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Preservation Theorems for Proper Forcing Notions

Below, we state some preservation theorems—most of them without proofs—for
countable support iteration of proper forcing notions. These preservation theorems
will be crucial in the following chapters, where we consider countable support iter-
ations of length ω2 of various proper forcing notions—usually starting with a model
in which CH holds.

The first of these preservation theorems is concerned with ordinals (see also Bar-
toszyński and Judah [2, Lemma 1.4.16 & 1.4.18]).

THEOREM 1.3. Let V � ZFC, let P = (P,≤) be a proper forcing notion, and let χ
be some uncountable cardinal.

(a) Let κ ∈ χ, let α
˜

be a P-name for an ordinal, and let N = (N,∈) be a count-
able elementary submodel of (Hχ,∈) which contains P, κ, α

˜
, et cetera. Fur-

thermore, assume that
N � “0 P α

˜
∈ κ” .

Then for every N-generic P-condition q we have

V � “q P α
˜
∈ N
˙

” .

(b) If G is P-generic over V and A ∈ V[G] is a countable subset of κ, then there
is a countable set of ordinals B ⊆ κ, B ∈ V, such that V[G] � A ⊆ B.

Proof. (a) Since α
˜
∈ N and N � “0 P α

˜
∈ κ”, the set

D :=
{
r ∈ P : ∃β ∈ κ

(
“r P α

˜
= β”

)}

is an open dense subset of P ∩ N . Let f ∈ N be a function with domain D, such
that for each r ∈ D,

r P α
˜
= f(r) .

Now, by definition of N-generic, for every N-generic condition q we have

q P ∃r ∈ (D ∩N ∩G
˙

) .

Hence, q P ∃r ∈ D
(
α
˜
= f(r)

)
, which shows that q P α

˜
∈ N
˙

.

(b) Let A
˜

be a P-name for A and without loss of generality let us assume

V � “0 P A
˜
= {α

˜
n : n ∈ ω} ∧ ∀n ∈ ω (α

˜
n ∈ κ)”

for some countable set {α
˜
n : n ∈ ω} of P-names. Let N = (N,∈) be a countable

elementary submodel of (Hχ,∈) containing P and α
˜
n for each n ∈ ω. Now, in V

let B := N ∩ κ. Then B is a countable subset of κ which belongs to V and by (a),
for every N-generic condition q and each n ∈ ω we have
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q P α
˜
n ∈ B

which shows that V[G] � A ⊆ B ∧B ⊆ κ ∧ |B| = ω. ⊣

As a consequence we get the following

COROLLARY 1.4. If P is proper, then forcing with P does not collapse ω1.

Proof. Assume towards a contradiction that P collapses ω1. Then, in V[G], ωV

1 is
a countable set of ordinals A. Now, by THEOREM 1.3.(b), A is contained in some
countable set B ∈ V. Hence, in V, ω1 is contained in some countable set, which is
obviously a contradiction. ⊣

The following preservation theorem states that properness is preserved under
countable support iteration of proper forcing notions (for proofs see Goldstern [6,
Corollary 3.14] and Shelah [9, III.§3]).

THEOREM 1.5. If Pα is a countable support iteration of 〈Q
˜β : β ∈ α〉, where for

each β ∈ α we have 0β β “ Q
˜β is proper”, then Pα is proper.

The following lemma is in fact just a consequence of COROLLARY 1.4.

LEMMA 1.6. Let Pα be a countable support iteration of 〈Q
˜β : β ∈ α〉, where for

each β ∈ α we have 0β β “ Q
˜β is a proper forcing notion of size ≤c”. If CH holds

in the ground model and α ≤ ω2, then for all β ∈ α, 0β β CH.

Since, by LEMMA ??, no new reals appear at the limit stage ω2 one can prove
the following theorem—a result which we shall use quite often in the forthcoming
chapters.

THEOREM 1.7. Let Pω2
be a countable support iteration of 〈Q

˜β : β ∈ ω2〉, where
for each β ∈ ω2 we have

0β β “ Q
˜
β is a proper forcing notion of size ≤c which adds new reals”.

Further, let V be a model of ZFC+ CH and let G be Pω2
-generic over V. Then we

have

(a) V[G] � c = ω2, and

(b) for every set of reals F ⊆ [ω]ω ∩V[G] of size ≤ω1 there is a β ∈ ω2 such that
F ⊆ V[G|β ].

Now, let us say a few words concerning preservation of the Laver property and
of ωω-boundedness: It can be shown that a countable support iteration of proper
ωω-bounding forcing notions is ωω-bounding (for a proof see Section 5 and Appli-
cation 1 of Goldstern [6]).
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THEOREM 1.8. If Pα is a countable support iteration of 〈Q
˜β : β ∈ α〉, where for

each β ∈ α we have 0β β “ Q
˜β is proper and ωω-bounding”, then Pα is ωω-boun-

ding.

