Chapter 3
Semantics: Making Sense of the Symbols

There are two different views to a given set of formulae ®, namely the syntactical
view and the semantical view.

From the syntactical point of view (presented in the previous chapters), we con-
sider the set @ just as a set of well-formed formulae—regardless of their intended
sense or meaning—from which we can prove some formulae. So, from a formal
point of view there is no need to assign real objects (what ever this means) to our
strings of symbols.

In contrast to this very formal syntactical view, there is also the semantical point
of view from which we consider the intended meaning of the formulae in ® and
then seeking for a model in which all formulae of ® become true. For this, we have
to explain some basic notions of Model Theory like structure and interpretation,
which we will do in an natural, informal language. In this language, we will use
words like “or”, “and”, or phrases like “if...then”. These words and phrases have
the usual meaning. Furthermore, we assume that in our normal world, which we
describe with our informal language, the basic rules of common logic apply. For
example, a statement ¢ is true or false, and if ¢ is true, then — is false; and vice
versa. Hence, the statement “p or —¢” is always true, which means that we tacitly
assumethe LAW OF EXCLUDED MIDDLE,alsoknownas TERTIUM
N ON DATU R, which corresponds to the logical axiom Ly. Furthermore, we as-
sume DEMORGAN’S LAWS and we apply MODUS PONENS as
inference rule.

Structures & Interpretations

In order to define structures and interpretations, we have to assume some notions
of NAIVE SET THEORY like subset, cartesian product, or relation, which
shall be defined properly in Part IV. On this occasion we also make use of the set
theoretical symbol “€”, which stands for the binary membership relation.
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34 3 Semantics: Making Sense of the Symbols

Let . be an arbitrary but fixed language. An .Z-structure M consists of a non-
empty set A, called the domain of M, together with a mapping which assigns to
each constant symbol ¢ € . an element cM € A, to each n-ary relation symbol
R € £ aset of n-tuples RM of elements of A, and to each n-ary function symbol
F € £ afunction FM from n-tuples of A to A. In other word, the constant symbols
denote elements of A, n-ary relation symbols denote subsets of A™ (i.e., subsets
of the n-fold cartesian product of A), and n-ary functions symbols denote n-ary
functions from A" to A.

The interpretation of variables is given by a so-called assignment: An assignment
in an .Z-structure M is a mapping j which assigns to each variable an element of
the domain A.

Finally, an .#-interpretation I is a pair (M, j) consisting of an .#-structure M
and an assignment j in M. For a variable v, an element a € A, and an assignment j
in M we define the assignment j by stipulating

porfr, w=

j(v') otherwise.

’
jaa

Furthermore, for a,a’ € A and variables v,2’ we shall write j2 % instead of
(%) &
Ju v’

For an interpretation I = (M, j) and an element a € A, let

1% := (M, j2).

We associate with every interpretation I = (M, j) and every .£-term 7 an element
I(r) € A as follows:

* For a variable v let I(v) := j(v).
* For a constant symbol ¢ € £ let I(c) := M.
¢ For an n-ary function symbol F' € . and terms 74, ..., 7, let

I(F(Tl, .. ,Tn)) = FM (I(Tl), .. 7I(Tn)).

Now, we are able to define precisely when a formula ¢ becomes true under an
interpretation I = (M, j); in which case we write I F ¢ and say that ¢ is true
in I (or that ¢ holds in I). The definition is by induction on the complexity of the
formula ¢. By the rules (FO)—(F4), ¢ must be of the form 71 = 7o, R(71,...,7n),

=, 1 A2, P1 V o, Py — b, I, or Vih:

IE7 =7 :<=> I(r1) IS THE SAME OBJECT AS I(7)
IE R(mi,...,7,) <= (I(r1),...,1(7,)) BELONGS TO RM
IF ) <= NOT IFY

IEY1 ANy == TF Y1 AND IF
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IEY1 Vs <= TFY; OR IE
IEY; — 1Y <==> NOT IFY; OR IF 1
IFdvyp <==> ITEXISTS a IN A: I F
IFVVrY)p :<==> FORALLa IN A: I3 F9

Notice that by the logical rules in our informal language, for every .Z-formula ¢ we
have either I E ¢ or I E —¢. So, every .Z-formula is either true or false in I.

The following fact summarises a few immediate consequences of the definitions
above:

FACT 3.1. (a) Ifp is a formula and v ¢ free(yp), then:
I F ¢ ifandonlyif TF ¢
(b) If(v) is a formula and the substitution o (v /) is admissible, then:

110 o(v) ifandonlyif TF o(T)

Models

Let ® be an arbitrary set of .Z-formulae. Then an .Z-structure M is a model of &
if for every assignment j and for each formula ¢ € ® we have (M, j) E ¢, ie., ¢
is true in the Z-interpretation I = (M, j). Instead of saying “ M is a model of &~
we just write M F ®. If ¢ fails in M, then we write M ¥ ¢, which is equivalent to
M E -, because for any .Z-formula ¢ we have either ML E ¢ or Ml E —.

