
Chapter 2
The Art of Proof

In Example 1.2 we gave a proof of 1+ 1 = 2 in 17 (!) proof steps. At that point you
may have probably asked yourself that if it takes that much effort to prove such a
simple statement, how can one ever prove any non-trivial mathematical result using
formal proofs. This objection is of course justified; however we will show in this
chapter how one can simplify formal proofs using some methods of proof such as
proofs by cases or by contradiction. It is crucial to note that the next results are
not theorems of a formal theory, but theorems about formal proofs. In particular,
they show how — under certain conditions — a formal proof can be transformed
into another.

The Deduction Theorem

In common mathematics, one usually proves implications of the form

I F Φ T H E N Ψ

by simply assuming the truth of Φ and deriving from this the truth of Ψ. When
writing formal proofs, the so-called DEDUCTION THEOREM enables us to use a
similar trick: Rather than proving Φ ` ϕ → ψ we simply add ϕ to our set of
formulae Φ and prove Φ ∪ {ϕ} ` ψ.

If Φ is a set of formulae and Φ′ is another set of formulae in the same language
as Φ, then we write Φ + Φ′ for Φ ∪Φ′. In the case when Φ′ = {ϕ} consists of a
single formula, we write Φ + ϕ for Φ ∪Φ′.

THEOREM 2.1 (DEDUCTION THEOREM). If Φ is a set of formulae and Φ+ψ ` ϕ,
then Φ ` ψ → ϕ; and vice versa, if Φ ` ψ → ϕ, then Φ + ψ ` ϕ:

Φ + ψ ` ϕ Î===Ï Φ ` ψ → ϕ (DT)

Proof. It is clear that Φ ` ψ → ϕ implies Φ + ψ ` ϕ. Conversely, suppose that
Φ + ψ ` ϕ holds and let the sequence ϕ0, . . . , ϕn with ϕn ≡ ϕ be a formal proof
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20 2 The Art of Proof

for ϕ from Φ + ψ. For each i ≤ n we will replace the formula ϕi by a sequence of
formulae which ends with ψ → ϕi. Let i ≤ n and assume Φ ` ψ → ϕj for every
j < i.

• If ϕi is a logical axiom or ϕi ∈ Φ, we have

ϕi,0: ϕi ϕi ∈ Φ or ϕi is a logical axiom
ϕi,1: ϕi → (ψ → ϕi) instance of L1

ϕi,2: ψ → ϕi from ϕi,1 and ϕi,0 by (MP)

• The case ϕi ≡ ψ follows directly from Example 1.1.
• If ϕi is obtained by MODUS PONENS from ϕj and ϕk ≡ (ϕj → ϕi) for some
j < k < i, we have

ϕi,0: ψ → ϕj since j < i
ϕi,1: ψ → (ϕj → ϕi) since k < i
ϕi,2: ϕi,1 → ((ψ → ϕj)→ (ψ → ϕi)) instance of L2

ϕi,3: (ψ → ϕj)→ (ψ → ϕi) from ϕi,2 and ϕi,1 by (MP)
ϕi,4: ψ → ϕi from ϕi,3 and ϕi,0 by (MP)

• If ϕi ≡ ∀xϕj with j < i and x /∈ free(ψ), the claim follows from

ϕi,0: ψ → ϕj since j < i
ϕi,1: ∀x(ψ → ϕj) from ϕi,0 by (∀)
ϕi,2: ∀x(ψ → ϕj)→ (ψ → ϕi) instance of L12

ϕi,3: ψ → ϕi from ϕi,2 and ϕi,1 by (MP)

a

As a first application, note that ` ϕ → ϕ is a trivial consequence of the
DEDUCTION THEOREM, whereas its formal proof in Example 1.1 has five steps.

As a further application of the DEDUCTION THEOREM, we show that the equality
relation is symmetric. We first show that {x = y} ` y = x:

ϕ0: (x = y ∧ x = x)→ (x = x→ y = x) instance of L15

ϕ1: x = x instance of L14

ϕ2: x = y x = y belongs to {x = y}
ϕ3: x = x→ (x = y → (x = y ∧ x = x)) instance of L5

ϕ4: x = y → (x = y ∧ x = x) from ϕ3 and ϕ1 by (MP)
ϕ5: x = y ∧ x = x from ϕ4 and ϕ2 by (MP)
ϕ6: x = x→ y = x from ϕ0 and ϕ5 by (MP)
ϕ7: y = x from ϕ6 and ϕ1 by (MP)

Thus, we have {x = y} ` y = x, and by the Deduction Theorem 2.1 we see that
` x = y → y = x, and finally, by GENERALISATION we get

` ∀x∀y(x = y → y = x).



