Proper Forcing Notions and Preservation Theorems

Preservation Theorems for Proper Forcing Notions

Below, we state some preservation theorems—most of them *without proofs*—for countable support iteration of proper forcing notions. These preservation theorems will be crucial in the following chapters, where we consider countable support iterations of length ω_2 of various proper forcing notions—usually starting with a model in which CH holds.

The first of these preservation theorems is concerned with ordinals (see also Bartoszyński and Judah [2, Lemma 1.4.16 & 1.4.18]).

THEOREM 1.3. Let $\mathbf{V} \models \mathsf{ZFC}$, let $\mathbb{P} = (P, \leq)$ be a proper forcing notion, and let χ be some uncountable cardinal.

(a) Let κ ∈ χ, let α be a P-name for an ordinal, and let N = (N, ∈) be a countable elementary submodel of (H_χ, ∈) which contains P, κ, α, et cetera. Furthermore, assume that

$$\mathbf{N} \models \mathbf{0} \Vdash_{\mathbb{P}} \alpha \in \kappa^{"}.$$

Then for every N-generic \mathbb{P} -condition q we have

$$\mathbf{V} \vDash ``q \Vdash_{\mathbb{P}} \alpha \in N$$
 ".

(b) If G is P-generic over V and A ∈ V[G] is a countable subset of κ, then there is a countable set of ordinals B ⊆ κ, B ∈ V, such that V[G] ⊨ A ⊆ B.

Proof. (a) Since $\alpha \in N$ and $\mathbf{N} \models \mathbf{0} \Vdash_{\mathbb{P}} \alpha \in \kappa^{n}$, the set

$$D := \left\{ r \in P : \exists \beta \in \kappa \left("r \Vdash_{\mathbb{P}} \alpha = \beta" \right) \right\}$$

is an open dense subset of $P \cap N$. Let $f \in N$ be a function with domain D, such that for each $r \in D$,

$$r \vdash_{\mathbb{P}} \alpha = f(r)$$
.

Now, by definition of N-generic, for every N-generic condition q we have

$$q \Vdash_{\mathbb{P}} \exists r \in (D \cap N \cap G).$$

Hence, $q \Vdash_{\mathbb{P}} \exists r \in D(\alpha = f(r))$, which shows that $q \Vdash_{\mathbb{P}} \alpha \in N$.

(b) Let A be a \mathbb{P} -name for A and without loss of generality let us assume

$$\mathbf{V} \vDash \mathbf{``0} \Vdash_{\mathbb{P}} A = \{ \alpha_n : n \in \omega \} \land \forall n \in \omega \ (\alpha_n \in \kappa) \mathbf{''}$$

for some countable set $\{\alpha_n : n \in \omega\}$ of \mathbb{P} -names. Let $\mathbf{N} = (N, \in)$ be a countable elementary submodel of (\mathbf{H}_{χ}, \in) containing \mathbb{P} and α_n for each $n \in \omega$. Now, in \mathbf{V} let $B := N \cap \kappa$. Then B is a countable subset of κ which belongs to \mathbf{V} and by (a), for every N-generic condition q and each $n \in \omega$ we have

$$q \Vdash_{\mathbb{P}} \alpha_n \in B$$

which shows that $\mathbf{V}[G] \models A \subseteq B \land B \subseteq \kappa \land |B| = \omega$.

As a consequence we get the following

COROLLARY 1.4. If \mathbb{P} is proper, then forcing with \mathbb{P} does not collapse ω_1 .

Proof. Assume towards a contradiction that \mathbb{P} collapses ω_1 . Then, in $\mathbf{V}[G]$, $\omega_1^{\mathbf{V}}$ is a countable set of ordinals A. Now, by THEOREM 1.3.(b), A is contained in some countable set $B \in \mathbf{V}$. Hence, in \mathbf{V} , ω_1 is contained in some countable set, which is obviously a contradiction.

The following preservation theorem states that properness is preserved under countable support iteration of proper forcing notions (for proofs see Goldstern [6, Corollary 3.14] and Shelah [9, III.§3]).

THEOREM 1.5. If \mathbb{P}_{α} is a countable support iteration of $\langle \mathbb{Q}_{\beta} : \beta \in \alpha \rangle$, where for each $\beta \in \alpha$ we have $\mathbf{0}_{\beta} \Vdash_{\beta}$ " \mathbb{Q}_{β} is proper", then \mathbb{P}_{α} is proper.

