18. Beweise formal die folgende Tautologie:

$$\vdash \exists x \varphi \to \neg \forall x \neg \varphi$$

Hinweise: Mit L_{10} haben wir $\forall x \neg \varphi \rightarrow \neg \varphi$. Ferner wurde in Aufgabe 6.(c) gezeigt:

$$\vdash (\varphi \to \neg \psi) \to (\psi \to \neg \varphi)$$

19. Die \mathscr{L} -Formeln φ_{11} und φ_{13} seien Instantiierungen der logischen Axiome L_{11} bzw. L_{13} . Weiter sei \mathbf{M} ein Modell einer \mathscr{L} -Theorie.

Zeige, dass gilt:

$$\mathbf{M} \models \varphi_{11} \quad \text{und} \quad \mathbf{M} \models \varphi_{13}$$

20. Es sei T eine Menge von \mathscr{L} -Sätzen. Für jede konsistente Menge $\Phi \subseteq \mathsf{T}$ von \mathscr{L} -Sätzen sei \mathbf{M}_{Φ} ein Modell mit $\mathbf{M}_{\Phi} \models \Phi$ (später wird gezeigt, dass es solche Modelle gibt). Weiter sei

$$\Sigma := \left\{ \mathbf{M}_{\Phi} : \Phi \subseteq \mathsf{T} \ und \ \operatorname{Con}(\Phi) \right\},\,$$

und für jeden \mathcal{L} -Satz φ sei $X_{\varphi} := \{ \mathbf{M} \in \Sigma : \mathbf{M} \models \varphi \}.$

- (a) Zeige, dass die Menge $\{X_{\varphi} : \varphi \text{ ein } \mathcal{L}\text{-Satz}\}$ die Basis einer Topologie auf Σ bildet, d.h. ein System von offenen Mengen.
- (b) Zeige, dass jede Menge X_{φ} abgeschlossen ist.
- (c) Zeige mit dem topologischen Kompaktheitssatz, dass jede offene Überdeckung von Σ eine endliche Teilüberdeckung enthält, d.h. Σ ist kompakt.
- **21.** Sei $\mathcal{L} = \{e, \circ\}$ die Sprache der Gruppentheorie. Die \mathcal{L} -Theorie T bestehe aus folgenden drei \mathcal{L} -Sätzen:
 - $\bullet \quad \forall x \forall y \forall z \big(x \circ (y \circ z) = (x \circ y) \circ z \big)$
 - $\bullet \quad \forall x (e \circ x = x)$
 - $\bullet \quad \forall x \exists y \big(x \circ y = \mathbf{e} \big)$

Zeige: $\forall x (x \circ \mathbf{e} = x) \lor \forall x \exists y (y \circ x = \mathbf{e})$