Natural Deduction 21

We leave it as an exercise to the reader to show that the equality relation is also
transitive (see EXERCISE 1.1).

Example 2.1. We prove the tautology ¬¬ϕ → ϕ. By the DEDUCTION THEOREM
it suffices to prove {¬¬ϕ} ` ϕ.

ϕ0: ¬¬ϕ→ (¬ϕ→ ϕ) instance of L9

ϕ1: ¬¬ϕ ¬¬ϕ ∈ {¬¬ϕ}
ϕ2: ¬ϕ→ ϕ from ϕ0 and ϕ1 by (MP)
ϕ3: (ϕ→ ϕ)→ ((¬ϕ→ ϕ)→ ((ϕ ∨ ¬ϕ)→ ϕ)) instance of L8

ϕ4: ϕ→ ϕ by Example 1.1
ϕ5: (¬ϕ→ ϕ)→ ((ϕ ∨ ¬ϕ)→ ϕ) from ϕ3 and ϕ4 by (MP)
ϕ6: (ϕ ∨ ¬ϕ)→ ϕ from ϕ5 and ϕ2 by (MP)
ϕ7: ϕ ∨ ¬ϕ instance of L0

ϕ8: ϕ from ϕ6 and ϕ7 by (MP)

Natural Deduction

We have introduced predicate logic so that there are many logical axioms and only
two inference rules. However, it is also possible to introduce calculi with an opposite
approach: few axioms and many inference rules. In the calculus of natural deduc-
tion there are, in fact, no axioms at all. Its inference rules essentially state how to
transform a given formal proof to another one. We write Φ ϕ to state that there is
a formal proof of ϕ in the calculus of natural deduction with the non-logical axioms
given by Φ.

Let Φ be a set of formulae and let ϕ,ψ, χ be any formulae. The first rule states
how formal proofs can be initialized.

INITIAL RULE (IR):
Φ ϕ

for ϕ ∈ Φ.

In the calculus of natural deduction, for each logical symbol, there are introduction
rules and elimination rules.

(I∧):
Φ ϕ and Φ ψ

Φ ϕ ∧ ψ
(E∧):

Φ ϕ ∧ ψ
Φ ϕ and Φ ψ

(I∨):
Φ ϕ or Φ ψ

Φ ϕ ∨ ψ
(E∨):

Φ ϕ ∨ ψ,Φ + ϕ χ and Φ + ψ χ

Φ χ

(I→):
Φ + {ϕ} ψ

Φ ϕ→ ψ
(E→):

Φ ϕ→ ψ and Φ ϕ

Φ ψ
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(I¬):
Φ + ϕ ψ ∧ ¬ψ

Φ ¬ϕ
(E¬):

Φ ¬¬ϕ
Φ ϕ

Let τ be a term and ν be a variable such that the substitution ϕ(ν/τ) is admissible
and ν /∈ free(χ) for any formula χ ∈ Φ and – in the case of (E∃) – ν /∈ free(ψ). Now
we can state the corresponding introduction and elimination rules for quantifiers:

(I∃):
Φ ϕ(τ)

Φ ∃νϕ(ν)
(E∃):

Φ ∃νϕ(ν) and Φ + ϕ(ν) ψ

Φ ψ

(I∀):
Φ ϕ(ν)

Φ ∀νϕ(ν)
(E∀):

Φ ∀νϕ(ν)

Φ ϕ(τ)

Finally, we need to deal with equality and atomic formulae. Let τ, τ1 and τ2 be
terms and ϕ an atomic formula. The following introduction and elimination rules
for equality are closely related to the logical axioms L14– L16:

(I=):
τ = τ

(E=):
Φ τ1 = τ2 and Φ ϕ

Φ ϕ(τ1/τ2)

Formal proofs in the calculus of natural deduction are defined in a similar way as in
our usual calculus: There is a formal proof of a formula ϕ from set of formulae Φ,
denoted Φ ϕ, if there is a F I N I T E sequence of of pairs (Φ0, ϕ0), . . . , (Φn, ϕn)
such that Φn ≡ Φ, ϕn ≡ ϕ and for each i ≤ n, Φi ϕi is obtained by the
application of an inference rule

Φj0 ϕj0 , . . . ,Φjk ϕjk
Φi ϕi

with k ≤ 3 and j0, . . . , jk < i. Note that the the case k = 0 is permitted, which
corresponds to an application of the INITIAL RULE.