Further, one can show that the Laver property is preserved under countable sup-
port iteration of proper forcing notions which have the Laver property (for a proof
see Section 5 and Application 4 of Goldstern [6]).

THEOREM 1.9. If Pα is a countable support iteration of 〈Q
˜β : β ∈ α〉, where for

each β ∈ α we have 0β β “ Q
˜β is proper and has the Laver property”, then Pα

has the Laver property.

Another property which is preserved under countable support iteration of proper
forcing notions is preservation of P -points: A forcing notion P is said to preserve

P -points if for every P -point U ⊆ [ω]ω,

0 P “U generates an ultrafilter over ω”,

i.e., for every set x ∈ [ω]ω in the P-generic extension there exists a y ∈ U such that
either y ⊆ x or y ⊆ ω\x. Notice that we do not require that a P -point in the ground
model generates a P -point in the extension—we just require that it generates an
ultrafilter in the extension. However, in the case when P is proper, this is equivalent.

LEMMA 1.10. Let P be a proper forcing notion. If P preserves P -points and U

is a P -point in the ground model V, then U generates a P -point in the P-generic
extension V[G].

Proof. Let U ∈ V be a P -point in the ground model V and let Û ∈ V[G] be the
ultrafilter in the P-generic extension generated by U . We have to show that Û is a
P -point in V[G], i.e., we have to show that for every countable set {xn : n ∈ ω} ⊆

Û there is a y ∈ Û such that for each n ∈ ω, y ⊆∗ xn. In V, let f : U → c be a
bijection between U and c; and in V[G], let {xn : n ∈ ω} ⊆ Û be a countable set
of elements of Û and let

A :=
{
f(xn) : n ∈ ω

}
.

Then A ⊆ c is a countable set of ordinals, which is, by THEOREM 1.3.(b), contained
in some countable set of ordinals B ⊆ c, where B belongs to V. Now, let

B̄ :=
{
f−1(β) : β ∈ B

}
.

Then B̄ ⊆ U , B̄ ∈ V, and B̄ is countable. Since U is a P -point in V, there is a
y ∈ (U ∩V) such that for each x ∈ B̄, y ⊆∗ x. By construction, for each n ∈ ω

we have y ⊆∗ xn. Hence, since {xn : n ∈ ω} ⊆ Û was arbitrary and y ∈ Û , this
shows that Û is a P -point in V[G]. ⊣
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One can show that preservation of P -points is preserved under countable sup-
port iteration of proper forcing notions (for a proof see Blass and Shelah [5] or
Bartoszyński and Judah [2, Theorem 6.2.6]).

THEOREM 1.11. If Pα is a countable support iteration of 〈Q
˜β : β ∈ α〉, where

for each β ∈ α we have 0β β “ Q
˜β is proper and preserves P -points”, then Pα

preserves P -points.

With respect to Ramsey ultrafilters we get similar results:

LEMMA 1.12. Let P be a proper forcing notion which is ωω-bounding. Further-
more, let U be a Ramsey ultrafilter in the ground model V which generates an
ultrafilter Û in the P-generic extension V[G]. Then Û is a Ramsey ultrafilter
in V[G].

Proof. By LEMMA 1.10, we already know that the ultrafilter Û in V[G] which
is generated by U is a P -point in V[G]. So, it remains to show that the P -point
Û generated by U is also a Q-point. For this, we show that in V[G], for every
partition {In ⊆ ω : n ∈ ω} of ω into finite pieces, there is an x ∈ Û such that for
each n ∈ ω, |x ∩ In| ≤ 1. By FACT ?? it is enough to consider interval partitions.
So, let {In ⊆ ω : n ∈ ω} be an arbitrary but fixed interval partition in V[G]. For
every n ∈ ω, let an := max(In) and define h ∈ ωω by stipulating h(n) := an.
Notice that h is a function in V[G]. Since P is assumed to be ωω-bounding, there is
a function f ∈ ωω in the ground model V which dominates h, i.e., for each n ∈ ω
we have f(n) > h(n). Without loss of generality we may assume that f is strictly
increasing. Let k0 := f(0), and for i ∈ ω let ki+1 := f(ki). In V, we define the
interval partition {Jm : m ∈ ω} by stipulating J0 := [0, k0), and for each m ∈ ω,
Jm+1 := [km, km+1). Notice that since f is strictly increasing, for all m ∈ ω we
have f [Jm] ⊆ Jm+1. Furthermore, since f dominates h, for every n ∈ ω there are at
most two consecutive integers m and m+1 such that the intersections In ∩Jm and
In ∩ Jm+1 are both non-empty. Since U is a Q-point in V, there is an x ∈ U ∩V

such that for each m ∈ ω, |x ∩ Jm| ≤ 1. Let

x0 := {x ∩ J2m : m ∈ ω} and x1 := {x ∩ J2m+1 : m ∈ ω} .

