
Chapter 1
Syntax: The Grammar of Symbols

The goal of this chapter is to develop the formal language of First-Order Logic from
scratch. At the same time, we introduce some terminology of the so-called meta-
language, which is the language we use when we speak about the formal language
(e.g., when we like to express that two strings of symbols are equal). In the meta-
language, we shall use some notions of N A I V E S E T T H E O R Y like sets or
the membership relation “∈”. We would like to emphasise that these notions are not
part of the language of formal logic.

Alphabet

Like any other written language, First-Order Logic is based on an alphabet, which
consists of the following symbols:

(a) Variables such as x, y, v0, v1, . . . , which are place holders for objects of the do-
main under consideration (which can for example be the elements of a group,
natural numbers, or sets). We use mainly lower case Latin letters (with or with-
out subscripts) for variables.

(b) logical operators which are “¬” (not), “∧” (and), “∨” (or), and “→” (implies).
(c) Logical quantifiers which are the existential quantifier “∃” (there is or there

exists) and the universal quantifier “∀” (for all or for each), where quantifica-
tion is restricted to objects only and not to formulae or sets of objects (but the
objects themselves may be sets).

(d) Equality symbol “=”, which stands for the particular binary equality relation.
(e) Constant symbols like the number 0 in Peano Arithmetic, or the neutral ele-

ment e in Group Theory. Constant symbols stand for fixed individual objects in
the domain.

(f) Function symbols such as ◦ (the operation in Group Theory), or +, · , s (the
operations in Peano Arithmetic). Function symbols stand for fixed functions
taking objects as arguments and returning objects as values. With each function

9

10 1 Syntax: The Grammar of Symbols

symbol we associate a positive natural number, its co-called “arity” (e.g., “◦” is
a 2-ary or binary function, and the successor operation “s” is a 1-ary or unary
function). More formally, to each function symbol F we adjoin a fixed F I -
N I T E string of place holders x · · · x and write F x · · · x .

(g) Relation symbols or predicate constants (such as ∈ in Set Theory) stand for
fixed relations between (or properties of) objects in the domain. Again we asso-
ciate an “arity” with each relation symbol (e.g., “∈” is a binary relation). More
formally, to each relation symbolR we adjoin a fixed F I N I T E string of place
holders x · · · x and write R x · · · x .

The symbols in (a)–(d) form the core of the alphabet and are called logical symbols.
The symbols in (e)–(g) depend on the specific topic we are investigating and are
called non-logical symbols. The set of non-logical symbols which are used in order
to formalise a certain mathematical theory is called the signature (or language) of
this theory, denoted by L , and formulae which are formulated in a language L
are usually called L -formulae. For example if we investigate groups, then the only
non-logical symbols we use are “e” and “◦”, thus, L = {e, ◦} is the language of
Group Theory.

Terms & Formulae

With the symbols of our alphabet we can now start to compose names. In the lan-
guage of First-Order Logic, these names are called called terms.

Terms. A string of symbols is a term, if it results from applying F I N I T E L Y
many times the following rules:

(T0) Each variable is a term.
(T1) Each constant symbol is a term.
(T2) If τ1, . . . , τn are any terms which we have already built and F x · · · x is an n-ary

function symbol, then Fτ1 · · · τn is a term (each place holder x is replaced with
a term).

Terms of the form (T0) or (T1) are the most basic terms, expressions we have, and
since every term is built up from such terms, they are called atomic terms. In order
to define rule (T2) we had to use variables for terms, but since the variables of our
alphabet stand just for objects of the domain and not for terms or other objects of the
formal language, we had to introduce new symbols. For these new symbols, which
do not belong to the alphabet of the formal language, we have chosen Greek letters.
In fact, we shall mainly use Greek letters for variables which stand for objects of
the formal language, also to emphasise the distinction between the formal language
and the metalanguage However, we shall use the Latin letters F &R as variables for
function and relation symbols respectively.

Note that this recursive definition of terms allows us to use the following principle:
If we want to prove that all terms satisfy some property Φ, then one has to prove

Terms & Formulae 11

• All variables satisfy Φ.
• Each constant symbol satisfies Φ.
• If some terms τ1, . . . , τn satisfy Φ, then so does Fτ1, · · · , τn for every n-ary

function symbol F .

We call this principle induction on the term construction.
To make terms, relations, and other expressions in the formal language easier to

read, it is convenient to introduce some more symbols, like brackets and commas,
to our alphabet. For example we usually write F (τ1, . . . , τn) rather than Fτ1 · · · τn.