We have now described two ways of introducing formal proofs. It is therefore
natural to ask whether the two systems prove the same theorems. Fortunately, this
question turns out to have a positive answer.

THEOREM 2.2. Let Φ be a set of formulae and let ϕ be a formula. Then

Φ ` ϕ Î===Ï Φ ϕ.

Proof. We need to verify that every formal proof in the usual sense can be turned
into a formal proof in the calculus of natural deduction and vice versa. In order
to prove that Φ ` ϕ implies Φ ϕ for every formula ϕ, we need to derive all
introduction and elimination rules from our logical axioms and (MP) and (∀). We
focus only on some of the rules and leave the others as an exercise.

Formal proofs of the form Φ ϕ with ϕ ∈ Φ using only (IR) obviously corre-
spond to trivial formal proofs of the form Φ ` ϕ. We consider the more interesting
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elimination rule (E∨). Suppose that Φ ` ϕ ∨ ψ,Φ + ϕ ` χ and Φ + ψ ` χ. We
verify that Φ ` χ.

ϕ0: ϕ→ χ from Φ + ϕ ` χ by (DT)

ϕ1: ψ → χ from Φ + ψ ` χ by (DT)

ϕ2: (ϕ→ χ)→ ((ψ → χ)→ ((ϕ ∨ ψ)→ χ)) instance of L8

ϕ3: (ψ → χ)→ ((ϕ ∨ ψ)→ χ) from ϕ2 and ϕ0 by (MP)
ϕ4: (ϕ ∨ ψ)→ χ from ϕ3 and ϕ1 by (MP)
ϕ4: ϕ ∨ ψ by assumption
ϕ5: χ from ϕ4 and ϕ5 by (MP)

The corresponding introduction rule (I∨) follows directly from L6 and L7 using (DT).
Note that (I→) follows directly from (DT) and (E→) from (MP).

We further prove the rules for negation. For (I¬) suppose that Φ + ϕ ` ψ ∧ ¬ψ. It
follows from (E∧) that Φ + ϕ ` ψ and Φ + ϕ ` ¬ψ. We prove that Φ + ϕ ` ¬ϕ,
since then Φ ` ¬ϕ by (E∨) and L0. We have

ϕ0: ¬ψ → (ψ → ¬ϕ) instance of L9

ϕ1: ¬ψ by assumption
ϕ2: ψ → ¬ϕ from ϕ0 and ϕ2 by (MP)
ϕ3: ψ by assumption
ϕ4: ¬ϕ from ϕ2 and ϕ3 by (MP)

The corresponding elimination rule (E¬) follows from Example 2.1. Finally, we
prove (I∃) and (E∃). Note that (I∃) follows directly from L11 using (DT) and (MP). For
(E∃) suppose that Φ ` ∃νϕ(ν) and Φ+ϕ(ν) ` ψ. An application of (DT) then yields
Φ ` ϕ(ν)→ ψ. Then we have

ϕ0: ∀ν(ϕ(ν)→ ψ)→ (∃νϕ(ν)→ ψ) instance of L13

ϕ1: ϕ(ν)→ ψ by assumption
ϕ2: ∀ν(ϕ(ν)→ ψ) from ϕ1 by (∀)
ϕ3: ∃νϕ(ν)→ ψ from ϕ0 and ϕ1 by (MP)
ϕ4: ∃νϕ(ν) by assumption
ϕ5: ψ from ϕ3 and ϕ4 by (MP)

This completes the proof of (E∃). The verification of the other rules of the calculus
of natural deduction are left to the reader (see Exercise 2.0).

Conversely, we need to check that the calculus of natural deduction proves the
logical axioms L0– L16 as well as the inference rules (MP) and (∀). Observe that
(MP) corresponds to (E→) and (∀) corresponds to (I∀). As before, we only present the
proof for some axioms and leave the others to the reader. We consider first L9. We
need to check that ¬ϕ→ (ϕ→ ψ).
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{¬ϕ,ϕ,¬ψ} ϕ by (IR)

{¬ϕ,ϕ, ψ} ¬ϕ by (IR)

{¬ϕ,ϕ, ψ} ϕ ∧ ¬ϕ by (I∧)

{¬ϕ,ϕ} ¬¬ψ by (I¬)

{¬ϕ,ϕ} ψ by (E¬)

{¬ϕ} ϕ→ ψ by (I→)

¬ϕ→ (ϕ→ ψ) by (I→)

Secondly, we derive Axiom L13, i.e. ∀ν(ϕ(ν)→ ψ)→ (∃νϕ(ν)→ ψ).