Example 3.1. Example
As an immediate consequence of the definition of models we get:

FACT 3.2. If ¢ is an £ -formula, v a variable, and M a model, then M F ¢ if and
only if Ml E Vv.

This leads to the following definition: Let (v1, ..., 1, ) be the sequence of vari-
ables which appear free in the .Z-formula ¢, where the variables appear in the
sequence in the same order as they appear the first time in ¢ if one reads ¢ from left
to right. Then the universal closure of ¢, denoted i, is defined by stipulating

=YV, p.

As a generalisation of FACT 3.2 we get:
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FACT 3.3. If ¢ is an £ -formula and M a model, then

MEy <= MFEp.

The following notation will be used later to simplify the arguments when we shall
investigate the truth-value of sentences in some model M: Suppose that M is a
model with domain A. Let (v, . .., v,) be an £-formula whose free variables are
Vvi,...,v,and letay,...,a, € A. Then we write

ME p(a,...,a,)
to denote that for every assignment j in M,

(M,j%...g—:)hg&.

Basic Notions of Model Theory

Let .Z be a signature, i.e., a possibly empty set of constant symbols ¢, n-ary function
symbols F', and n-ary relation symbols R. Two .Z-structures M and N with do-
mains A and B are isomorphic, denoted M =2 N, if there is a bijection f : A — B
such that

f(cM) = N (forallc € .¥)
and forall aq,...,a, € A:
f(FM(al,...,an)) = FN(f(al),...,f(an)) (forall F' € .¥)

(a1,...,an) eRM & <f(a1),...,f(an)> e RN (forall R € .¥)

FACT 3.4. (a) If M and N are isomorphic £ -structures and o is an .£-sentence,
then:
MEoc <> N¢Fo

(b) If M and N are isomorphic models of some given set of £ -formulae and ¢ is
an . -formula, then:

MFe <> NFg

It may happen that although two .Z-structures M and N are not isomorphic
there is no .Z’-sentence that can distinguish between them. In this case we say that
M and N are elementarily equivalent. More formally, we say that M is elementar-
ily equivalent to N, denoted Ml =, N, if each .Z-sentence o true in M is also true

[y 1)

in N. The following lemma shows that “=," is symmetric:
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LEMMA 3.5. If M and N are .Z-structures and M =, N, then for each .Z-
sentence o we have:
MEoc <— N&Fko

Proof. One direction is immediate from the definition. For the other direction, as-
sume that ¢ is not true in M, i.e., M ¥ o. Then M F —o, which implies N F —o,
and hence, o is not true in N. =

As a consequence of FACT 3.3 we get:

FACT 3.6. If M and N are elementarily equivalent models of some given set of
£ -formulae and o is an £ -formula, then

MFy <= NEFgp

Below we investigate the relationship between syntax and semantic. In particular,
we investigate the relationship between a formal proof of a formula ¢ from a set of
formulae ® and the truth-value of ¢ in a model of ®. In this context, two questions
arise naturally:

e Is each formula ¢, which is provable from some set of formulae ®, valid in
every model M of ®?

¢ Is every formula ¢, which is valid in each model M of ®, provable from ®?

Soundness Theorem

In this section we give an answer to the former question; the answer to the latter is
postponed to Part II.

A logical calculus is called sound, if all what we can prove is valid (i.e., true),
which implies that we cannot derive a contradiction. The following theorem shows
that First-Order Logic is sound.

THEOREM 3.7 (SOUNDNESS THEOREM). Let ® be a set of .£-formulae and M a
model of ®. Then for every .£-formula ¢, we have:

Somewhat shorter we could say:

Voo: @y =—> VM(ME® — MF ¢)

Proof. First we show that all logical axioms are valid in M. For this we have to
define truth-values of composite statements in the metalanguage.
In the previous chapter we defined for example:



38 3 Semantics: Making Sense of the Symbols

MEpAY <= MFyp AND MEY
N—_——— N—— N——

© <= P AND R

Thus, in the metalanguage the statement “©” is true if and only if the statement
“® AND U” is true. So, the truth-value of “O” depends on the truth-values of “®”
and “¥”. In order to determine truth-values of composite statement like “® AND U~
or “IF ® THEN U, where the latter statement will get the same truth-value as
“NOT ¢ OR U”, we introduce so called truth-tables, in which “1” stands for “true”
and “0” stands for “false”:

@ v NOT & ® AND W ® OrR ¥ IF & THEN ¥
0 0 1 0 0 1
0 1 1 0 1 1
1 0 0 0 1 0

1 1 0 1 1 1

With these truth-tables one can show that all logical axioms are valid in M. As
an example we show that every instance of L is valid in M: For this, let ¢; be an
instance of Ly, i.e., p1 = ¢ — (¢ — ) for some £-formulae ¢ and ). Then
MEpiiff MEp — (¢ — p):

MEp—= (Y —>p) <> IF MFp THEN MFvY — ¢
N—— N——

G} <> IF ® THEN IF MFEF% THEN MFE ¢
N—— N——
v P

This shows that
© <> IF ® THEN (IF ¥ THEN @ ).

