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We show that ﬂ; is not a P-family: Let ky := 0 and let 2y := w be the first move
of the MAIDEN, and let sy be DEATH’s response. In general, if s,, is DEATH’s nth
move, then the MAIDEN chooses ky, 1 such that k,, 1 > max(sy,), |tk, .| =n+1,
and ty, C tg,,,,and then she plays

Tpp1 ={i €w:tg,,, Csi}.

Obviously, for every n € w we have x,,41 & z,. Moreover, all moves of the
MAIDEN are legal:

CLAIM. Foreveryn € w, z, € Z.,.

PoC Firstly, for every n € w, x,, has infinite intersection with infinitely many mem-
bers of 7. Indeed, x,, N xy is infinite whenever f |n = t, . Secondly, for every
z € F . there are finitely many yo, . .., yr € & such that (yo U ... Uyg)® C* 2.

Now, for z,, let z¢ € %4 \ {yo,...,yr} such that zy N x, is infinite. Then, since

xr N (yoU...Uyy) is finite, zy C* z. Hence, x,, N 2 is infinite which shows that
A .

T, € ﬁg{ ctaim

By the MAIDEN’s strategy, | J
Moreover, | J,, .,
to ZF1, s, & 1. Hence, DEATH loses the game, no matter what he is
o new o g
playing, which shows that the MAIDEN has a winning strategy in the game Q;+. In
o

new tk, = [ for some particular function f € “w.
sn C xy € H, and since subsets of members of %%, do not belong

other words, the happy family ﬁ; is not a P-family. —

The Rudin—Keisler Ordering of Ultrafilters over w

In this section, we introduce an ordering on the set of all ultrafilters over w. For this,
we first define the image of an ultrafilter under a function f : w — w.

For f € “w and an ultrafilter ¥ C (w), let
f)={ecw:Iyer (f ca)}.
We leave it as an exercise to the reader to show that
FO) = {aCw: fal e 7},
where f~![z] := {n € w: f(n) € z}.

FACT 11.20. If ¥ C & (w) is an ultrafilter over w and % = f(¥'), then % is also
an ultrafilter over w.

Proof. Since f~1w] = w, we getw € %, and since f1[0] = 0, we get O ¢ % .
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Ife C 2’ andx € f(¥) (ie, x € %), then f[yo] C « for some yy € ¥, and
therefore f[yo] C ', which shows that 2’ € f(¥) (i.e., ' € %).

If z,2’ € f(V) (ie, x,a' € %), then f~t[z], f~1[2'] € ¥, and since ¥ is an
ultrafilter, (f~!z] N f~1a’]) € ¥. Now, since f~ z] N f~1a'] = f~Hz N a'],
wegetz Nz’ € f(V) (e, xNa’ € U). 4

The so-called Rudin—Keisler ordering “<,,” on the set of ultrafilters over w is now
defined as follows:

U <V <= Af €e“w(U = fV))

Furthermore, for ultrafilters %, ¥ C &?(w) we define

U =V <= % = f(¥) forsome bijection f € “w.

FACT 11.21. (a) The relation “<g” is reflexive and transitive.

(b) The relation “=g,” is an equivalence relation on the set of ultrafilters over w.

Proof. (a) For the identity function ¢ : w — w we obviously have (%) = %,
hence, % <wx % . Furthermore, if f(#') = ¥ and g(¥') = % for some functions
fig €“w,then gof (W) = U, hence, % <z ¥V and ¥ <ix # implies % <z ¥ .

(b) Notice that if f,g € “w are bijections, then f~1, g~1, and fog are also bi-

[T 1]

jections. From this observation it follows easily that the relation “=g” is reflex-
ive, symmetric, and transitive (e.g., if f(%) = ¥, where f is a bijection, then

70 =) .

The following lemma will be crucial in the proof of THEOREM 11.23.

LEMMA 11.22. For any ultrafilter % C £ (w) and any function f € “w we have
f%)=% — {new:f(n)=n}teu.