{∀ν(ϕ(ν)→ ψ),∃νϕ(ν), ϕ(ν)} ϕ(ν) by (IR)

{∀ν(ϕ(ν)→ ψ),∃νϕ(ν)} ∃νϕ(ν) by (IR)

{∀ν(ϕ(ν)→ ψ),∃νϕ(ν), ϕ(ν)} ∀ν(ϕ(ν)→ ψ) by (IR)

{∀ν(ϕ(ν)→ ψ),∃νϕ(ν), ϕ(ν)} ϕ(ν)→ ψ by (E∀)
{∀ν(ϕ(ν)→ ψ),∃νϕ(ν), ϕ(ν)} ψ by (E→)

{∀ν(ϕ(ν)→ ψ),∃νϕ(ν)} ψ by (E∃)
{∀ν(ϕ(ν)→ ψ) ∃νϕ(ν)→ ψ by (I→)

∀ν(ϕ(ν)→ ψ)→ (∃νϕ(ν)→ ψ) by (I→).

The other axioms can be verified in a similar way. a

Methods of Proof

The inference rules of the calculus of natural deduction are very useful because
they resemble methods of proof commonly used in mathematics. For example, the
elimination rule (E∨) mimicks proofs by case distinction: Under the assumption that
Φ ` ϕ ∨ ψ, one can prove a formula χ by separately proving Φ ∪ {ϕ} ` χ and
Φ ∪ {ψ} ` χ.

In the following we list several methods of proof such as proofs by contradiction,
contraposition and case distinction.

PROPOSITION 2.3 (PROOF BY CASES). Let Φ be a set of L -formulae and let ϕ,
ψ, χ be some L -formulae. Then the following four statements hold:

Φ ` ϕ ∨ ψ and Φ + ϕ ` χ and Φ + ψ ` χ ===Ï Φ ` χ (∨0)
Φ + ϕ ` χ and Φ + ¬ϕ ` χ ===Ï Φ ` χ (∨1)

Proof. Note that (∨0) is exactly the statement of (E∨) and (∨1) is a special case of
(∨0), since Φ ` ϕ ∨ ¬ϕ by L0. a

COROLLARY 2.4 (Generalised Proof by Cases). Let Φ be a set of L -formulae and
let ψ0, . . . , ψn, ϕ some L -formulae. Then we have:

Φ ` ψ0 ∨ · · · ∨ ψn and Φ + ψi ` ϕ for all i ≤ n ===Ï Φ ` ϕ.
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Since Corollary 2.4 is just a generalization of (∨0), we will also denote all instance
of this form by (∨1).

Proof of Corollary 2.4. We proceed by induction on n ≥ 1. For n = 1 the statement
is exactly (∨0). Now assume that Φ ` ψ0 ∨ . . .∨ψn ∨ψn+1 and Φ +ψi ` ϕ for all
i ≤ n+ 1. Let Φ′ :≡ Φ + ψ0 ∨ . . . ∨ ψn and observe that Φ′ ` ψ0 ∨ . . . ∨ ψn and
Φ′ + ψi ` ϕ, so by induction hypothesis Φ′ ` ϕ. By the DEDUCTION THEOREM
this implies Φ ` ψ0∨. . .∨ψn → ϕ. Moreover, by another application of (DT) we also
have Φ ` ψn+1 → ϕ. Using L8 and twice (DT) we obtain Φ ` ψ0∨. . .∨ψn∨ψn+1 →
ϕ, hence (DT) yields the claim. a

PROPOSITION 2.5 (EX FALSO QUODLIBET). Let Φ be a set of L -formulae and let
ϕ an arbitrary L -formula. Then for every L -formula ψ we have:

Φ ` ϕ ∧ ¬ϕ ===Ï Φ ` ψ (�)

Proof. Let ψ be any L -formula and assume that Φ ` ϕ∧¬ϕ for some L -formula
ϕ. By (E∧) we have Φ ` ϕ and Φ ` ¬ϕ. Now the instance ¬ϕ → (ϕ → ψ) of the
logical axiom L9 and two applications of MODUS PONENS imply Φ ` ψ. a

Notice that PROPOSITION 2.5 implies that if we can derive a contradiction from
Φ, we can derive every formula we like, even the impossible, denoted by the symbol

� .