Writing the truth-table of “©”, we see that the statement “O” is always true (i.e., @1
is valid in M):

Therefore, Ml E (1, and since ¢ was an arbitrary instance of L, every instance
of L is valid in M.

In order to show that also the logical axioms Lip—L4g are valid in M, we need
somewhat more than just truth-tables:

Let A be the domain of M, let j be an arbitrary assignment, and let I = (M, j)
be the corresponding .Z-interpretation.

Now, we show that every instance of Ly is valid in M. For this, let 19 be an
instance of Ly, i.e., 010 = Vzp(x) — ¢(t) for some £-formula o, where x is a
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P v IF ¥ THEN & IF & THEN (IF ¥ THEN &)
0 0 1 1
0 1 0 1
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variable, ¢t a term, and the substitution ¢ (z/t) is admissible. We work with I and

show that I F 4.
By definition we have:

IEVzp(z) = o(t) <= IF I1EVzp(z) THEN IF p(t)

Again by definition we have:

IEVrp(r) <=~ FORALLa IN A: I%F ¢

In particular we get:
IEVap(z) —> ILJ) Eo

Furthermore, by FACT 3.1.(a) we get:

IE o(t) <~—> 118 E ()

Hence, we get
IF I E Vap(x) THEN IF o(t)

which shows that
(M, j) E Vzo(z) — (1)

and since the assignment j was arbitrary, we finally get:

M E Vzp(x) — ¢(t)

Therefore, M F (19, and since @19 was an arbitrary instance of L;q, every instance

of Ly is valid in M.

With similar arguments one can show that also every instance of L, Ly, Or Ly3
is valid in M (see EXERCISES 3.6.(a)—(c)). Furthermore, one can also show that

also Ly4, Lys, and Lyg are valid in M (see EXERCISES 3.6.(d)—(f)).

Let ® be a set of formulae, let M be a model of ®, and assume that ® - y. We

shall show that M E . For this, we notice first the following facts:

* As we have seen above, each instance of a logical axiom is valid in M.

¢ Since M E ®, each formula of ® is valid in M.
* By the truth-tables we get
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IF (MEp—1v% AND MF @) THEN ME ¢

and therefore, every application of MODUS PONENS in the proof of g from ®
yields a valid formula (if the premisses are valid).
* Since, by FACT 3.2,

MEy <= MFEYvp(v)

every application of the GENERALISATION in the proof of g from ® yields a
valid formula.

From these facts it follows immediately that each formula in the proof of ¢ from
® is valid in M. In particular we get

M':(po

which completes the proof. =

The following fact summarises a few consequences of the SOUNDNESS THEO-
REM.

FAcCT 3.8.

(a) Every tautology is valid in each model:
Vo:Fo = VM: MFgp
(b) If a set of formulae ® has a model, then ® is consistent:
IM: ME® —> Con(®)
(c) The logical axioms are consistent:
Con(Lo-Lys)

(d) If a sentence o is not valid in M, where M is a model of ®, then o is not
provable from ®:

IF (MEo AND MF @) THEN ®F o

Substitution of Variables

In Part IT & IIT we shall encode formulae by strings of certain symbols and by natu-
ral numbers, respectively. In order to do so, we have to make sure that the variables
are among a well-defined set of symbols, namely among vg, v1, . . . where the index
n of v, is a natural number, i.e., a member of IN. Before we prove the next result,
we introduce the following notion.
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We say that two .Z-formulae ¢ and v are semantically equivalent if for all .£-
structures M and every assignment j we have:

M,j)Fy <=~ (M,j)Fv

THEOREM 3.9 (VARIABLE SUBSTITUTION THEOREM). For every sentence o
there is a semantically equivalent sentence ¢ which contains just variables among
Vg, V1, . . ., where for any n € IN we have v,, appears in ¢’, then also v,,, appears in
¢ for all m < n.