To some extent, terms correspond to names, since they denote objects of the do-
main under consideration. Like real names, they are not statements and cannot ex-
press or describe possible relations between objects. So, the next step is to build
sentences, or more precisely formulae, with these terms.

Formulae. A string of symbols is called a formula, if it results from applying
F I N I T E L Y many times the following rules:

(F0) If τ1 and τ2 are terms, then τ1 = τ2 is a formula.
(F1) If τ1, . . . , τn are any terms and R x · · · x is any non-logical n-ary relation sym-

bol, then Rτ1 · · · τn is a formula.
(F2) If ϕ is any formula which we have already built, then ¬ϕ is a formula.
(F3) If ϕ and ψ are formulae which we have already built, then (ϕ ∧ ψ), (ϕ ∨ ψ),

and (ϕ→ ψ) are formulae. (To avoid the use of brackets one could write these
formulae for example in Polish notation, i.e., ∧ϕψ, ∨ϕψ, et cetera.)

(F4) If ϕ is a formula which we have already built, and ν is an arbitrary variable,
then ∃νϕ and ∀νϕ are formulae.

Formulae of the form (F0) or (F1) are the most basic expressions we have, and since
every formula is a logical connection or a quantification of these formulae, they are
called atomic formulae.

In the same way as for terms, a property Φ is satisfied by all formulae, if we check
the follwoing:

• All atomic formulae satisfy Φ.
• If ϕ and ψ satisfy Φ and ν is a variable, then so do ¬ϕ,ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ,
∃νϕ and ∀νϕ.

In accordance with the corresponding principle for terms, we denote this as induc-
tion on the term construction.

For binary relations R xx it is convenient to write xRy instead of R(x, y). For
example we write x ∈ y instead of ∈(x, y), and we write x /∈ y rather than ¬(x ∈
y).

If a formula ϕ is of the form ∃xψ or of the form ∀xψ (for some formula ψ)
and x occurs in ψ, then we say that x is in the range of a logical quantifier. Every
occurrence of a variable x in a formula ϕ is said to be bound by the innermost
quantifier in whose range it occurs. If an occurrence of x is not in the range of a
quantifier, it is said to be free. Notice that it is possible that a variable occurs in a
given formula at a certain place bound and at another place free. For example, in

12 1 Syntax: The Grammar of Symbols

the formula ∃z(x = z)∧ ∀x(x = y), the variable x occurs bound and free, whereas
z occurs just bound and y occurs just free. However, one can always rename the
bound variables occurring in a given formula ϕ such that each variable in ϕ is either
bound or free (the rules for this procedure are given later). For a formula ϕ, the set
of variables occurring free in ϕ is denoted by free(ϕ). A formula ϕ is a sentence (or
a closed formula) if it contains no free variables (i.e., free(ϕ) = ∅). For example
∀x(x = x) is a sentence but (x = x) is just a formula.

In analogy to this definition we say that a term is a closed term if it contains no
variables. Obviously, the only terms which are closed are the constant symbols and
the function symbols followed by closed terms.

Sometimes it is useful to indicate explicitly which variables occur free in a
given formula ϕ, and for this we usually write ϕ(x1, . . . , xn) to indicate that
{x1, . . . , xn} ⊆ free(ϕ).

If ϕ is a formula, ν a variable, and τ a term, then ϕ(ν/τ) is the formula we get
after replacing all free instances of the variable ν by τ . The process to obtain the
formula ϕ(ν/τ) is called substitution. Now, a substitution is admissible iff no free
occurrence of ν in ϕ is in the range of a quantifier that binds any variable which
appears in τ (i.e., for each variable ν̃ appearing in τ , no place where ν occurs free in
ϕ is in the range of “∃ν̃” or “∀ν̃”). For example, if x /∈ free(ϕ), then ϕ(x/τ) is ad-
missible for any term τ . In this case, the formulae ϕ and ϕ(x/τ) are identical which
we express by ϕ ≡ ϕ(x/τ). In general, we use the symbol “≡” in the metalanguage
to denote equality of strings of symbols of the formal language. Furthermore, if ϕ is
a formula and the substitution ϕ(x/τ) is admissible, then we write just ϕ(τ) instead
of ϕ(x/τ). To express this we write ϕ(τ) :≡ ϕ(x/τ), where we use “:≡” in the
metalanguage to define symbols (or strings of symbols) of the formal language.