Proof. Let f € “w be an arbitrary but fixed function and let  C £?(w) be an
ultrafilter such that f (%) = % . We consider the following three sets:

D:={ncw: f(n) <n} (decreasing)
E:={necw: f(n)=n} (equal)
I'={necw: f(n)>n} (increasing)

Since 7% is an ultrafilter, exactly one of the sets D, E, I belongsto . If £ € %,
then we are done. So, we have to show that neither D nor I belongs to % .
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Assume towards a contradiction that D € %/. Then for every n € D we consider
the sequence (f*(n) : k € w) where f°(n) :=nand f**'(n) := f(f*(n)). By the
definition of D, for every n € D there is aleast k,, € w such that f*~ (n) ¢ D. Then
D is the disjoint union of the sets D' := {n € D : k,, isodd} and D" := {n € D :
k, is even}, and since % is an ultrafilter and by assumption D € %, exactly one
of these two sets belongs to % . Now, since f(D’) = D" and f(D") = D', thisis a
contradiction to f(% ) = %, which shows that D ¢ % .

So, assume towards a contradiction that I € % . Then for every n € I we consider
again the sequence (f¥(n) : k € w). If, for n € I, there is a k € w such that
f¥(n) ¢ I, then let k,, be the least such number; otherwise, let k,, := w. Then I is
the disjoint union of the sets Ip :={n €l : k, cw}land I, :={nel:k, =w}.
Since 7 is an ultrafilter and I € % (by assumption), exactly one of the sets Ip and
I, belongs to % . If Iy € % , then exactly one of the sets I() := {n € I : ky, is odd}
and I}y := {n € Iy : k,, is even} belongs to % ; but since f(I})) = I}/ and f(I}])) =
I, this is a contradiction to f(%) = % . So, Iy ¢ %, which implies that I, € % .
Now, for each n € I, there exists a least number m,, € I, such that there is a
k € wwith f*(m,) = n.Let I, := {n € I, : 3k € w(f*(m,) =n)} and
I :={n €1, : 3k € w(f*(m,) = n)}. Since the two sets I/, and I/ are disjoint
and their union is I, either I/, or I/ belongs to %/, but not both. Furthermore, we
get f(I) = I/ and f(1!!) = I/, which is again a contradiction to f(%) = % . So,
1,, also does not belong to %, which shows that I ¢ % .

Since 7% is an ultrafilter and D U E U I belongs to %, but neither D nor I belongs
to % , we get that E belongs to %, which completes the proof. -
The following result shows that up to “=g4-equivalence”, the Rudin—Keisler order-
ing “<g.” is antisymmetric.

THEOREM 11.23. For all ultrafilters % , V" C &(w) we have

(U < VNV < W) — U = V.

Proof. Assume that % <gx ¥ and ¥V < % and let f,g € “w be such that
f(¥) = % and g(%) = V. Notice that fog(%) = % . So, by LEMMA 11.22,
there is an o € % such that for all n € xg, fog(n) = n, i.e., fog|., is the identity
function. Hence, g|,, as well as f|g[$0] is one-to-one, i.e., f and g are both bijections
between the sets 2o and g[zo]. Now, we show that there exists a set 2, C x¢ in %
such that g|,; can be extended to a bijection § € “w. If |w \ o| = |w \ g[zo]|, take
any bijection h between w \ z and w \ g[zo]. Then, for z{, := z¢, § := gUh has the
required properties. Otherwise, the set o must be infinite and we can split g into
two disjoint infinite parts x(, and x{] where z{, belongs to % . In this case, take any
bijection h between the two infinite sets w \ j and w \ g[z(] and let § := g U h.

Since § € “w is a bijection, v, € %, g(%) = V, and g|,; = §l.,, we get that
glxzp] € V. It remains to show that this implies §(% ) = ¥. Since g(% ) = ¥, we
get
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{gla] :zew} vV and {gfl[y]:ye“//}g%.

Furthermore, by construction of g we have g[,; = §|,;. Now, for every y € 7 let
y' = yNglzy] and let 2’ := g '[y]. Theny’ € ¥, 2’ € %, and g[z'] C y, which
shows that g(% ) = 7. 4

For the sake of completeness we give the following

FACT 11.24. For any ultrafilter %7 C £?(w) and any function f € “w we have

f(%) = % — Fx € U(f]. is one-to-one).

