleftrightarrow\quad\bigcup_{i\in\omega}s_{2i+1}\notin\mathscr{V}\,,$$

which shows that DEATH loses the game whenever the MAIDEN plays according to the strategy σ —no matter what he plays. Hence, σ is a winning strategy for the MAIDEN.

(\Leftarrow) By contraposition we show that if $\mathscr{U} \not\leq_{RK} \mathscr{V}$, then no strategy σ for the MAIDEN is a winning strategy. For this we first combine the proofs of THEO-REM 11.17 (a) & (b) and then use the premise that $\mathscr{U} \not\leq_{RK} \mathscr{V}$.

Let σ be any strategy for the MAIDEN in the game $\mathcal{G}_{\mathcal{V}}^{\mathscr{U}}$. We have to show that DEATH can win. Let $x_0 := \sigma(\emptyset)$ (*i.e.*, $x_0 \in \mathscr{U}$), let $X_0 := \{x_0\}$, and for positive integers $n, x \in X_n$ if and only if for some k < n there are $t_0, t_2, \ldots, t_{2k} \subseteq n$ and $s_1, s_3, \ldots, s_{2k+1} \subseteq n$ such that $x = \sigma(x_0, t_0, y_1, \ldots, s_{2k+1})$, where for all $i \leq k$ we have:

300

$$t_{2i} \in [x_{2i}]^{<2} \quad \text{where} \quad x_{2i} = \sigma(x_0, t_0, y_1 \dots, s_{2i-1}),$$
$$s_{2i+1} \in [y_{2i+1}]^{<\omega} \quad \text{where} \quad y_{2i+1} = \sigma(x_0, t_0, y_1 \dots, t_{2i}).$$

and

Similarly, for $n \in \omega$ we define Y_n by stipulating $y \in Y_n$ if and only if for some $k \leq n$ there are $t_0, t_2, \ldots, t_{2k} \subseteq n$ and $s_1, s_3, \ldots, s_{2k-1} \subseteq n$ such that $y = \sigma(x_0, t_0, y_1, \ldots, t_{2k})$, where for all $i \leq k$ we have:

and

$$s_{2i-1} \in [y_{2i-1}]^{<\omega}$$
 where $y_{2i-1} = \sigma(x_0, t_0, y_1, \dots, t_{2i-2})$

 $t_{2i} \in [x_{2i}]^{<2}$ where $x_{2i} = \sigma(x_0, t_0, y_1 \dots, s_{2i-1})$,

Recall that by the rules of the game, DEATH can always play \emptyset . Clearly, for every $n \in \omega$, both sets X_n and Y_n are finite subsets of \mathscr{U} and \mathscr{V} , respectively. Hence, for each $n \in \omega$, $\bigcap X_n \in \mathscr{U}$ and $\bigcap Y_n \in \mathscr{V}$. Moreover, since both ultrafilters \mathscr{U} and \mathscr{V} are P-points, there are sets $x^* \in \mathscr{U}$ and $y^* \in \mathscr{V}$, and a strictly increasing function $f \in {}^{\omega}\omega$ with f(0) > 0 such that for all $n \in \omega$,

$$x^* \setminus f(n) \subseteq \bigcap X_n$$
 and $y^* \setminus f(n) \subseteq \bigcap Y_n$.

Let $k_0 := f(0)$, and in general, for $m \in \omega$, let $k_{m+1} := f(k_m)$. Furthermore, for $m \in \omega$, let $u_m := [k_m, k_{m+1})$. Since \mathscr{U} is a Ramsey ultrafilter, there is a set $x = \{a_m : m \in \omega\}$ in \mathscr{U} such that for each $m \in \omega$, $u_m \cap x = \{a_m\}$. Define the two sets $\mathscr{S}, \mathscr{T} \subseteq [\omega]^{\omega}$ by stipulating

$$S \in \mathscr{S} : \iff \{a_m : m \in S\} \in \mathscr{U},$$
$$T \in \mathscr{T} : \iff \bigcup \{u_m : m \in T\} \in \mathscr{V}.$$