The following lemma is in fact just a consequence of COROLLARY 1.4.

LEMMA 1.6. Let \mathbb{P}_{α} be a countable support iteration of $\langle \mathbb{Q}_{\beta} : \beta \in \alpha \rangle$, where for each $\beta \in \alpha$ we have $\mathbf{0}_{\beta} \vdash_{\beta} "\mathbb{Q}_{\beta}$ is a proper forcing notion of size $\leq \mathfrak{c}$ ". If CH holds in the ground model and $\alpha \leq \widetilde{\omega}_2$, then for all $\beta \in \alpha$, $\mathbf{0}_{\beta} \vdash_{\beta} CH$.

Since, by LEMMA ??, no new reals appear at the limit stage ω_2 one can prove the following theorem—a result which we shall use quite often in the forthcoming chapters.

THEOREM 1.7. Let \mathbb{P}_{ω_2} be a countable support iteration of $\langle \mathbb{Q}_{\beta} : \beta \in \omega_2 \rangle$, where for each $\beta \in \omega_2$ we have

 $\mathbf{0}_{\beta} \Vdash_{\beta}$ " \mathbb{Q}_{β} is a proper forcing notion of size $\leq \mathfrak{c}$ which adds new reals".

Further, let V be a model of ZFC + CH and let G be \mathbb{P}_{ω_2} -generic over V. Then we have

- (a) $\mathbf{V}[G] \models \mathfrak{c} = \omega_2$, and
- (b) for every set of reals 𝔅 ⊆ [ω]^ω ∩ V[G] of size ≤ω₁ there is a β ∈ ω₂ such that 𝔅 ⊆ V[G|β].

Now, let us say a few words concerning preservation of the Laver property and of $\omega \omega$ -boundedness: It can be shown that a countable support iteration of proper $\omega \omega$ -bounding forcing notions is $\omega \omega$ -bounding (for a proof see Section 5 and Application 1 of Goldstern [6]).

 \dashv

Proper Forcing Notions and Preservation Theorems

THEOREM 1.8. If \mathbb{P}_{α} is a countable support iteration of $\langle \mathbb{Q}_{\beta} : \beta \in \alpha \rangle$, where for each $\beta \in \alpha$ we have $\mathbf{0}_{\beta} \vdash_{\beta} "\mathbb{Q}_{\beta}$ is proper and ${}^{\omega}\omega$ -bounding", then \mathbb{P}_{α} is ${}^{\omega}\omega$ -bounding.

Further, one can show that the Laver property is preserved under countable support iteration of proper forcing notions which have the Laver property (for a proof see Section 5 and Application 4 of Goldstern [6]).

THEOREM 1.9. If \mathbb{P}_{α} is a countable support iteration of $\langle \mathbb{Q}_{\beta} : \beta \in \alpha \rangle$, where for each $\beta \in \alpha$ we have $\mathbf{0}_{\beta} \Vdash_{\beta} "\mathbb{Q}_{\beta}$ is proper and has the Laver property", then \mathbb{P}_{α} has the Laver property.

Another property which is preserved under countable support iteration of proper forcing notions is preservation of *P*-points: A forcing notion \mathbb{P} is said to **preserve** *P*-points if for every *P*-point $\mathscr{U} \subseteq [\omega]^{\omega}$,

0 $\Vdash_{\mathbb{P}}$ " \mathscr{U} generates an ultrafilter over ω ",

i.e., for every set $x \in [\omega]^{\omega}$ in the \mathbb{P} -generic extension there exists a $y \in \mathscr{U}$ such that either $y \subseteq x$ or $y \subseteq \omega \setminus x$. Notice that we do not require that a *P*-point in the ground model generates a *P*-point in the extension—we just require that it generates an ultrafilter in the extension. However, in the case when \mathbb{P} is proper, this is equivalent.

LEMMA 1.10. Let \mathbb{P} be a proper forcing notion. If \mathbb{P} preserves *P*-points and \mathscr{U} is a *P*-point in the ground model **V**, then \mathscr{U} generates a *P*-point in the \mathbb{P} -generic extension $\mathbf{V}[G]$.

