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In this part of the book we shall prove Gödel’s COMPLETENESS THEOREM and
show several consequences.

Gödel proved his famous theorem in his doctoral dissertation Über die Vollständig-
keit des Logikkalküls [10] which was completed in 1929. In 1930, he published
the same material as in the doctoral dissertation in a rewritten and shortened form
in [11]. However, instead of presenting Gödel’s original proof we decided to fol-
low Henkin’s construction, which can be found in [17] (see also [19]), since it fits
better in the logical framework developed in Part I. Even though Henkin’s construc-
tion works also for uncountable signatures, we shall prove in Chapter ?? the general
COMPLETENESS THEOREM with an ultraproduct construction, using ŁOŠ’S THE-
OREM.

Etwas sagen zur Konstruktion: Warum braucht man maximal konsistente Er-
weiterungen und warum brauchen wir Zeugen?

We would like to mention that in our proof of the COMPLETENESS THEOREM

for countable signatures (carried out in Chapters 4 & ??), one only has to assume
the existence of potentially infinite sets but no instance of an actually infinite set is
required (see also Chapter 0).





Chapter 4

Maximally Consistent Extensions

Throughout this chapter we require that all formulae are written in Polish notation
and that the variables are among v0, v1, v2, . . . Notice that the former requirement
is just another notation which does not involve brackets and that by the VARIABLE

SUBSTITUTION THEOREM 3.9, the latter requirement gives us semantically equiv-
alent formulae.

Maximally Consistent Theories

Let L be an arbitrary signature and let T be an L -theory (i.e., a set of L -
sentences). We say that T is maximally consistent if T is consistent and for every
L -sentence σ we have either σ ∈ T or ¬Con(T+ σ). In other words, a consistent
theory T is maximally consistent if no proper extension of T is consistent.

The following fact is just a reformulation of the definition.

FACT 4.1. Let L be a signature and let T be a consistent L -theory. Then T is
maximally consistent iff for every L -sentence σ, either σ ∈ T or T ⊢ ¬σ.

Proof. By FACT 2.12.(c) & (d) we have:

¬Con(T+ σ) Î===Ï T ⊢ ¬σ

Hence, an L -theory is maximally consistent iff for every L -sentence σ, either
σ ∈ T or T ⊢ ¬σ. ⊣

As a consequence of FACT 4.1 we get

LEMMA 4.2. Let L be a signature and let T be a consistent L -theory. Then T is
maximally consistent iff for every L -sentence σ, either σ ∈ T or ¬σ ∈ T.

Proof. We have to show that the following equivalence holds:
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A σ
(
σ ∈ T or T ⊢ ¬σ

)
Î===Ï A σ

(
σ ∈ T or ¬σ ∈ T

)

(⇒) Assume that for every L -sentence σ we have σ ∈ T or T ⊢ ¬σ. If σ ∈
T, then the implication obviously holds. If σ /∈ T, then T ⊢ ¬σ, and since T is
consistent, this implies T 0 σ. Now, by TAUTOLOGY (F), this implies T 0 ¬¬σ
and by our assumption we finally get ¬σ ∈ T.

(⇐) Assume that for every L -sentence σ we have σ ∈ T or ¬σ ∈ T. If σ ∈ T,
then the implication obviously holds. Now, if σ /∈ T, then by our assumption we
have ¬σ ∈ T, which obviously implies T ⊢ ¬σ. ⊣

Maximally consistent theories have similar features as complete theories: Recall
that an L -theory T is complete if for every L -sentence σ we have either T ⊢ σ or
T ⊢ ¬σ.

As an immediate consequence of the definitions we get

FACT 4.3. Let L be a signature, let T be a consistent L -theory, and let Th(T) be
the set of all L -sentences which are provable from T.

(a) If T is complete, then Th(T) is maximally consistent.

(b) If T is maximally consistent, then Th(T) is the same as T.

The next result gives a condition under which a theory can be extended to maxi-
mally consistent theory, and is in fact just a reformulation of PROPOSITION 3.10.

FACT 4.4. If an L -theory T has a model, then T has a maximally consistent exten-
sion.

Proof. Let M be a model of the L -theory T and let TM be the set of L -sentences
σ such that M � σ. Then TM is obviously a maximally consistent theory which
contains T. ⊣

Later we shall see that every consistent theory has a model. For this, we first show
how a consistent theory can be extended to a maximally consistent theory.

Universal List of Sentences

Let L be an arbitrary but fixed countable signature, where by “countable” we mean
that the symbols in L can be listed in a F I N I T E or P O T E N T I A L L Y I N -
F I N I T E list LL .