Notice that for any $S, S' \in \mathscr{S}$ we have $S \cap S' \in \mathscr{S}$, in particular, $S \cap S' \in [\omega]^{\omega}$; similarly for $T, T' \in \mathscr{T}$. In fact, since \mathscr{U} and \mathscr{V} are ultrafilters, \mathscr{S} and \mathscr{T} are ultrafilters, too. We show now that due to the fact that $\mathscr{U} \not\leq_{\mathsf{RK}} \mathscr{V}$, the two ultrafilters \mathscr{S} and \mathscr{T} can be separated. For this we prove the following two claims.

CLAIM 1. There are $S \in \mathscr{S}$ and $T \in \mathscr{T}$ such that $S \cap T = \emptyset$.

Proof of Claim 1. If there are $S \in \mathscr{S}$ and $T \in \mathscr{T}$ such that $S \cap T$ is finite, then $S' = S \setminus (S \cap T)$ is in \mathscr{S} and $S' \cap T = \emptyset$. So, assume towards a contradiction that for all $S \in \mathscr{S}$ and $T \in \mathscr{T}$ we have $|S \cap T| = \omega$.

First we show that this implies that for all $S \in \mathscr{S}$ and $T \in \mathscr{T}$, $S \cap T \in \mathscr{S} \cap \mathscr{T}$, and consequently we get $\mathscr{S} = \mathscr{T}$. Indeed, if $S_0 \cap T_0 \notin \mathscr{S}$ for some $S_0 \in \mathscr{S}$ and $T_0 \in \mathscr{T}$, then $S'_0 := \omega \setminus (S_0 \cap T_0)$ belongs to \mathscr{S} , and since \mathscr{S} is a filter, $S'_0 \cap S_0 \in \mathscr{S}$. Hence, $(S'_0 \cap S_0) \cap T_0 = S'_0 \cap (S_0 \cap T_0) = \emptyset$ and for $S := S'_0 \cap S_0$ in \mathscr{S} and $T = T_0$ in \mathscr{T} we have $S \cap T = \emptyset$, which contradicts our assumption.

301

11 Happy Families and Their Relatives

Now we show that $\mathscr{S} = \mathscr{T}$ implies $\mathscr{U} \leq_{\scriptscriptstyle RK} \mathscr{V}$, which contradicts the fact that $\mathscr{U} \not\leq_{\scriptscriptstyle RK} \mathscr{V}$: Let $g \in {}^{\omega}\omega$ be such that for all $m \in \omega$ we have $g[u_m] := \{a_m\}$. Then for each $y \in \mathscr{V}$ we get $g[y] \in \mathscr{U}$. To see this, notice that the set $\{m \in \omega : y \cap u_m \neq \emptyset\}$ belongs to \mathscr{T} and therefore, by the definition of g and since $\mathscr{S} = \mathscr{T}$, we get $g[y] \in \mathscr{U}$. So, $g(\mathscr{V}) = \mathscr{U}$, which implies that $\mathscr{U} \leq_{\scriptscriptstyle RK} \mathscr{V}$.

CLAIM 2. There are $S \in \mathscr{S}$ and $T \in \mathscr{T}$ such that $S \cap T = \emptyset$ and for all distinct $m, m' \in S \cup T, |m - m'| \ge 2$, where |m - m'| denotes the absolute value of the difference m - m'.

Proof of Claim 2. By CLAIM 1 there are $\tilde{S} \in \mathscr{S}$ and $\tilde{T} \in \mathscr{T}$ such that $\tilde{S} \cap \tilde{T} = \emptyset$. Let $A := \{2k : k \in \omega\}$ and $B := \{2k + 1 : k \in \omega\}$. Then either the set $\tilde{S} \cap A$ or the set $\tilde{S} \cap B$ belongs to \mathscr{S} ; similarly, either the set $\tilde{T} \cap A$ or the set $\tilde{T} \cap B$ belongs to \mathscr{T} . Without loss of generality, let us assume $\tilde{S} \cap A \in \mathscr{S}$.