Proof. Assume f(%) =w %, where f € “w and Z C & (w) is an ultrafilter. By

i)

definition of “=”, there exists a bijection g € “w such that ge f (%) = % . Hence,
by LEMMA 11.22, there is an z¢p € % such that gof|,, is the identity function, and
since g| ¢[z,] is one-to-one, f|, is also one-to-one. !

So far, we have not seen an example of an ultrafilter % C [w]* which is neither a
P-point nor a Q-point. The following result gives now such an example.

THEOREM 11.25. For any ultrafilters %, C [w]“ there is an ultrafilter # C
[w]“, which is neither a P-point nor a Q)-point, such that

U < W and V < W .

Proof. In a first step we construct an ultrafilter #° C [w]“ which is above % and
¥, and in a second step we show that 7 is neither a P-point nor a (J-point.

Firstly, let
W*:{ngxw:{aew:{bew:<a,b>€X}€"//}6@/}.

Then #* is a non-principal ultrafilter over w X w. To see this, notice first that () ¢
W*, thatw X w € #*, that #* C [w X w] (this is because %, ¥ C [w]¥), and that
Xe#*and X C X' C w x wimplies X’ € #*. Furthermore, let Xg C w X w
be such that Xy ¢ #*. Then

{facw:{bew: (ab)e X} eV} ¢ U,
which implies, since % is an ultrafilter, that

{dcew:{bew: (ab eXo} ¢V} e,
and consequently, since ¥ is an ultrafilter, we get

{dew:{Vew:(d V)¢ XoteV} e,
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which shows that (w x w) \ Xo € #*. Finally, let jo : w X w — w be a bijection.
Then # := {jo[X] : X € #*} is an ultrafilter over w. In order to show that % is
above both ultrafilters %7 and 7', we work with % and define the projections 7,
and 7y by stipulating

oy PwXxw) — P(w)

X — {acw:Iew(ab) e X)}
Ty Plwxw) — P(w)

X — {bew:Jacw(ab) e X)}

We leave it as an exercise to the reader to show that % = 7o [#*] and that ¥ =
7wy [#*]. Now, we define f, g € “w by stipulating
frw—w
n = 7o ({jo~'(n)})
g:rw o w
m = 7y ({jo~" (m)})
where j is as above. Then, since {jo~'[z] : 2 € #'} = #* and % = {7 (X) :
X € V/*}, for every ¢ € % there are Xg € #* and zg € #/, such that Xy =
jo~*z0] and 7 (Xo) = o, i.e., o (jo '[z0]) = @o. Hence, f[z0] = ¢ where

zo € W, and since xg € % was arbitrary, we get f(#) = % . This shows that
U <gzx W—therelation ¥ <p # is shown similarly.

It remains to prove that # is neither a P-point nor a )-point. We work again with
the ultrafilter #* C [w X w]“ and show that #* is neither a P-point nor a Q-point.

W* is not a Q-point: Firstly, let
D:={{a,b) cwxw:a<b}.
Notice that D belongs to #*. Now, define 7 : w X w — D by stipulating

(a,by ifa<b,
{(a,a) otherwise,

7T(<a7 b)) = {
and for each m € w, let

Um = {{a,b € wx w:w({a,b)) = (a,m)}.

Then {u,, : m € w} is a partition of w X w where each u,, is finite—in fact,
|tm| = 2m + 1. Assume towards a contradiction that #* is a Q-point. Then there
isa Yy € #* such that for each m € w, |Yg Nuy,| < 1. Since #7* is an ultrafilter,
(YonD) € #*. Above we have seen that ¥ = my [#*], so, for yg := my (YoND)
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we get that yo € 7. Furthermore, by definition of #/* and since (Yo N D) € #'*,
for each ny € yq we get that the set

Ve :=={m €w: (ng,m) € (Yo N D)}

belongs to the ultrafilter ¥". Now, if n¢ and ng are distinct members of yq, then
Vie N Vi € 7, in particular, V,,, N V,,, is non-empty. Let mo be an element of
Vig N Vi . Then (no, mo) and (ng, mo) are two distinct elements of Y N D which
both belong to u,,,. So, |YQ N U, | > 2, which contradicts our assumption and
shows that #* is not a Q-point.