So far we have letters, and we can build names and sentences. However, these
sentences are just strings of symbols without any inherent meaning. Later we shall
interpret formulae in the intuitively natural way by giving the symbols the intended
meaning (e.g., “∧” meaning “and”, “∀x” meaning “for all x”, et cetera). But before
we shall do so, let us stay a little bit longer on the syntactical side—nevertheless,
one should consider the formulae also from a semantical point of view.

Axioms

Below we shall label certain formulae or types of formulae as axioms, which are
used in connection with inference rules in order to derive further formulae. From a
semantical point of view we can think of axioms as “true” statements from which
we deduce or prove further results. We distinguish two types of axiom, namely logi-
cal axioms and non-logical axioms (which will be discussed later). A logical axiom
is a sentence or formula ϕ which is universally valid (i.e., ϕ is true in any possible
universe, no matter how the variables, constants, et cetera, occurring in ϕ are inter-
preted). Usually one takes as logical axioms some minimal set of formulae that is
sufficient for deriving all universally valid formulae (such a set is given below).

Axioms 13

If a symbol is involved in an axiom which stands for an arbitrary relation, function,
or even for a first-order formula, then we usually consider the statement as an axiom
schema rather than a single axiom, since each instance of the symbol represents a
single axiom. The following list of axiom schemata is a system of logical axioms.

Let ϕ, ϕ1, ϕ2, and ψ, be arbitrary first-order formulae:

L0: ϕ ∨ ¬ϕ,
L1: ϕ→ (ψ → ϕ),
L2: (ψ → (ϕ1 → ϕ2))→ ((ψ → ϕ1)→ (ψ → ϕ2)),
L3: (ϕ ∧ ψ)→ ϕ,
L4: (ϕ ∧ ψ)→ ψ,
L5: ϕ→ (ψ → (ψ ∧ ϕ)),
L6: ϕ→ (ϕ ∨ ψ),
L7: ψ → (ϕ ∨ ψ),
L8: (ϕ1 → ϕ3)→ ((ϕ2 → ϕ3)→ ((ϕ1 ∨ ϕ2)→ ϕ3)),
L9: ¬ϕ→ (ϕ→ ψ).

If τ is a term, ν a variable, and the substitution which leads to ϕ(ν/τ) is admissible,
then:

L10: ∀νϕ(ν)→ ϕ(τ),
L11: ϕ(τ)→ ∃νϕ(ν).

If ψ is a formula and ν a variable such that ν /∈ free(ψ), then:

L12: ∀ν(ψ → ϕ(ν))→ (ψ → ∀νϕ(ν)),
L13: ∀ν(ϕ(ν)→ ψ)→ (∃νϕ(ν)→ ψ).

What is not covered yet is the symbol “=”, so, let us have a closer look at the
binary equality relation. The defining properties of equality can already be found
in Book VII, Chapter 1 of Aristotle’s Topics [2], where one of the rules to decide
whether two things are the same is as follows: . . . you should look at every possible
predicate of each of the two terms and at the things of which they are predicated and
see whether there is any discrepancy anywhere. For anything which is predicated of
the one ought also to be predicated of the other, and of anything of which the one is
a predicate the other also ought to be a predicate.

In our formal system, the binary equality relation is defined by the following three
axioms.

If τ, τ1, . . . , τn, τ ′1, . . . , τ
′
n are any terms, R an n-ary relation symbol (e.g., the

binary relation symbol “=”), and F an n-ary function symbol, then:

L14: τ = τ ,
L15: (τ1 = τ ′1 ∧ · · · ∧ τn = τ ′n)→ (R(τ1, . . . , τn)→ R(τ ′1, . . . , τ

′
n)),

L16: (τ1 = τ ′1 ∧ · · · ∧ τn = τ ′n)→ (F (τ1, . . . , τn) = F (τ ′1, . . . , τ
′
n)).

Finally, we define the logical operator “↔” and the binary relation symbol “ 6=” by
stipulating

ϕ↔ ψ :⇐⇒ (ϕ→ ψ) ∧ (ψ → ϕ)

14 1 Syntax: The Grammar of Symbols

τ 6= τ ′ :⇐⇒ ¬(τ = τ ′)

where we use “:⇐⇒” in the metalanguage to define relations between symbols (or
strings of symbols) of the formal language (i.e., “↔” & “ 6=” are just abbreviations).