If $\tilde{T} \cap A \in \mathscr{T}$, let $S_0 := \tilde{S} \cap A$ and $T_0 := \tilde{T} \cap A$. Then $S_0 \in \mathscr{S}$, $T_0 \in \mathscr{T}$, and because S and T are disjoint, S_0 and T_0 are disjoint subsets of A and for all distinct $m, m' \in S_0 \cup T_0$ we have $|m - m'| \ge 2$.

If $\tilde{T} \cap A \notin \mathscr{T}$, then $\tilde{T} \cap B \in \mathscr{T}$. Now, by the definition of \mathscr{S} and \mathscr{T} , and since \mathscr{U} and \mathscr{V} are filters, the sets

$$x_A := \{a_{2k} : k \in \omega\} \quad \text{and} \quad y_B := \bigcup \{u_{2k+1} : k \in \omega\}$$

belong to \mathscr{U} and \mathscr{V} , respectively. Let $g_+, g_- \in {}^{\omega}\omega$ be functions such that for all $k \in \omega$ we have: $g_+[u_{2k+1}] := \{a_{2k+2}\}, g_-[u_{2k+1}] := \{a_{2k}\}, \text{ and } g_+[u_{2k+1}] = g_-[u_{2k}] := \{0\}$. In particular, we get $g_+[y_B] = x_A \setminus \{a_0\}$ and $g_-[y_B] = x_A$, *i.e.*, both sets $g_+[y_B]$ and $g_-[y_B]$ belong to \mathscr{U} . On the other hand, since $\mathscr{U} \not\leq_{\mathsf{RK}} \mathscr{V}$, we have that neither $g_+(\mathscr{V}) = \mathscr{U}$ nor $g_-(\mathscr{V}) = \mathscr{U}$. Hence, there are $y_+, y_- \in [y_B]^{\omega}$ which belong to \mathscr{V} such that neither $g_+[y_+]$ nor $g_-[y_-]$ belongs to \mathscr{U} . So, for $\bar{y} := y_+ \cap y_-$ we get that $\bar{y} \subseteq y_B, \bar{y} \in \mathscr{V}$, and

$$g_+[\bar{y}] \notin \mathscr{U}$$
 and $g_-[\bar{y}] \notin \mathscr{U}$.

Now, since \mathscr{U} is an ultrafilter and $g_+[\bar{y}] \notin \mathscr{U}$, we get $(\omega \setminus g_+[\bar{y}]) \in \mathscr{U}$, which implies that $x_+ := x_A \cap (\omega \setminus g_+[\bar{y}])$ belongs to \mathscr{U} ; similarly, we get that $x_- := x_A \cap (\omega \setminus g_-[\bar{y}])$ belongs to \mathscr{U} . For $\bar{x} := x_+ \cap x_-$ we get $\bar{x} \subseteq x_A, \bar{x} \in \mathscr{U}$, and

$$g_+[\bar{y}] \cap \bar{x} = \emptyset$$
 and $g_-[\bar{y}] \cap \bar{x} = \emptyset$.

With respect to \bar{x} and \bar{y} , consider the two sets

 $S_0 := \left\{ 2k \in \omega : a_{2k} \in \bar{x} \right\} \quad \text{and} \quad T_0 := \left\{ 2k + 1 \in \omega : \bar{y} \cap u_{2k+1} \neq \emptyset \right\}.$

By definition, $S_0 \in \mathscr{S}$, $T_0 \in \mathscr{T}$, and $S_0 \cap T_0 = \emptyset$. Furthermore, if $n \in T_0$, then n = 2k+1 (for some $k \in \omega$) and $\bar{y} \cap u_{2k+1} \neq \emptyset$. Hence, by definition of g_+ and g_- ,