W* is not a P-point: For each n € w, let
Up = {(n,m) :mew}.

Then {u, : n € w} is a partition of w X w. Assume towards a contradiction that
there is an Xp € #* such that for each n € w, Xp N u,, is finite. Let zp :=
7 (X p) be the projection of X p. Then, since Xp € #*, xp € % . Now, since ¥
contains only infinite sets and X p Nwu,, is finite for each n € w, we get that for each
ng € xp, {m € w: (ng,m) € Xp} is finite and therefore does not belong to ¥'.
Consequently, Xp ¢ #*, which contradicts our assumption and shows that #* is
not a P-point. —

The next result shows that Ramsey ultrafilters are minimal with respect to the
Rudin—Keisler ordering.

FACT 11.26. If %, %' C |w]“ are ultrafilters, where % is a Ramsey ultrafilter,
then
U <k W — U= U'.

Proof. Assume that %’ <g« %, where % is a Ramsey ultrafilter. By definition
of “<g”, there exists a function f € “w, such that f(%) = %', and since % is
a Ramsey ultrafilter, by PROPOSITION 11.14 (c), there exists an x € %/ such that
f|z is constant or one-to-one. If f|, is constant, then the ultrafilter f(%) would
be principal, which contradicts the fact that f(%) = %' and %' C [w]“. So, f].
is one-to-one. With similar arguments as in the proof of THEOREM 11.23 we find
an 2’ C z in % such that f|, can be extended to a bijection f € “w, such that
f(%) = %', which shows that % =, %'. B

In order to state the following lemma—which will play a key role in the construction
of a model of ZFC in which there are up to Rudin—Keisler equivalence just finitely
many Ramsey ultrafilters (cf. PROPOSITION 27.6)—we first have to define a certain
game: Let %, ¥ C [w]“ be two free families. Then the game Q% is the composition
of the games G4, and G, visualised by the following figure:
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MAIDEN 9 € % nev T2 EU ys €V
DEATH to € IO S1 € yl] to € xQ <2 S3 € [y3]<“’

The rules for Q% are as follows: For each i € w, x9; € %, Y211 € V, to; is either
the empty set or a singleton {ag;} with as; € x9;, and $g;41 is a finite subset of
y2i+1. Finally, DEATH wins the game gff; if and only if | J{te; : i € w} € % and
U{S2i+1 NS w} ev.

LEMMA 11.27. Let % be a Ramsey ultrafilter and ¥ be a P-point. Then % <g V'
if and only if the MAIDEN has a winning strategy in the game Q%.

Proof. (=) First we show that if % < ¥, then the MAIDEN has a winning strat-
egy o in the game Q%. So, assume that % <. ¥ and let f € “w be such that
f(¥) =% . Since ¥ is a P-point, there exists a set yo € ¥ such that f is finite-to-
one on yg. Let zg := f[yo]; then g € % and define o(()) := zo. Assume now that
to € [w0]<2 is the first move of DEATH. Since f is finite-to-one on yo, f~*[to] N yo
is finite. Let

y1 =10 \ (max(f*[to] Nyo) +1)

and define o(0, zo,tg) := y1. Assume that s; € [y;]<“ is the second move of
DEATH. Then let

x2 = fln]\ (max(f[sl]) + 1)

and define o (0, o, to, y1, $1) := x2. The next moves of the MAIDEN are

ys o= y1 \ (max(f~'[t2) Nyn) +1) and x4 := flys] \ (max(f[ss]) +1),

respectively. Proceeding in this way we finally get

UtQiE% <~ U52i+1¢7/7

€W 1EW

which shows that DEATH loses the game whenever the MAIDEN plays according
to the strategy c—no matter what he plays. Hence, o is a winning strategy for the
MAIDEN.

(<) By contraposition we show that if % < ¥, then no strategy o for the
MAIDEN is a winning strategy. For this we first combine the proofs of THEO-
REM 11.17 (a) & (b) and then use the premise that % £ V.