This is closely related to proofs by contradiction:

COROLLARY 2.6 (PROOF BY CONTRADICTION). Let Φ be a set of formulae, and
ϕ be an arbitrary formula. Then the following statements hold:

Φ + ¬ϕ ` � ===Ï Φ ` ϕ,

Φ + ϕ ` � ===Ï Φ ` ¬ϕ.

Proof. Note that the second statement is exactly the introduction rule (I¬). For the
first statment, note that by (∨1) it is enough to check Φ + ϕ ` ϕ and Φ + ¬ϕ ` ϕ.
The first condition is clearly satisfied and the second one follows directly from (I∧)

and (�). a

PROPOSITION 2.7 (PROOF BY CONTRAPOSITION). Let Φ be a set of L -formulae
and ϕ and ψ two arbitrary L -formulae. Then we have:

Φ + ϕ ` ψ Î===Ï Φ + ¬ψ ` ¬ϕ (CP)

Proof. Suppose first that Φ + ϕ ` ψ. Then by (I∧), Φ ∪ {¬ψ,ϕ} ` ψ ∧ ¬ψ and
hence by (I¬) we obtain Φ + ¬ψ ` ¬ϕ.

Conversely, assume that Φ + ¬ψ ` ¬ϕ. A similar argument as above yields
Φ + ϕ ` ¬¬ψ. An application of (E¬) completes the proof. a
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Note that Proposition 2.7 proves the logical equivalence

ϕ→ ψ ⇔ ¬ψ → ¬ϕ.

THEOREM 2.8 (GENERALISED DEDUCTION THEOREM). If Φ is an arbitrary set
of formulae and Φ ∪ {ψ1, . . . , ψn} ` ϕ, where in the proof of ϕ from Φ ∪
{ψ1, . . . , ψn} the rule of GENERALISATION is not applied to any of the free vari-
ables of ψ1, . . . , ψn, then Φ ` (ψ1 ∧ · · · ∧ ψn)→ ϕ; and vice versa:

Φ ∪ {ψ1, . . . , ψn} ` ϕ Î===Ï Φ ` (ψ1 ∧ · · · ∧ ψn)→ ϕ (GDT)

Proof. Follows immediately from the DEDUCTION THEOREM and from Part (c) of
DEMORGAN’S LAWS (see Exercise 2.2). a

Normal forms

DNF, CNF and PNF

In many proofs it is convenient to convert an L -formula into an equivalent for-
mula in some normal form. The simplest normal form is the following: An L -
formula is said to be in Negation Normal Form, denoted NNF, if the negation
symbol ¬ only occurs directly in front of atomic subformulae.

THEOREM 2.9. Every L -formula is equivalent to some L -formula in NNF.

Proof. We successively apply the following transformations to every non-atomic
negated subformula ψ of ϕ, starting with the outermost negation symbols.

• If ψ ≡ ¬¬ψ′ for some formula ψ′, we replace ¬¬ψ′ with ψ′ using (F.0).
• By the DEMORGAN’S LAWS (see Chapter 2 | Exercise 2.2), we replace subfor-

mulae of the form ¬(ψ1 ∧ ψ2) and ¬(ψ1 ∨ ψ2) respectively, with ¬ψ1 ∨ ¬ψ2

and ¬ψ1 ∧ ¬ψ2 respectively.
• If ψ ≡ ¬∃xψ′ then it follows from (S.1) that ψ ⇔ ∀x¬ψ′, and hence we

replace ψ with ∀x¬ψ′. Similarly, using (S.2), we replace subformulae of the
form ¬∀xψ′ with the equivalent formula ∃x¬ψ′.

a

An quantifier-free L -formula ϕ is said to be in Disjunctive Normal Form, if it
is a conjunction of a disjunction of atomic formulae or negated atomic formulae, i.e.
if it is of the form

(ϕ1,1 ∧ . . . ∧ ϕ1,k1) ∨ · · · ∨ (ϕm,1 ∧ · · · ∧ ϕm,km)

for some quantifier-free L -formulae ϕi,j which are either atomic or the negation of
an atomic formula. In particular, each formula in DNF is also in NNF.
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THEOREM 2.10 (DISJUNCTIVE NORMAL FORM THEOREM). Every quantifier-
free L -formula ϕ is equivalent to some L -formula in DNF.