First, we encode the symbols of L corresponding to the order in which they
appear in the list LL : The first symbol is encoded with “2”, the second with “22”,
the third with “222”, and so on. For every symbol ζ ∈ LL let # ζ denote the code of
ζ. So, the code of a symbol of L is just a sequence of 2’s.

Furthermore, we encode the logical symbols as follows:
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Symbol ζ Code # ζ

= 11

¬ 1111

∧ 111111

∨ 11111111

→ 1111111111

∃ 111111111111

∀ 11111111111111

v0 1

v1 111

...
...

vn 1111 . . . 11111
︸ ︷︷ ︸

(2n + 1) 1’s

In the next step, we encode strings of symbols: Let ζ̄ ≡ ζ0ζ1ζ2 . . . ζn be a finite
string of symbols, then

# ζ̄ := # ζ00# ζ10# ζ2 . . . 0# ζn

For a string # ζ (i.e., a string of 0’s, 1’s, and 2’s) let |# ζ| be the length of # ζ (i.e.,
the number of 0’s, 1’s, and 2’s which appear in # ζ).

Now, we order the codes of strings of symbols by their length and strings of the
same length lexicographically, where 0 < 1 < 2. If, with respect to this ordering,
# ζ is less than # ζ′, we write ζ ≺ ζ′.

Finally, let
ΛL := [σ1, σ2, . . .]

be the potentially infinite list of all L -sentences, where we require

#σi ≺ #σj ⇐⇒ i < j .

We call ΛL the universal list of L -sentences.

Lindenbaum’s Lemma

In this section we show that every consistent set of L -sentences T can be extended
to a maximally consistent set of L -sentences T. Since the universal list of L -
sentences contains all possible L -sentences, every set T of L -sentences can be
listed in a finite or potentially infinite list.
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LINDENBAUM’S LEMMA 4.5. Let L be a countable signature and let T be a con-
sistent set of L -sentences. Furthermore, let σ0 be an L -sentence which cannot
be proved from T, i.e., T 0 σ0. Then there exists a maximally consistent set T of
L -sentences which contains ¬σ0 as well as all the sentences of T.

Proof. Let ΛL = [σ1, σ2, . . .] be the universal list of all L -sentences. First we
extend ΛL with the L -sentence ¬σ0; let Λ0

L
= [¬σ0, σ1, σ2, . . .].

Now, we go through the list Λ0
L

and define step by step a list T of L -sentences:
For this, we define T1 as the list which contains just ¬σ0, i.e., T1 := [¬σ0]. If Tn is
already defined, then

Tn+1 :=

{

Tn + [σn] if Con(T + Tn + σn),

Tn otherwise.

LetT = [¬σ0, σi1 , . . .] be the resulting list, i.e.,T is the union of all the Tn’s. Notice
that the construction only works if we assume the metamathematical L A W O F

E X C L U D E D M I D D L E or a similar principle like the W E A K K Ö N I G ’ S

L E M M A (see EXERCISE 4.1): Even in the case when we cannot decide whether
T + Tn + σn is consistent or not, we assume, from a metamathematical point of
view, that either T + Tn + σn is consistent or T + Tn + σn is inconsistent (and
neither both, nor none).

CLAIM. T is a maximally consistent set of L -sentences which contains ¬σ0 as
well as all the sentences of T.

Proof of Claim. First we show that ¬σ0 belongs to T, then we show that T + T

is consistent (which implies that T is consistent), in a third step we show that T
contains T, and finally we show that for every L -sentence σ we have either σ ∈ T

or ¬Con(T+ σ).

¬σ0 belongs to T: By definition, T1 = [¬σ0], and since T1 is an initial segment
of the list T, ¬σ0 belongs to T.

T+T is consistent: By the COMPACTNESS THEOREM 2.13 it is enough to show
that every finite subset of T +T is consistent. So, let T′ + Tk be a finite subset of
T+T, where T′ is a finite subset of T and Tk is some finite initial segment of the list
T. Since T 0 σ0, by FACT 2.12 (c) we have Con(T + ¬σ0), and since T1 = [¬σ0],
we obtain Con(T+T1). Thus, if Tk = [¬σ0], then T′+Tk is consistent. Otherwise,
if Tk = [. . . , σn] for some n ≥ 1, then Tk = Tn + [σn], i.e., Tk = Tn+1. So, by
construction we have Con(T+Tn+σn), which implies the consistency of T′+Tk.

T contains all sentences of T: We already know that ¬σ0 belongs to T. Now, for
every σ ∈ T− [¬σ0] there is a σn ∈ Λ0

L
such that σ ≡ σn. If Con(T + Tn + σn),

then σn ∈ Tn+1 and therefore σn ∈ T. Otherwise, if ¬Con(T + Tn + σn), then,
since σn ∈ T, we have ¬Con(T + Tn), and for Tn = [. . . , σm] (with m ≤ n) we
get ¬Con(T+ Tm + σm), which contradicts our construction.