Let o be any strategy for the MAIDEN in the game g,”;/ . We have to show that
DEATH can win. Let zp := o(0) (i.e., zo € %), let Xy := {x0}, and for positive
integers n, x € X, if and only if for some k < n there are ¢g, t2,...,t2r C n and
$1,83,...,S2k+1 C n such that z = o(xo, to, Y1, - .., S2k+1), where forall i < k
we have:
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to; € [w9;]<%  where @2 = o(z0,t0,Y1 ..., 52i-1),
and

]<w

52i41 € [Y2ir1 where  y2i11 = o(wo,t0, Y1 - - -, t2:) -

Similarly, for n € w we define Y,, by stipulating y € Y, if and only if for some

k < n there are tg,to,...,torp C m and s1,S3,...,S2,—1 C n such that y =
o(xg, to, Y1, - - -, tar ), where for all ¢ < k we have:
to; € [w9;]<?  where @2 = o(z0,t0, Y1, S2i-1),
and
52i—1 € [Y2i—1]<¥  where  y2i_1 = o(@o,t0, Y1 .,t2i—2) -

Recall that by the rules of the game, DEATH can always play (). Clearly, for every
n € w, both sets X,, and Y}, are finite subsets of %7 and ¥, respectively. Hence, for
eachn € w,( X, € %Z and (Y, € ¥. Moreover, since both ultrafilters % and ¥
are P-points, there are sets * € % and y* € ¥, and a strictly increasing function
f € “w with f(0) > 0 such that forall n € w,

2\ f(n) € ()X and y*\ f(n) € (Yo

Let kp := f(0), and in general, for m € w, let kypt1 := f (ks ). Furthermore,
for m € w, let Uy, := [km, km+1)- Since % is a Ramsey ultrafilter, there is a set
x = {am : m € w} in % such that for each m € w, u,, Nz = {a,, }. Define the
two sets ., J C [w]“ by stipulating

Ses <= {am meSte¥,
Te7: |Jum:meT}ev.

Notice that for any S, S’ € . we have S NS’ € .7, in particular, S N S’ € [w]¥;
similarly for T,T" € 7. In fact, since % and ¥ are ultrafilters, . and .7 are
ultrafilters, too. We show now that due to the fact that ﬁm ¥, the two ultrafilters
. and 7 can be separated. For this we prove the following two claims.

CLAIM 1. Thereare S € .¥ and T € .7 such that SNT = (.

Proof of Claim 1. If there are S € % and T' € 7 such that S N T is finite, then
S'=8\(SNT)isin.” and S’ NT = (). So, assume towards a contradiction that
forall S € Land T € .J we have |SNT| =w.

First we show that this implies that forall S € . and T € 7, SNT € YN 7,
and consequently we get . = 7. Indeed, if Sy N Ty ¢ & for some Sy € &
and Ty € 7, then S| := w \ (So N Tp) belongs to ., and since . is a filter,
Sy NSy € 7. Hence, (S, N So) NTy =S, N (So NTp) =0 and for S := SN Sy
in. and T = T} in Z we have S N'T = (), which contradicts our assumption.
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Now we show that . = 7 implies % <g ¥, which contradicts the fact that
U 4w V:Letg € “w be such that for all m € w we have g[u,,] := {an, }. Then for
eachy € ¥ we get g[y] € % . To see this, notice that the set {m € w : y Nu,, # 0}
belongs to .7 and therefore, by the definition of g and since .¥ = 7, we get
glyl € % . So, g(V') = %, which implies that % <. 7. Actaim 1

CLAIM 2. There are S € . and T € 7 such that S N'T = () and for all distinct
m,m’ € SUT, |m —m/| > 2, where |m — m/| denotes the absolute value of the
difference m — m/.

Proof of Claim 2. By CLAIM 1 there are S € . and T € .7 such that S N T = 0.
Let A:= {2k : k € wyand B := {2k + 1 : k € w}. Then either the set S N A or
the set SN B belongs to .¥; similarly, either the set TNAortheset TNB belongs
to .7 . Without loss of generality, let us assume SN A € ..

TNAE T,letSy:=SNAandTy :=TNA Then Sy € .%, Ty € 7, and
because S and 7" are disjoint, Sy and T are disjoint subsets of A and for all distinct
m,m’ € Sop UT, we have |m —m/| > 2.