Proof. By THEOREM ?? we may assume that ϕ is in NNF. Starting with the outer-
most conjunction symbol, we successively apply the distributive laws

ψ ∧ (ϕ1 ∨ ϕ2)⇔ (ψ ∧ ϕ1) ∨ (ψ ∧ ϕ2) and
(ϕ1 ∨ ϕ2) ∧ ψ ⇔ (ϕ1 ∧ ψ) ∨ (ϕ2 ∧ ψ)

until all conjunction symbols occur between atomic or negated atomic formu-
lae. This process ends after F I N I T E L Y many steps, since there are only
F I N I T E L Y many conjunction symbols. a

An L -sentence σ said to be in Prenex Normal Form, denoted PNF, if it is of the
form

E0ν0 . . . Enνnσ̃,

where the variables ν0, . . . , νn are pairwise distinct, each Ei stands either for “∃”
or for “∀”, and σ̃ is a quantifier-free formula. Furthermore, an L -sentence σ is in
special prenex normal form, denoted sPNF, if σ is in PNF and

σ ≡ E0v0 E1v1 . . . Envnσ̃

where each Em (for 0 ≤ m ≤ n) stands for either “∃” or “∀”, σ̃ is quantifier free,
and each variable v0, . . . , vn appears free in σ̃.

THEOREM 2.11 (PRENEX NORMAL FORM THEOREM). For every L -sentence σ
there is a semantically equivalent L -sentence in sPNF.

Proof. By Theorem 1.2 we may assume that σ does not contain the symbol→. We
describe an algorithm which transforms the L -sentence σ into an L -sentence in
sPNF.

Step 1. By THEOREM 2.9, we can transform σ into an equivalent L -sentence in
NNF.

Step 2. We pull all quantifiers outwards: Suppose by induction that all subformu-
lae of ϕ are already in PNF. If ϕ is of the form ∃xϕ′ or ∀xϕ′, then ϕ is also in PNF.
Hence we may assume that ϕ ≡ ϕ1 ◦ϕ2 for some formulae ϕ1 and ϕ2 which are in
PNF, and ◦ is either ∧ or ∨, then by the VARIABLE SUBSTITUTION THEOREM 3.9
we may assume that ϕ1 and ϕ2 do not have any variables in common and that the
variables occurring in ϕ1 and ϕ2 are v0, . . . , vn and vn+1, . . . , vm respectively. If

ϕ1 ≡ E0v0 . . . Envnϕ
′
1 and

ϕ2 ≡ En+1vn+1 . . . Emvmϕ
′
2,

where ϕ′1 and ϕ′2 are quantifier-free, then, using Tautologies (V.4), (V.5), (W.4) and
(W.5), we obtain that ϕ is semantically equivalent to
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E0v0 . . . Emvm(ϕ′1 ◦ ϕ′2) .

Hence ϕ is semantically equivalent to a formula in sPNF.
Observe that after each transformation, the resulting formula remains semanti-

cally equivalent to the original one as a consequence of Theorem 1.1, and therefore,
the L -sentence σ is semantically equivalent to an L -sentence in sPNF. a

Consistency & Compactness

Let Φ be a set of L -formulae. We say that Φ is consistent, denoted Con(Φ), if
Φ 0 �, i.e. if there is no L -formula ϕ such that Φ ` (ϕ ∧ ¬ϕ), otherwise Φ is
called inconsistent, denoted ¬Con(Φ).

FACT 2.12. Let Φ be a set of L -formulae.
(a) If ¬Con(Φ), then for all L -formulae ψ we have Φ ` ψ.
(b) If Con(Φ) and Φ ` ϕ for some L -formula ϕ, then Φ 0 ¬ϕ.
(c) If ¬Con(Φ + ϕ), for some L -formula ϕ, then Φ ` ¬ϕ.
(d) If Φ ` ¬ϕ, for some L -formula ϕ, then ¬Con(Φ + ϕ).

Proof. Condition (a) is just PROPOSITION 2.5. For (b), notice that if Φ ` ϕ and Φ `
¬ϕ, then by (I∧) we get Φ ` � and thus also ¬Con(Φ). Moreover, (c) coincides
with the second statement of Corollary 2.6. Finally, for (d) note that if Φ ` ¬ϕ, then
Φ + ϕ ` ϕ ∧ ¬ϕ and hence Φ + ϕ is inconsistent. a

If we choose a set of formulae Φ as the basis of a theory (e.g., a set of axioms),
we have to make sure that Φ is consistent. However, as we shall see later, in many
cases this task is impossible.

We conclude this chapter with the COMPACTNESS THEOREM, which is a pow-
erful tool in order to construct non-standard models of Peano Arithmetic or of Set
Theory. On the one hand, it is just a consequence of the fact that formal proofs are
F I N I T E sequences of formulae. On the other hand, the COMPACTNESS THEO-
REM is the main tool to prove that a given set of sentences is consistent with some
given set of formulae Φ.