This completes the list of our logical axioms. In addition to these axioms, we
are allowed to state arbitrarily many sentences. In logic, such a (possibly empty)
set of sentences is also called a theory, or, when the signature L is specified, an
L -theory. The elements of a theory are called non-logical axioms. Notice that
non-logical axioms are sentences (i.e., closed formulae). Examples of theories (i.e.,
of sets of non-logical axioms) which will be discussed in this book are the axioms
of Set Theory (see Part IV), the axioms of Peano Arithmetic PA (also known as
Number Theory), and the axioms of Group Theory GT, which we discuss first.
GT: The language of Group Theory is LGT = {e, ◦}, where “e” is a constant
symbol and “◦” is a binary function symbol.

GT0: ∀x∀y∀z(x◦(y◦z) = (x◦y)◦z) (i.e., “◦” is associative)
GT1: ∀x(e◦x = x) (i.e., “e” is a left-neutral element)
GT2: ∀x∃y(y◦x = e) (i.e., every element has a left-inverse)

PA: The language of Peano Arithmetic is LPA = {0, s,+, · }, where “0” is a
constant symbol, “s” is a unary function symbol, and “+” & “ · ” are binary function
symbols.

PA0: ¬∃x(sx = 0)
PA1: ∀x∀y(sx = sy → x = y),
PA2: ∀x(x+ 0 = x)
PA3: ∀x∀y(x+ sy = s(x+ y))
PA4: ∀x(x · 0 = 0)
PA5: ∀x∀y(x · sy = (x · y) + x)

If ϕ is any LPA-formula with x ∈ free(ϕ), then:

PA6:
(
ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(s(x)))

)
→ ∀xϕ(x)

Notice that PA6 is an axiom schema, known as the induction schema, and not just
a single axiom like PA0–PA5.

It is often convenient to add certain defined symbols to a given language so that
the expressions get shorter or at least are easier to read. For example in Peano
Arithmetic—which is an axiomatic system for the natural numbers—we usually
replace for example the expression s0 with 1 and ss0 with 2. More formally, we
define

1 :≡ s0 and 2 :≡ ss0 .

Obviously, all that can be expressed in the language LPA ∪ {1, 2} can also be ex-
pressed in LPA.

Formal Proofs 15

Formal Proofs

So far we have a set of logical and non-logical axioms in a certain language and
can define, if we wish, as many new constants, functions, and relations as we like.
However, we are still not able to deduce anything from the given axioms, since until
now, we do not have inference rules which allow us for example to infer a certain
sentence from a given set of axioms.

Surprisingly, just two inference rules are sufficient, namely:

MODUS PONENS (MP):
ϕ→ ψ, ϕ

ψ
and GENERALISATION (∀):

ϕ

∀νϕ
,

where ν is a variable which does not occur free in any non-logical axiom.

In the former case we say thatψ is obtained fromϕ→ ψ andϕ by MODUS PONENS,
abbreviated (MP), and in the latter case we say that ∀νϕ (where ν can be any vari-
able) is obtained from ϕ by GENERALISATION, abbreviated (∀).

Using these two inference rules, we are now able to define the notion of formal
proof: Let L be a signature (i.e., a possibly empty set of non-logical symbols) and
let Φ be a possibly empty set of L -formulae (e.g., a set of axioms). An L -formula
ψ is provable from Φ (or provable in Φ), denoted Φ ` ψ, if there is a F I N I T E
sequence ϕ0, . . . , ϕn of L -formulae such that ϕn ≡ ψ (i.e., the formulae ϕn and
ψ are identical), and for all i with i ≤ n we have:

• ϕi is a logical axiom, or
• ϕi ∈ Φ, or
• there are j, k < i such that ϕj ≡ ϕk → ϕi, or
• there is a j < i such that ϕi ≡ ∀ν ϕj for some variable ν.

If a formula ψ is not provable from Φ, i.e., if there is no formal proof for ψ which
uses just formulae from Φ, then we write Φ 0 ψ.

Formal proofs, even of very simple statements, can get quite long and tricky. Nev-
ertheless, we shall give two examples:

Example 1.1. For every formula ϕ we have:

` ϕ→ ϕ

A formal proof of ϕ→ ϕ is given by

16 1 Syntax: The Grammar of Symbols

ϕ0: (ϕ→ ((ϕ→ ϕ)→ ϕ))→ ((ϕ→ (ϕ→ ϕ))→ (ϕ→ ϕ)) instance of L2

ϕ1: ϕ→ ((ϕ→ ϕ)→ ϕ) instance of L1

ϕ2: (ϕ→ (ϕ→ ϕ))→ (ϕ→ ϕ) from ϕ0 and ϕ1 by (MP)
ϕ3: ϕ→ (ϕ→ ϕ) instance of L1

ϕ4: ϕ→ ϕ from ϕ2 and ϕ3 by (MP)

Example 1.2. We give a formal proof of PA ` 1 + 1 = 2. Recall that we have
defined 1 :≡ s0 and 2 :≡ ss0, so we need to prove PA ` s0 + s0 = ss0.