If7TNA ¢ 7, then TNB e 7. Now, by the definition of . and .7, and since %
and ¥ are filters, the sets

xg = {agk : k € w} and yB = U{UQk+1 ik €w}

belong to %/ and ¥, respectively. Let g4, g— € “w be functions such that for all
k € w we have: g4 [ugkt1] = {azkt2}, 9—[uzk+1] = {azk}, and gy [ugkt1] =
g—[uax] := {0}. In particular, we get g+ [yp] = 24 \ {ao} and g_[yp] = x4, i.e.,
both sets g4 [yp] and g_[yp] belong to 7. On the other hand, since % £ ¥, we
have that neither g4 (¥) = % nor g_(¥') = % . Hence, there are y,,y_ € [yp]*
which belong to ¥ such that neither g [y ] nor g_[y_] belongs to % . So, for §j :=
y+ Ny_ we getthaty C yp, gy € ¥, and

g+l ¢ % and g [y & U .

Now, since % is an ultrafilter and g+ [y] ¢ %, we get (w \ 9+[7]) € % . which

implies that 2 := 24 N (w \ g+[7]) belongs to % ; similarly, we get that z_ :=

x4 N(w\ g-[y]) belongsto % .Forz := x4y Nx_wegetT Cxa, T € U, and
g+lglNz=0 and g_[gNnz=0.

With respect to  and ¥, consider the two sets

So = {2k€w:a2k€i} and Tj:= {2k+1€w:gjﬂu2k+1§£@}.

By definition, Sy € &, Ty € 7, and Sy N Ty = . Furthermore, if n € Ty, then
n = 2k+1 (for some k € w) and §Nusgs1 # (. Hence, by definition of g4 and g_,

agk+2 € g+[y] and agx € g-[7],
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which implies that neither asg42 nor ag, belongs to z, and consequently neither
2k + 2 nor 2k belongs to Sy. In other words, if n € Tj, then neither n + 1 nor
n — 1 belongs to Sy, which shows that for all m € Sy and n € Ty, |m — n| > 2.
Furthermore, since Z C x4, for any distinct m, m’ € T we have |m — m'| > 2.
Similarly, since § C yp, for any distinct m, m’ € § we have |m — m/| > 2. Thus,
So NTy = ( and for all distinct m,m’ € Sy U Ty we have |m — m/| > 2, as
required. ctaim 2

Let So € % and Ty € 7 be such that SyNTy = () and for all distinct m, m’ € SUT,
|m — m’| > 2. Consider the run (z¢,t},v1,7,...) of the game G%, where the
MAIDEN plays according to her strategy o and DEATH plays

. {am+1} ifn="kyn,m+1€Sy,and a1 € z*,
t2n = .
0 otherwise,

and

. Y Nume1 ifn=k,andm+41 e Ty,
S =
2t 0 otherwise.

It is clear that | J,., t5, € % and that J, ., 53,.; € 7. In other words, the
MAIDEN loses the game if the moves of DEATH satisfy the rules of the game gff; .
To see this, notice first that for any m € w we have

2\ kg1 = 2\ f(km) €[ Xk S [ [@os-- - 72k, } C T2,

where zo,vy1 ..., Tok,,
* * * .
1o, ST -+, Sok, 15 and

are the moves played by the MAIDEN when DEATH plays

Y\ ki1 =y \ f(km) C mYkm c m{ylu s Y2k t1} S Y2kt

where 2o, Y1 . . ., T2k, , Y2k, +1 are the moves played by the MAIDEN when DEATH
plays tg, s ..., t5; . By definition, for all m € w, ¢35, ~and s5, ., are both sub-
sets of k;,,+2—in fact, they are subsets of [k, 41, km-t2). Now, recall that whenever
m+1eSy(m+1eTy),thenm+1¢ Ty (m+1¢.Sy) and neither m € Sy nor
m € Tp. In particular, if m" < mandm’ +1,m + 1 € So U Ty, thenm’ < m — 2.
Hence, for n = ky,, m’ < m, and m + 1 € Sy U Ty, we get that t;km, and sgkm,ﬂ
are both subsets of n (e.g., if m’ = m — 1, then both sets t;km/ and Sakm/ﬂ are

empty). This shows that the moves of DEATH satisfy the rules of the game gff; ,
which completes the proof. —