THEOREM 2.13 (COMPACTNESS THEOREM). Let Φ be an arbitrary set of for-
mulae. Then Φ is consistent if and only if every finite subset Φ′ of Φ is consistent.

Proof. Obviously, if Φ is consistent, then every finite subset Φ′ of Φ must be con-
sistent. On the other hand, if Φ is inconsistent, then there is a formula ϕ such that
Φ ` ϕ ∧ ¬ϕ. In other words, there is a proof of ϕ ∧ ¬ϕ from Φ. Now, since every
proof is finite, there are only finitely many formulae of Φ involved in this proof, and
if Φ′ is this finite set of formulae, then Φ′ ` ϕ ∧ ¬ϕ, which shows that Φ′, a finite
subset of Φ, is inconsistent. a
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Semi-formal Proofs

Previously we have shown that formal proofs can be simplified by applying methods
of proof such as case distinctions, proofs by contradiction or contraposition. How-
ever, to make proofs even more natural, it is useful to use natural language in order
to describe a proof step as in an “informal” mathematical proof.

Example 2.1 We want to prove the tautology ` ϕ → ¬¬ϕ. Instead of writing out
the whole formal proof which is quite tedious, we can apply our methods of proof
introduced above.

The first modification we make is to use (DT) to obtain the new goal

{ϕ} ` ¬¬ϕ.

The easiest way to proceed now is to make a proof by contradiction; hence it remains
to show

{ϕ,¬ϕ} ` �

which by (I∧) is again a consequence of the trivial goals

{ϕ,¬ϕ} ` ϕ and {ϕ,¬ϕ} ` ¬ϕ.

To sum up, this procedure can actually be transformed back into a formal proof, so
it suffices as a proof of ` ϕ → ¬¬ϕ. Now this is still not completely satisfactory,
since we would like to write the proof in natural language. A possible translation
could thus be the following:

Proof. We want to prove that ϕ implies ¬¬ϕ. Assume ϕ. Suppose for a contradic-
tion that ¬ϕ. But then we have ϕ and ¬ϕ. Contradiction. a

We will now show in a systematic way how formal proofs can - in principal - be
replaced by semi-formal proofs, which make use of a controlled natural language,
i.e., a limited vocabulary consisting of natural language phrases such as “assume
that” which are often used in mathematical proof texts. This language is controlled
in the sense that its allowed vocabulary is only a subset of the entire English vocab-
ulary and that every word resp. phrase has a unique precisely defined interpretation.
However, for the sake of a nice proof style, we will not always stick to this limited
vocabulary. Moreover, this section should be considered as a hint of how formal
proofs can be formulated using a controlled natural language as well as a justifica-
tion for working with natural language proofs rather than formal ones.

Every statement we would like to prove formally is of the form Φ ` ϕ, where
Φ is a set of formulae and ϕ is a formula. Note that as in Example 2.1, in order to
prove Φ ` ϕ—which is actually a meta-proof—we perform operations both on the
set of formulae Φ and on the formula to be formally proved. We call a statement
of the form Φ ` ϕ a goal, and denote the set of non-logical axioms Φ as premises
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and the formula ϕ to be verified as target. Now instead of listing a formal proof,
we can step by step reduce our current goal to a simpler one using the methods of
proof from the previous section. We can follow this procedure until the target is
tautological as in the case of Example 2.1.

Methods of proof are in that sense simply operations on the premises and the
targets. The proof by contraposition for example adds the negation of the target to
the premises and replaces the original target by the negation of the premise from
which it shall be derived:

If we want to show
Φ + ψ ` ϕ,

we can prove instead
Φ + ¬ϕ ` ¬ψ.

A slightly different example is the proof of a conjunction

Φ ` ϕ ∧ ψ,

which is usually split into the two goals given by

Φ ` ϕ and Φ ` ψ.

Thus we have to revise our first attempt and interpret methods of proof as operations
on F I N I T E lists of goals consisting of premises and targets.

We distinguish between two types of operations on goals. Backward reasoning
means performing operations on targets, whereas forward reasoning denotes op-
erations on the premises. We give some examples of both backward and forward
reasoning and indicate how such proofs can be phrased in a semi-formal way.

Backward reasoning

• Targets are often of the universal conditional form ∀ν(ϕ(ν) → ψ(ν)). In par-
ticular, this pattern includes the purely universal formulae ∀νψ(ν) by taking ϕ
to be a tautology as well as simple conditionals of the form ϕ → ψ. Now the
usual procedure is to reduce Φ ` ∀ν(ϕ(ν)→ ψ(ν)) to Φ +ϕ(ν) ` ψ(ν) using
(∀) and (DT). This can be rephrased as

Assume ϕ(ν). Then . . . This shows ψ(ν).