Proof. Let $\mathscr{U} \in \mathbf{V}$ be a *P*-point in the ground model \mathbf{V} and let $\mathscr{\hat{U}} \in \mathbf{V}[G]$ be the ultrafilter in the \mathbb{P} -generic extension generated by \mathscr{U} . We have to show that $\mathscr{\hat{U}}$ is a *P*-point in $\mathbf{V}[G]$, *i.e.*, we have to show that for every countable set $\{x_n : n \in \omega\} \subseteq \mathscr{\hat{U}}$ there is a $y \in \mathscr{\hat{U}}$ such that for each $n \in \omega, y \subseteq^* x_n$. In \mathbf{V} , let $f : \mathscr{U} \to \mathbf{c}$ be a bijection between \mathscr{U} and \mathbf{c} ; and in $\mathbf{V}[G]$, let $\{x_n : n \in \omega\} \subseteq \mathscr{\hat{U}}$ be a countable set of elements of $\mathscr{\hat{U}}$ and let

$$A := \left\{ f(x_n) : n \in \omega \right\}.$$

Then $A \subseteq \mathfrak{c}$ is a countable set of ordinals, which is, by THEOREM 1.3.(b), contained in some countable set of ordinals $B \subseteq \mathfrak{c}$, where B belongs to V. Now, let

$$\bar{B} := \left\{ f^{-1}(\beta) : \beta \in B \right\}.$$

Then $\overline{B} \subseteq \mathscr{U}, \overline{B} \in \mathbf{V}$, and \overline{B} is countable. Since \mathscr{U} is a *P*-point in \mathbf{V} , there is a $y \in (\mathscr{U} \cap \mathbf{V})$ such that for each $x \in \overline{B}, y \subseteq^* x$. By construction, for each $n \in \omega$ we have $y \subseteq^* x_n$. Hence, since $\{x_n : n \in \omega\} \subseteq \widehat{\mathscr{U}}$ was arbitrary and $y \in \widehat{\mathscr{U}}$, this shows that $\widehat{\mathscr{U}}$ is a *P*-point in $\mathbf{V}[G]$.

One can show that preservation of *P*-points is preserved under countable support iteration of proper forcing notions (for a proof see Blass and Shelah [5] or Bartoszyński and Judah [2, Theorem 6.2.6]).

THEOREM 1.11. If \mathbb{P}_{α} is a countable support iteration of $\langle \mathbb{Q}_{\beta} : \beta \in \alpha \rangle$, where for each $\beta \in \alpha$ we have $\mathbf{0}_{\beta} \Vdash_{\beta} " \mathbb{Q}_{\beta}$ is proper and preserves *P*-points", then \mathbb{P}_{α} preserves *P*-points.

With respect to Ramsey ultrafilters we get similar results:

LEMMA 1.12. Let \mathbb{P} be a proper forcing notion which is ${}^{\omega}\omega$ -bounding. Furthermore, let \mathscr{U} be a Ramsey ultrafilter in the ground model \mathbf{V} which generates an ultrafilter $\widehat{\mathscr{U}}$ in the \mathbb{P} -generic extension $\mathbf{V}[G]$. Then $\widehat{\mathscr{U}}$ is a Ramsey ultrafilter in $\mathbf{V}[G]$.

Proof. By LEMMA 1.10, we already know that the ultrafilter $\hat{\mathcal{U}}$ in $\mathbf{V}[G]$ which is generated by \mathscr{U} is a P-point in $\mathbf{V}[G]$. So, it remains to show that the P-point \mathscr{U} generated by \mathscr{U} is also a Q-point. For this, we show that in $\mathbf{V}[G]$, for every partition $\{I_n \subseteq \omega : n \in \omega\}$ of ω into finite pieces, there is an $x \in \hat{\mathcal{U}}$ such that for each $n \in \omega$, $|x \cap I_n| \leq 1$. By FACT ?? it is enough to consider interval partitions. So, let $\{I_n \subseteq \omega : n \in \omega\}$ be an arbitrary but fixed interval partition in $\mathbf{V}[G]$. For every $n \in \omega$, let $a_n := \max(I_n)$ and define $h \in {}^{\omega}\omega$ by stipulating $h(n) := a_n$. Notice that h is a function in $\mathbf{V}[G]$. Since \mathbb{P} is assumed to be ${}^{\omega}\omega$ -bounding, there is a function $f \in {}^{\omega}\omega$ in the ground model V which dominates h, i.e., for each $n \in \omega$ we have f(n) > h(n). Without loss of generality we may assume that f is strictly increasing. Let $k_0 := f(0)$, and for $i \in \omega$ let $k_{i+1} := f(k_i)$. In V, we define the interval partition $\{J_m : m \in \omega\}$ by stipulating $J_0 := [0, k_0)$, and for each $m \in \omega$, $J_{m+1} := [k_m, k_{m+1})$. Notice that since f is strictly increasing, for all $m \in \omega$ we have $f[J_m] \subseteq J_{m+1}$. Furthermore, since f dominates h, for every $n \in \omega$ there are at most two consecutive integers m and m+1 such that the intersections $I_n \cap J_m$ and $I_n \cap J_{m+1}$ are both non-empty. Since \mathscr{U} is a Q-point in V, there is an $x \in \mathscr{U} \cap V$ such that for each $m \in \omega$, $|x \cap J_m| \leq 1$. Let

