
Chapter 5

The Completeness Theorem

As in the previous chapter, we require that all formulae are written in Polish notation
and that the variables are among v0, v1, v2, . . . Furthermore, let L be a countable
signature, let T be a consistent L -theory, and let σ0 be an L -sentence which is not
provable from T. Finally, let T be the maximally consistent extension of T + ¬σ0
obtained with LINDENBAUM’S LEMMA 4.5.

We shall construct a model of T as follows: In a first step, we extend the sig-
nature L to a signature Lc by adding countably many new constant symbols, so-
called special constants. In a second the step, we extend the L -theory T to an Lc-
theory Tc by adding so-called witnesses to existential sentences in ∈ T. In partic-
ular, for each sentence ∃xσ(x) ∈ T we add an Lc-sentence σ(c), where c is some
special constant. In a third step, we extend the Lc-theoryTc to a maximally consis-
tent Lc-theory T̃, and in a last step, we build the domain of the model of T̃ as a list
of lists of closed Lc-terms.

Extending the Language

A string of symbols is a term-constant, if it results from applying F I N I T E L Y

many times the following rules:

(C0) Each closed (i.e., variable-free) L -term is a term-constant.
(C1) If τ0, . . . , τn−1 are any term-constants which we have already built and F is an

n-ary function symbol, then Fτ0 · · · τn−1 is a term-constant.
(C2) For any natural numbers i, n, if τ0, . . . , τn−1 are any term-constants which we

have already built, then (i, τ0, . . . , τn−1, n) is a term-constant.

The strings (i, τ0, . . . , τn−1, n) which are built with rule (C2) are called special

constants. Notice that for n = 0, (i, τ0, . . . , τn−1, n) becomes (i, 0).
Let Lc be the signature L extended with the countably many special constants.

In order to write the special constants in a list, we first encode them and then define
an ordering on the codes.
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58 5 The Completeness Theorem

First we encode closed L -terms as above with strings of 0’s and 2’s. Now, let
c ≡ (i, τ0, . . . , τn−1, n) be a special constant, where the codes of τ0, . . . , τn−1 are
already defined. Then we encode c as follows:

c ≡ ( i , τ0 , . . . , τn−1 , n )

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

# c ≡ 6 1 . . . 1︸ ︷︷ ︸
i-times 1

8 # τ0 8 . . . 8 # τn−1 8 1 . . . 1︸ ︷︷ ︸
n-times 1

9

The codes of special constants are ordered by their length and lexicographically,
where 0 < 1 < 2 < 6 < 8 < 9.

Finally, let Λc = [c0, c1, . . .] be the potentially infinite list of all special constants,
ordered with respect to the ordering of their codes.

Extending the Theory

In this section we shall add witnesses for certain existential Lc-sentences σi in the
list T = [σ0, σ1, . . . , σi, . . .], where an Lc-sentence is existential if it is of the form
∃νϕ. The witnesses we choose from the list Λc of special constants. In order to
make sure that we have a witness for each existential Lc-sentence (and not just for
L -sentences), and also to make sure that the choice of witnesses do not lead to a
contradiction, we have to choose the witnesses carefully.

Let σi ∈ T and let cj ≡ (i, t0, . . . , tn−1, n) be a special constant. Then we say
that cj witnesses σi or that cj is a witness for σi, if:

• i ≥ 1 and σi is in special Prenex Normal Form sPNF (see Chapter 3),

• “∃vn” appears in σi,

• for all m < n: if “∃vm” appears in σi, then tm ≡ (i, t0, . . . , tm−1,m).

On the one hand, we have only withnesses for cj for L -senteces σi with i ≥ 1.
On the other hand, notice that since ¬σ0 is not in sPNF, by construction of T there
exists an i ≥ 1 such that σi and ¬σ0 are semantically equivalent, which will be
sufficient for our purposes.

If an L -sentence σi ∈ T is in sPNF and either “∃vn” or “∀vn” appears in σi, then

σi ≡ E0v0 E1v1 · · · Envnσi,n(v0, . . . , vn)

where σi,n(v0, . . . , vn) is an L -formula in which each variable among v0, . . . , vn
appears free. In particular, if cj ≡ (i, t0, . . . , tn−1, n) witnesses σi, then

σi ≡ E0v0 E1v1 · · · En − 1vn−1∃vnσi,n(v0, . . . , vn) ,

i.e., ∃vn appears in σi. Furthermore, if σi ∈ T is in sPNF, cj ≡ (i, t0, . . . , tn−1, n)
is a special constant, and cj witnesses σi, then let
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σi,n[cj ] :≡ σi,n(v0/t0, . . . , vn−1/tn−1, vn/cj) .