• As already mentioned above, if the target is a conjunction ϕ ∧ ψ, one can show
them separately using (I∧). This step is usually executed without mentioning it
explicitly.

• If the target is a negation ¬ϕ, one often uses a proof by contradiction or by
contraposition: In the first case we transform Φ ` ¬ϕ to Φ + ϕ ` � and use
the natural language notation
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Suppose for a contradiction that ϕ. Then . . . Contradiction.

In the latter case, we want to go from Φ + ¬ψ ` ¬ϕ to Φ + ϕ ` ψ resp. in its
positive version from Φ + ψ ` ¬ϕ to Φ + ϕ ` ¬ψ. In both cases we can mark
this with the keyword contraposition, e.g. as

We proceed by contraposition. . . This shows ¬ϕ.

Forwards reasoning

• By (E∧), conjunctive premises ϕ ∧ ψ can be split into two premises ϕ,ψ; i.e.
Φ + ϕ ∧ ψ ` χ can be reduced to Φ ∪ {ϕ,ψ} ` χ. This is usually performed
automatically.

• Disjunctive premises are used for proofs by case distinction: If Given a goal
of the form Φ + ϕ ∨ ψ ` χ, we reduce it to the new goals Φ + ϕ ` χ and
Φ + ψ ` χ. We can write this in a semi-formal way as

Case 1: Assume ϕ. . . . This proves χ.
Case 2: Assume ψ. . . . This proves χ.

• Intermediate proof steps: Often we want to prove first some intermediate state-
ment which shall then be applied to resolve the target. Formally this means that
we want to show Φ ` ϕ by showing first Φ ` ψ and then we add ψ to the list
of premises and check Φ + ψ ` ϕ. Clearly, if we have Φ ` ψ and Φ + ψ ` ϕ,
using (DT) and (MP) we obtain that Φ ` ϕ. In a semi-formal proof this can be
described by

We show first ψ... This proves ψ.

Note that it is important to mark when the proof of the intermediate statement
ψ ends, because from this point on, ψ can be used as a new premise.

Observe that in any case, once a goal Φ ` ϕ is reduced to a tautology, it can be
removed from the list of goals. This should be marked by a phrase like

This shows/proves ϕ.

so that it is clear that we go on to the next goal. The proof is complete as soon as no
unresolved goals remain.

What is the use of such a formalized natural proof language? First of all, it
increases readibility. Secondly, by giving some of the common natural language
phrases appearing in proof texts a precise formal definition, we show how – in prin-
cipal – one could write formal proofs with a controlled natural language input. This
input could then be parsed into a formal proof and then be verified by a proof check-
ing system.

We would like to emphasize that this section should only be considered a moti-
vation rather than a precise description of how formal proofs can be translated into
semi-formal ones and vice versa. Nevertheless, it suffices to understand how this
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can theoretically be achieved. Therefore, in subsubsequent chapters, especially in
Chapters ?? and ??, we will often present semi-formal proofs rather than formal
ones.

NOTES

Give some references.

EXERCISES

2.0 Complete the proof of Theorem 2.2.

2.1 Formalize the method of proof by counterexample and prove that it works.

2.2 Let ϕ0, . . . , ϕn be formulae. Prove the DEMORGAN’S LAWS:

(a) ¬(ϕ0 ∧ · · · ∧ ϕn)⇔ (¬ϕ1 ∨ · · · ∨ ¬ϕn)

(b) ¬(ϕ0 ∨ · · · ∨ ϕn)⇔ (¬ϕ1 ∧ · · · ∧ ¬ϕn)

(c) ϕ0 →
(
ϕ1 → (· · · → ϕn) · · ·

)
⇔ ¬(ϕ0 ∧ · · · ∧ ϕn)

2.3 Show that ` (ϕ→ ψ)→
(
(ϕ→ ¬ψ)→ ¬ϕ

)
.

2.4 Prove the following generalization of L15: to an arbitrary formula ϕ:

` (τ1 = τ ′1 ∧ · · · ∧ τn = τ ′n)→ (ϕ(τ1, . . . , τn)→ ϕ(τ ′1, . . . , τ
′
n)),

where τ, τ1, . . . , τn, τ ′1, . . . , τ
′
n are terms and ϕ is a formula with n free variables.