$$x_0 := \{x \cap J_{2m} : m \in \omega\}$$
 and $x_1 := \{x \cap J_{2m+1} : m \in \omega\}$.

Since \mathscr{U} is an ultrafilter in \mathbf{V} , either x_0 or x_1 belongs to \mathscr{U} ; let us assume $x_0 \in \mathscr{U}$. Now, in $\mathbf{V}[G]$, for all $n \in \omega$ we have $|x_0 \cap I_n| \leq 1$, and since $x_0 \in \mathscr{U}$ and $\{I_n : n \in \omega\}$ was an arbitrary interval partition, the ultrafilter \mathscr{U} generated by \mathscr{U} is a Q-point in $\mathbf{V}[G]$. \dashv

For a particular Ramsey ultrafilter \mathscr{U}_0 we say that a forcing notion \mathbb{P} preserves \mathscr{U}_0 , if

 $\mathbf{0} \Vdash_{\mathbb{P}} \mathscr{U}_0$ generates a Ramsey ultrafilter".

As an immediate consequence of LEMMA 1.12, THEOREM 1.5 & 1.8, and THE-OREM 1.11 with respect to \mathcal{U}_0 , we get the following Proper Forcing Notions and Preservation Theorems

COROLLARY 1.13. Let \mathscr{U}_0 be a Ramsey ultrafilter in the ground model V and let \mathbb{P}_{α} be a countable support iteration of $\langle \mathbb{Q}_{\beta} : \beta \in \alpha \rangle$, where for each $\beta \in \alpha$ we have

$$\mathbf{0}_{\beta} \vdash_{\beta} " \mathbb{Q}_{\beta}$$
 is proper, ${}^{\omega}\omega$ -bounding, and preserves \mathscr{U}_{0} ".

then also \mathbb{P}_{α} preserves \mathscr{U}_0 .

As a last result, we show that non-isomorphic Q-points remain non-isomorphic after forcing with an ${}^{\omega}\omega$ -bounding forcing notion.

LEMMA 1.14. Let \mathbb{P} be a forcing notion, let $\mathbf{V} \models \mathsf{ZFC}$, and let G be \mathbb{P} -generic over \mathbf{V} . Furthermore, let \mathscr{U} and \mathscr{V} be Q-points in \mathbf{V} which generate ultrafilters $\hat{\mathscr{U}}$ and $\hat{\mathscr{V}}$ in $\mathbf{V}[G]$. If $\mathbf{V} \models \mathscr{U} \neq_{\mathsf{RK}} \mathscr{V}$ and \mathbb{P} is ${}^{\omega}\omega$ -bounding, then $\mathbf{V}[G] \models \hat{\mathscr{U}} \neq_{\mathsf{RK}} \hat{\mathscr{V}}$.

Proof. By contraposition we show that if $\mathbf{V}[G] \models \hat{\mathscr{U}} \equiv_{\scriptscriptstyle RK} \hat{\mathscr{V}}$, then $\mathbf{V} \models \mathscr{U} \equiv_{\scriptscriptstyle RK} \mathscr{V}$. So, let $f \in {}^{\omega}\omega$ be a bijection in $\mathbf{V}[G]$ such that $f(\hat{\mathscr{V}}) = \hat{\mathscr{U}}$. Since \mathbb{P} is ${}^{\omega}\omega$ -bounding, there exists a strictly increasing function $g \in {}^{\omega}\omega$ in the ground model \mathbf{V} which dominates f as well as f^{-1} , *i.e.*, for all $n \in \omega$ we have $f(n) < g(n) > f^{-1}(n)$. In \mathbf{V} , let $k_0 := g(0)$ and for $n \in \omega$ let $k_{n+1} := g(k_n)$. Furthermore, let $I_0 := [0, k_0)$, and for $n \in \omega$, let $I_{n+1} := [k_n, k_n+1)$. Since \mathscr{U} and \mathscr{V} are Q-points in \mathbf{V} , there are sets $x \in \mathscr{U}$ and $y \in \mathscr{V}$, such that for all $n \in \omega, x \cap I_n = \{a_n\}$ and $y \cap I_n = \{b_n\}$. By construction of the interval partition $\{I_n : n \in \omega\}$ —in fact since g dominates f and f^{-1} —for each $b_n \in y''$ we have