$$a_{2k+2} \in g_+[\bar{y}] \quad \text{and} \quad a_{2k} \in g_-[\bar{y}],$$

which implies that neither a_{2k+2} nor a_{2k} belongs to \bar{x} , and consequently neither 2k + 2 nor 2k belongs to S_0 . In other words, if $n \in T_0$, then neither n + 1 nor n - 1 belongs to S_0 , which shows that for all $m \in S_0$ and $n \in T_0$, $|m - n| \ge 2$. Furthermore, since $\bar{x} \subseteq x_A$, for any distinct $m, m' \in \bar{x}$ we have $|m - m'| \ge 2$. Similarly, since $\bar{y} \subseteq y_B$, for any distinct $m, m' \in \bar{y}$ we have $|m - m'| \ge 2$. Thus, $S_0 \cap T_0 = \emptyset$ and for all distinct $m, m' \in S_0 \cup T_0$ we have $|m - m'| \ge 2$, as required.

Let $S_0 \in \mathscr{S}$ and $T_0 \in \mathscr{T}$ be such that $S_0 \cap T_0 = \emptyset$ and for all distinct $m, m' \in S \cup T$, $|m - m'| \geq 2$. Consider the run $\langle x_0, t_0^*, y_1, s_1^*, \ldots \rangle$ of the game $\mathcal{G}_{\mathscr{V}}^{\mathscr{U}}$, where the MAIDEN plays according to her strategy σ and DEATH plays

$$t_{2n}^* := \begin{cases} \{a_{m+1}\} & \text{if } n = k_m, m+1 \in S_0, \text{ and } a_{m+1} \in x^*, \\ \emptyset & \text{otherwise,} \end{cases}$$

and

$$s_{2n+1}^* = \begin{cases} y^* \cap u_{m+1} & \text{if } n = k_m \text{ and } m+1 \in T_0, \\ \emptyset & \text{otherwise.} \end{cases}$$

It is clear that $\bigcup_{n\in\omega} t_{2n}^* \in \mathscr{U}$ and that $\bigcup_{n\in\omega} s_{2n+1}^* \in \mathscr{V}$. In other words, the MAIDEN loses the game if the moves of DEATH satisfy the rules of the game $\mathcal{G}_{\mathscr{V}}^{\mathscr{U}}$. To see this, notice first that for any $m \in \omega$ we have

$$x^* \setminus k_{m+1} = x^* \setminus f(k_m) \subseteq \bigcap X_{k_m} \subseteq \bigcap \{x_0, \dots, x_{2k_m}\} \subseteq x_{2k_m}$$

where $x_0, y_1, \ldots, x_{2k_m}$ are the moves played by the MAIDEN when DEATH plays $t_0^*, s_1^*, \ldots, s_{2k_m-1}^*$; and

$$y^* \setminus k_{m+1} = y^* \setminus f(k_m) \subseteq \bigcap Y_{k_m} \subseteq \bigcap \{y_1, \dots, y_{2k_m+1}\} \subseteq y_{2k_m+1},$$

where $x_0, y_1, \ldots, x_{2k_m}, y_{2k_m+1}$ are the moves played by the MAIDEN when DEATH plays $t_0^*, s_1^* \ldots, t_{2k_m}^*$. By definition, for all $m \in \omega, t_{2k_m}^*$ and $s_{2k_m+1}^*$ are both subsets of k_{m+2} —in fact, they are subsets of $[k_{m+1}, k_{m+2})$. Now, recall that whenever $m+1 \in S_0$ $(m+1 \in T_0)$, then $m+1 \notin T_0$ $(m+1 \notin S_0)$ and neither $m \in S_0$ nor $m \in T_0$. In particular, if m' < m and $m'+1, m+1 \in S_0 \cup T_0$, then $m' \leq m-2$. Hence, for $n = k_m, m' < m$, and $m+1 \in S_0 \cup T_0$, we get that $t_{2k_m'}^*$ and $s_{2k_m'+1}^*$ are both subsets of n (e.g., if m' = m-1, then both sets $t_{2k_m'}^*$ and $s_{2k_m'+1}^*$ are mpty). This shows that the moves of DEATH satisfy the rules of the game $\mathcal{G}_{\mathcal{V}}^{\mathcal{U}}$, which completes the proof.