Since U is an ultrafilter in V, either x0 or x1 belongs to U ; let us assume x0 ∈ U .
Now, in V[G], for all n ∈ ω we have |x0 ∩ In| ≤ 1, and since x0 ∈ Û and
{In : n ∈ ω} was an arbitrary interval partition, the ultrafilter Û generated by U

is a Q-point in V[G]. ⊣

For a particular Ramsey ultrafilter U0 we say that a forcing notion P pre-

serves U0, if
0 P “U0 generates a Ramsey ultrafilter” .

As an immediate consequence of LEMMA 1.12, THEOREM 1.5 & 1.8, and THE-
OREM 1.11 with respect to U0, we get the following
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COROLLARY 1.13. Let U0 be a Ramsey ultrafilter in the ground model V and let
Pα be a countable support iteration of 〈Q

˜β : β ∈ α〉, where for each β ∈ α we
have

0β β “ Q
˜
β is proper, ωω-bounding, and preserves U0” ,

then also Pα preserves U0.

As a last result, we show that non-isomorphic Q-points remain non-isomorphic
after forcing with an ωω-bounding forcing notion.

LEMMA 1.14. Let P be a forcing notion, let V � ZFC, and let G be P-generic over
V. Furthermore, let U and V be Q-points in V which generate ultrafilters Û and
V̂ in V[G]. If V � U ≡/

RK
V and P is ωω-bounding, then V[G] � Û ≡/

RK
V̂ .

Proof. By contraposition we show that if V[G] � Û ≡RK V̂ , then V � U ≡RK V .
So, let f ∈ ωω be a bijection inV[G] such that f(V̂ ) = Û . SinceP is ωω-bounding,
there exists a strictly increasing function g ∈ ωω in the ground model V which
dominates f as well as f−1, i.e., for all n ∈ ω we have f(n) < g(n) > f−1(n). In
V, let k0 := g(0) and for n ∈ ω let kn+1 := g(kn). Furthermore, let I0 := [0, k0),
and for n ∈ ω, let In+1 := [kn, kn+1). Since U and V are Q-points in V, there are
sets x ∈ U and y ∈ V , such that for all n ∈ ω, x ∩ In = {an} and y ∩ In = {bn}.
By construction of the interval partition {In : n ∈ ω}—in fact since g dominates f
and f−1—for each bn ∈ y′′ we have

f(bn) ∈ {an−1, an, an+1} . (∗)

In V[G] we have x ∈ Û and y ∈ V̂ , and since f(V̂ ) = Û , we get f [y] ∈ Û . In
particular we get f [y]∩x ∈ Û and f−1

[
f [y]∩x

]
∈ V̂ . In V[G], let x′ := f [y]∩x

and y′ := f−1[x′]. Since V̂ is generated by V , there is a y′′ ∈ V such that y′′ ⊆ y′

and y′′ ∈ V . In V[G], consider the following three subsets of y′′:

y− :=
{
bn ∈ y′′ : f(bn) = an−1

}

y0 :=
{
bn ∈ y′′ : f(bn) = an

}

y+ :=
{
bn ∈ y′′ : f(bn) = an+1

}

By (∗) we have y− ∪̇ y0 ∪̇ y+ = y′′ and since y′′ ∈ V̂ , exactly one of y−, y0, y+
belongs to V̂ , i.e., exactly one of f [y−], f [y0], f [y+] belongs to Û .

Let us just consider the case when y+ ∈ V̂ i.e., f [y+] ∈ Û ; the two other cases
are similar. In V, define the function

g+ : y′′ → x′

bn 7→ an+1
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and extend in V the function g+ to a function g∗+ ∈ ωω. Then, since f [y+] ∈ Û

and V̂ is generated by V , g∗+(V ) = U , which shows that V � U ≡RK V . ⊣

As an immediate consequence of COROLLARY 1.13, THEOREM 1.5 & 1.8, and
LEMMA 1.14, we get the following

COROLLARY 1.15. Let U and V be two Ramsey ultrafilters in the ground model
V and assume V � U ≡/ RK V . Furthermore, let Pα be a countable support iteration
of 〈Q

˜β : β ∈ α〉, where for each β ∈ α we have

0β β “ Q
˜
β is proper, ωω-bounding, and preserves U and V ” ,

and let G be P-generic over V. Then U and V generate Ramsey ultrafilters Û

and V̂ in V[G] and V[G] � Û ≡/ RK V̂ .

There are many more preservation theorems for countable support iterations of
proper forcing notions. However, what we presented here is all what we shall use in
the forthcoming chapters.