For every σ, either σ ∈ T or ¬Con(T + σ): For every L -sentence σ there
is a σn ∈ Λ0

L
such that σ ≡ σn. By the law of excluded middle, we have either
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Con(T+Tn+σn) or ¬Con(T+Tn+σn). In the former case we obtain σn ∈ Tn+1

which implies σ ∈ T, in the latter case we obtain ¬Con(T+σn), which is the same
as ¬Con(T+ σ). ⊣Claim

Thus, the list T has all the required properties, which completes the proof. ⊣

The following fact summarises the main properties of T.

FACT 4.6. Let T,T, and σ0 be as above, and let σ and σ′ be any L -sentences.

(a) ¬σ0 ∈ T.

(b) Either σ ∈ T or ¬σ ∈ T.

(c) If T ⊢ σ, then σ ∈ T.

(d) T ⊢ σ iff σ ∈ T.

(e) If σ ⇔ σ′, then σ ∈ T iff σ′ ∈ T.

Proof. (a) follows by construction of T.
Since T is maximally consistent, (b) follows by LEMMA 4.2.
For (c), notice that T ⊢ σ implies ¬Con(T + ¬σ), hence ¬σ /∈ T and by (b) we

get σ ∈ T.
For (d), let us first assumeT ⊢ σ, where σ ≡ σn. This implies Con(T+σ), hence

Con(T+ Tn + σn), and by construction of T we get σn ∈ T. On the other hand, if
σ ∈ T, then we obviously have T ⊢ σ.

For (e), recall that σ ⇔ σ′ is just an abbreviation for ⊢ σ ↔ σ′. Thus, (e) follows
immediately from (d). ⊣

FACT 4.6 shows that the L -sentences in T “behave” like valid sentences in a
model, which is indeed the case—as the following proposition shows.

PROPOSITION 4.7. Let T be as above, and let σ, σ1, σ2 be any L -sentences in
Polish notation.

(a) ¬σ ∈ T Î===Ï NOT σ ∈ T

(b) ∧σ1σ2 ∈ T Î===Ï σ1 ∈ T AND σ2 ∈ T

(c) ∨σ1σ2 ∈ T Î===Ï σ1 ∈ T OR σ2 ∈ T

(d) → σ1σ2 ∈ T Î===Ï IF σ1 ∈ T THEN σ2 ∈ T

Proof. (a) Follows immediately from FACT 4.6.(b).
(b) First notice that by FACT 4.6.(d),∧σ1σ2 ∈ T iff T ⊢ ∧σ1σ2. Thus, by L3 and L4

and (MP) we get T ⊢ σ1 and T ⊢ σ2. Thus, by FACT 4.6.(d), we get σ1 ∈ T AND

σ2 ∈ T. On the other hand, if σ1 ∈ T AND σ2 ∈ T, then, by FACT 4.6.(d), we get
T ⊢ σ1 and T ⊢ σ2. Now, by TAUTOLOGY (B), this implies T ⊢ ∧σ1σ2, and by by
FACT 4.6.(d) we finally get ∧σ1σ2 ∈ T.

(c) and (d) follow from FACT 4.6.(e) and from the 3-SYMBOLS THEOREM 1.2
which states that for each formulaσ there is an equivalent formulaσ′ which contains
neither “∨” nor “→”. ⊣
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EXERCISES

4.0 Show that all the logical axioms of propositional logic (i.e., L0–L9) were used in the proofs
of FACT 4.1, LEMMA 4.2, FACT 4.6, and PROPOSITION 4.7. Notice that in the proof of
FACT 4.1, we used FACT 2.12.(c) & (d).

4.1 The WEAK KÖNIG’S LEMMA is a very weak choice principle. It states that

every infinite 0-1-tree contains an infinite branch.

In other words, for every potentially infinite set S of finite 0-1-sequences with the property
that for every sequences in S, S contains all its initial sub-sequences, then there exists a
potentially infinite sequence s̄, such that all its finite initial sub-sequences belong to S.

Show that in the proof of LINDENBAUM’S LEMMA 4.5, the L A W O F E X C L U D E D

M I D D L E can be replaces with the metamathematical W E A K K Ö N I G ’ S L E M M A.

Hint : Firstly, consider the set Λ of finite lists λ = [σi0 , . . . , σin ] of L -sentences, where k < l
implies ik < il. Secondly, construct the tree T consisting of the lists λ ∈ Λ, such that there is
no formal inconsistency proof of T+ λ of length |λ|, where |λ| denotes the length of λ. Then
T corresponds to an infinite binary tree, where each infinite branch through T corresponds to
a maximally consistent set of L -sentences.