Proof. Let £ be a signature and let o be an .Z-sentence written in Polish notation.
Let ¥, be the left most quantifier which appears in o, i.e., ¥j is either “3” or “V”.
¥, is followed by a variable, say v, and a formula, say ¢¢. Let us assume that the
quantifier ¥, is “3” (the case when ¥ is “V” is similar). Let now M be an arbitrary
&-structure with domain A and let j be an arbitrary assignment. If necessary, we
extend j such that j is defined on each of the variables vy, vy, ..., ie., for each
n € IN, j(vy) is an element of A. Finally, let m € IN be the least natural number
such that for all £ € IN, the variable v,, 4, does not occur in . Then we have:

(M, j) F Jvopg <= ITEXISTS ag IN A: (M, j32) F ¢o
<= ITEXISTS ao IN A: (M, j %) F ¢o(vo/vm)
<= (M, ) F Jvmpo(vo/vm)
In particular, we have
ME g <= ME Jump0(to/vm) .

Proceeding this way, we can replace all the variables variables vy, 11, . . . appearing
in o with the variables v,,,, U, 41, - . - and obtain a sentence o’ with

MEog <——>MEdo' .

With the same arguments we can replace the variables vy, U, 11, .. . in o’ with the
variables vg, v1, . . . and obtain a sentence ¢ with the required properties. —

Completion of Theories

A set of Z-sentences is called an .Z-theory., and an .#-theory T is called com-
plete, if for every .Z-sentence o we have either T = o or T + —o. Furthermore,
for an .Z-theory T let Th(T) be the set of all .#-sentences o, such that T + o.
By these definitions we get that a consistent .Z-theory T is complete iff for every
Z-sentence o we have either o € Th(T) or —o € Th(T).
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PrROPOSITION 3.10. _If T is an £-theory wich has a model, then there exists a
complete .£-theory T which contains T. In particular, every .Z -theory which has
a model can be completed, i.e., can be extended to a complete theory.

Proof. Let M be a model of some .%-theory T and let T be the set of .#-sentences
o, such that M E o. Since for each .Z-sentence oy we have either M E o or
M E =0y, we get either o € T or =0 € T, which shows that T is complete, and
since M F T, we get that T contains T. -

It is natural to ask whether also the converse of PROPOSITION 3.10 holds, i.e.,
whether every .Z-theory which can be completed has a model. Notice that if an
Z-theory T can be completed, then T must be consistent. So, one may ask whether
every consistent theory has a model. An affirmative answer to this question together
with FACT 3.8 (b) would imply that an .Z-theory T is consistent if and only if T has
a model—which is indeed the case, as we shall see.
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EXERCISES

3.0 Let T be a set of .Z-sentences (for some signature .#’) and let M be an .Z-structure such that

3.1
32
33

3.4
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3.6

M E T. Furthermore, let ¥’ be an extension of .# (i.e., .’ is a signature which contains .&).
Then there is an .#’-structure M’ with the same domain as M, such that M £ T.

Hint: Let ao be an arbitrary but fixed element of the domain A of M. For each constant
symbol ¢ € ¢’ which does not belong to .Z, let M = ap. Similarly, for each n-ary
function symbol F € .2’ which does not belong to %, let FM' : A" — A be such that F™M’
maps each element of A™ to ag. Finally, for each n-ary relation symbol R € ¢’ which does
not belong to .Z, let RM := A™.

If an .#-theory T has, up to isomorphisms, a unique model, then T is complete.
If two structures M and N are isomorphic, then they are elementarily equivalent.

Let DLO be the theory of dense linearly ordered sets without endpoints: The signature .Zp o
contains just the binary relation symbol “<”, and the non-logical axioms of DLO are the
following sentences:

DLOg Vz—(z < z)

DLO4 VszVz((z <yNy<z)—sz< z)
DLO2 V:):Vy(x<y\/m:y\/y<x)
DLO3 VszHz(.t <y—=(z<zAz< y))
DLO4 V:):Hyﬂz(y <zANz< z)

Show that the theory DLO is complete, i.e., for all 4p| o-sentences o we have either DLO - o
or DLO F —o.

Show that the converse of EXERCISE 3.2 does not hold.

Hint: Let Q be the set of rational numbers, let IR be the set of real numbers, and let “<” be
the natural ordering on QQ and IR, respectively. Then the two non-isomorphic .#p| o-structures
(Q, <) and (R, <) are both models of DLO.

Show that every countable model of DLO is isomorphic to (Q, <).

Hint: Enumerate both Q and some model M of DLO, and construct an isomorphism by
recursion such that in the n-th step the n-th element of M is mapped to an element of @ so
that the order is preserved.

Let . be an arbitrary signature and let M be an arbitrary .Z-structure. Then
(a) Lyq is valid in M,
(b) Ly is valid in M,
(c) Ly isvalid in M,
(d) Lig is valid in M,
(e) Lysis valid in M,
(f) Lig is valid in M.