ϕ0: ∀x∀y(x+ sy = s(x+ y)) instance of PA3

ϕ1: ∀x∀y(x+ sy = s(x+ y))→ ∀y(s0 + sy = s(s0 + y)) instance of L10

ϕ2: ∀y(s0 + sy = s(s0 + y)) from ϕ1 and ϕ0 by (MP)
ϕ3: ∀y(s0 + sy = s(s0 + y))→ s0 + s0 = s(s0 + 0) instance of L10

ϕ4: s0 + s0 = s(s0 + 0) from ϕ3 and ϕ2 by (MP)
ϕ5: ∀x(x+ 0 = x) instance of PA2

ϕ6: ∀x(x+ 0 = x)→ s0 + 0 = s0 instance of L10

ϕ7: s0 + 0 = s0 from ϕ6 and ϕ5 by (MP)
ϕ8: s0 + 0 = s0→ s(s0 + 0) = ss0 instance of L16

ϕ9: s(s0 + 0) = ss0 from ϕ8 and ϕ7 by (MP)
ϕ10: s0 + s0 = s0 + s0 instance of L14

ϕ11: ϕ10 → (ϕ9 → (ϕ10 ∧ ϕ9)) instance of L5

ϕ12: ϕ9 → (ϕ10 ∧ ϕ9) from ϕ11 and ϕ10 by (MP)
ϕ13: ϕ10 ∧ ϕ9 fromϕ12 and ϕ9 by (MP)
ϕ14: (ϕ10 ∧ ϕ9)→ (s0 + s0 = s(s0 + 0)→ s0 + s0 = ss0) instance of L15

ϕ15: s0 + s0 = s(s0 + 0)→ s0 + s0 = ss0 from ϕ14 and ϕ13 by (MP)
ϕ16: s0 + s0 = ss0 from ϕ15 and ϕ4 by (MP)

In Chapter 2 we will introduce some techniques which allow us to simplify formal
proofs such as the one presented above.

Tautologies & Logical Equivalence

We say that two formulae ϕ and ψ are logically equivalent (or just equivalent),
denoted ϕ⇔ ψ, if ` ϕ↔ ψ. More formally:

ϕ⇔ ψ :Î===Ï ` ϕ↔ ψ

In other words, if ϕ⇔ ψ, then—from a logical point of view—ϕ and ψ state exactly
the same, and therefore we could call ϕ ↔ ψ a tautology, which means saying the
same thing twice. Indeed, in logic, a formula ϕ is a tautology if ` ϕ. Thus, the
formulae ϕ and ψ are equivalent if and only if ϕ↔ ψ is a tautology.

Example 1.3. For every formula ϕ we have:

ϕ⇔ ϕ

Tautologies & Logical Equivalence 17

This follows directly from Example 1.1, since ϕ↔ ϕ is simply an abbreviation for
(ϕ→ ϕ) ∧ (ϕ→ ϕ):

ϕ0: ϕ→ ϕ Example 1.1
ϕ1: (ϕ→ ϕ)→ ((ϕ→ ϕ)→ (ϕ↔ ϕ)) instance of L5

ϕ2: (ϕ→ ϕ)→ (ϕ↔ ϕ) from ϕ0 and ϕ1 by (MP)
ϕ3: ϕ↔ ϕ from ϕ0 and ϕ2 by (MP)

Example 1.4. For every formula ϕ we have

ϕ⇔ ¬¬ϕ.

By applying L5 as in Example 1.3 one can easily check that it suffices to prove
separately that ϕ → ¬¬ϕ and ¬¬ϕ → ϕ are tautologies. We only prove the first
statement, the second one is handled in Example 2.1.