$$f(b_n) \in \{a_{n-1}, a_n, a_{n+1}\}.$$
(*)

In $\mathbf{V}[G]$ we have $x \in \hat{\mathscr{U}}$ and $y \in \hat{\mathscr{V}}$, and since $f(\hat{\mathscr{V}}) = \hat{\mathscr{U}}$, we get $f[y] \in \hat{\mathscr{U}}$. In particular we get $f[y] \cap x \in \hat{\mathscr{U}}$ and $f^{-1}[f[y] \cap x] \in \hat{\mathscr{V}}$. In $\mathbf{V}[G]$, let $x' := f[y] \cap x$ and $y' := f^{-1}[x']$. Since $\hat{\mathscr{V}}$ is generated by \mathscr{V} , there is a $y'' \in \mathbf{V}$ such that $y'' \subseteq y'$ and $y'' \in \mathscr{V}$. In $\mathbf{V}[G]$, consider the following three subsets of y'':

$$y_{-} := \left\{ b_{n} \in y'' : f(b_{n}) = a_{n-1} \right\}$$
$$y_{0} := \left\{ b_{n} \in y'' : f(b_{n}) = a_{n} \right\}$$
$$y_{+} := \left\{ b_{n} \in y'' : f(b_{n}) = a_{n+1} \right\}$$

By (*) we have $y_- \dot{\cup} y_0 \dot{\cup} y_+ = y''$ and since $y'' \in \hat{\mathcal{V}}$, exactly one of y_-, y_0, y_+ belongs to $\hat{\mathcal{V}}$, *i.e.*, exactly one of $f[y_-], f[y_0], f[y_+]$ belongs to $\hat{\mathcal{U}}$.

Let us just consider the case when $y_+ \in \hat{\mathscr{V}}$ *i.e.*, $f[y_+] \in \hat{\mathscr{U}}$; the two other cases are similar. In **V**, define the function

$$g_+: \quad y'' \to x'$$
$$b_n \mapsto a_{n+1}$$

and extend in **V** the function g_+ to a function $g_+^* \in {}^{\omega}\omega$. Then, since $f[y_+] \in \hat{\mathscr{U}}$ and $\hat{\mathscr{V}}$ is generated by $\mathscr{V}, g_+^*(\mathscr{V}) = \mathscr{U}$, which shows that $\mathbf{V} \vDash \mathscr{U} \equiv_{_{RK}} \mathscr{V}$. \dashv

As an immediate consequence of COROLLARY 1.13, THEOREM 1.5 & 1.8, and LEMMA 1.14, we get the following

COROLLARY 1.15. Let \mathscr{U} and \mathscr{V} be two Ramsey ultrafilters in the ground model **V** and assume $\mathbf{V} \models \mathscr{U} \not\equiv_{_{RK}} \mathscr{V}$. Furthermore, let \mathbb{P}_{α} be a countable support iteration of $\langle \mathbb{Q}_{\beta} : \beta \in \alpha \rangle$, where for each $\beta \in \alpha$ we have

$$\mathbf{0}_{\beta} \Vdash_{\beta} " \mathbb{Q}_{\beta}$$
 is proper, ${}^{\omega}\omega$ -bounding, and preserves \mathscr{U} and \mathscr{V} ",

and let G be \mathbb{P} -generic over \mathbf{V} . Then \mathscr{U} and \mathscr{V} generate Ramsey ultrafilters $\hat{\mathscr{U}}$ and $\hat{\mathscr{V}}$ in $\mathbf{V}[G]$ and $\mathbf{V}[G] \models \hat{\mathscr{U}} \not\equiv_{_{RK}} \hat{\mathscr{V}}$.

There are many more preservation theorems for countable support iterations of proper forcing notions. However, what we presented here is all what we shall use in the forthcoming chapters.