ϕ0: (¬ϕ→ (ϕ→ ¬¬ϕ)→ ((¬¬ϕ→ (ϕ→ ¬¬ϕ))→
((¬ϕ ∨ ¬¬ϕ)→ (ϕ→ ¬¬ϕ))) instance of L8

ϕ1: ¬ϕ→ (ϕ→ ¬¬ϕ) instance of L9

ϕ2: (¬¬ϕ→ (ϕ→ ¬¬ϕ))→ ((¬ϕ ∨ ¬¬ϕ)→ (ϕ→ ¬¬ϕ)) from ϕ0 and ϕ1 by (MP)
ϕ3: ¬¬ϕ→ (ϕ→ ¬¬ϕ) instance of L1

ϕ4: (¬ϕ ∨ ¬¬ϕ)→ (ϕ→ ¬¬ϕ) from ϕ2 and ϕ2 by (MP)
ϕ5: ¬ϕ ∨ ¬¬ϕ instance of L0

ϕ6: ϕ→ ¬¬ϕ from ϕ4 and ϕ5 by (MP)

Example 1.5. Commutativity and associativity of ∧ and ∨ are tautological, i.e. ϕ ∧
ψ ⇔ ψ ∧ ϕ and ϕ ∧ (ψ ∧ χ) ⇔ (ϕ ∧ ψ) ∧ χ; and similarly for ∨. Again, we omit
the proof since it will be trivial once we have proved the DEDUCTION THEOREM
(THEOREM 2.1). This legitimizes the notations ϕ0 ∧ . . . ∧ ϕn and ϕ0 ∨ . . . ∨ ϕn
respectively for ϕ0∧(ϕ1∧(. . .∧ϕn) . . .) and ϕ0∨(ϕ1∨(. . .∨ϕn) . . .) respectively.

In Appendix 17 there is a list of tautologies which will be frequently used in
formal proofs. Note that it follows from Exercise 1.4 that⇔ defines an equivalence
relation on all L -formulae for some giveen signature L . Moreover, it even defines
a congruence relation, i.e.equivalence is closed under all logical operations. More
precisely, if ϕ⇔ ϕ′ and ψ ⇔ ψ′, then

¬ϕ⇔ ¬ϕ′

ϕ ◦ ψ ⇔ ϕ′ ◦ ψ′

Exϕ⇔ Exϕ′,

where ◦ stands for either ∧,∨, or→, and E stands for either ∃ or ∀. A proof of these
statements will be easier once we have proved THEOREM 2.1.

18 1 Syntax: The Grammar of Symbols

The observation above enables us to replace subformulae of a given formula ϕ by
equivalent formualae so that the resulting formula is equivalent to ϕ.

THEOREM 1.1 (SUBSTITUTION THEOREM). Let ϕ be a formula and let α be a
subformula of ϕ. Let ψ be the formula obtained from ϕ by replacing one or multiple
occurences of α by some formula β. Then we have

α⇔ β ===Ï ϕ⇔ ψ.

Proof. We prove the theorem by induction on the recursive construction of the for-
mula ϕ. If ϕ is an atomic formula or if α is ϕ, then the statement is trivial. If ϕ is a
composite formula, then we use the observation that⇔ is a congruence relation: For
example, if ϕ is of the form ¬ϕ′, then, since α is not ϕ, there is a formula ψ′ such
that ψ ≡ ¬ψ′. Now inductively we may assume that ϕ′ ⇔ ψ′. But then ¬ϕ′ ⇔ ¬ψ′
as desired. The other cases can be checked in a similar way. a

THEOREM 1.2 (3-SYMBOLS). For every each ϕ there is an equivalent formula ψ
which contains only “¬” and “∧” as logical operators and “∃” as quantifier.

Proof. By THEOREM 1.1, it suffices to prove the equivalences

ϕ ∨ ψ ⇔ ¬(¬ϕ ∧ ¬ψ)

ϕ→ ψ ⇔ ¬ϕ ∨ ψ
∀xϕ⇔ ¬∃x¬ϕ.

The proof of these equivalences is left as an exercise (see Exercise 1.2). Note that
THEOREM 2.1 as well as the methods of proof introduced in Chapter 2 will simplify
the proofs to a great extent. a

As a consequence of THEOREM 1.2 one could simply both the alphabet and the
logical axioms. Nevertheless, we do not wish to do so, since this would also decrease
the readability of formulae.

EXERCISES

1.0 Something with terms.

1.1 The equality relation is transitive.

1.2 Prove the equivalences in the proof of Theorem 1.2.
Hint : Prove first the tautologies (K.0), (L.0), and (T)

1.3 Show that propositional formulae can be written only with nand/nor.

1.4 Show that⇔ defines an equivalence relation.

1.5 Something with the conjunctive (and/or disjunctive) normal form.

1.6 L0 ist unabhaengig von L1-L9