Now, we go through the list Λc = [c0, c1, . . .] of special constants and extend step
by step the listT = [σ0, σ1, . . .]. For this, we first stipulate T0 := T. Assume that Tj
is already defined and that cj ≡ (i, t0, . . . , tn−1, n) for some natural numbers i, n
and terms t0, . . . , tn−1. We have the following two cases:

Case 1. The special constant cj does not witness the L -sentence σi ∈ T. In this
case we set Tj+1 := Tj .

Case 2. The special constant cj witnesses σi ∈ T. In this case we insert the
Lc-sentence σi,n[cj ] into the list Tj on the place which corresponds to the code
#σi,n[cj ]. The extended list is then Tj+1.

Finally, let Tc be the resulting list, i.e., Tc is the union of all the Tj’s.

LEMMA 5.1. Tc is consistent.

Proof. By construction of T we have Con(T) with respect to the signature L . We
first show thatT is also consistent with respect to the signatur Lc: Assume toward a
contradiction that with respect to the signature Lc, T ⊢ �. In that proof we replace
each special constant cwith a variable νc which does not occour in any of the finitely
many formulae of the proof, such that if c and c′ are distinct special constants, then
νc and νc′ are distinct variables. Notice that every logical axiom becomes a logical
axiom of the same type and that L -sentences of T remain unchanged since they do
not contain special constants. Furthermore, each application of MODUS PONENS

or GENERALISATION becomes a new application of the same inference rule. To
see this, notice that we do not apply GENERALISATION to any of the νc’s, since
otherwise, we would have applied GENERALISATION to a special constant c, but c
is a term-constant and not a variable. Since the proof we obtain does not contain any
special constant, we get T → � (with respect to L ), which contradicts the fact that
T is consistent (with respect to L ). So, we have Con(T) with respect to Lc.

Now, assume towards a contradiction that Tc is inconsistent, i.e., ¬Con(Tc).
Then, by the COMPACTNESS THEOREM 2.12, we find finitely many, pairwise dis-
tinct Lc-sentences σi,n[cj ] in Tc such that

¬Con
(
T+

{
σi1,n1

[cj1 ], . . . , σik,nk
[cjk ]

})
.

Notice that since the Lc-sentences σi1,n1
[cj1 ], . . . , σik,nk

[cjk ] are pairwise dis-
tinct, also the special constants cj1 , . . . , cjk are pairwise distinct. Without loss of
generality we may assume that σi1,n1

[cj1 ], . . . , σik,nk
[cjk ] are such that the sum

n1 + . . .+ nk + k is minimal.
For term-constants τ we define the height h(τ) as follows: If τ is a closed L -

term, then h(τ) := 0. If τ0, . . . , τn−1 are term-constants and F ∈ L is an n-ary
function symbol, then

h(Fτ0 · · · τn−1) := max
{
h(τ0), . . . , h(τn−1)

}
.

Finally, if τ ≡ (i, τ0, . . . , τn−1, n) is a special constant, then
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h(τ) := 1 +max
{
h(τ0), . . . , h(τn−1)

}
where max ∅ := 0 .

Without loss of generality we may assume that

h(cjk) = max
{
h(cj1 ), . . . , h(cjk)

}
,

i.e., for each special constant cj occurring in cjk we have h(cj) < h(cjk).
Let us now consider the formula σik ,nk

[cjk ]. To simplify the notation, we write
i, n, j instead of ik, nk, jk respectively; in particular, σik ,nk

[cjk ] becomes σi,n[cj ].
Furthermore, let

Σ :=
{
σi1,n1

[cj1 ], . . . , σik−1,nk−1
[cjk−1

]
}
,

and let cj ≡ (i, t0, . . . , tn−1, n), i.e.,

σi,n[cj ] ≡ σi,n(v0/t0, . . . , vn−1/tn−1, vn/cj) .

Since cj witnesses σi, “∃vn” appears in σi, i.e.,

σi,n−1(v0, . . . , vn−1) ≡ ∃vnσi,n(v0, . . . , vn−1, vn) .

To simplify the notation again, we set

σ̃(vn) :≡ σi,n(v0/t0, . . . , vn−1/tn−1, vn) .

Notice that vn is the only variable which appears free in σ̃.

CLAIM. ¬Con
(
T+Σ + σi,n[cj ]

)
===Ï ¬Con

(
T+Σ + ∃vnσ̃(vn)

)

Proof of Claim. If T + Σ + σi,n[cj ] is inconsistent, then T + Σ + σi,n[cj ] ⊢ �

and with the DEDUCTION THEOREM we get

T+Σ ⊢ σi,n[cj ] → � .

In the latter proof we replace the special constant cj throughout the proof with a vari-
able ν which does not occour in σi,n and which does not occur in any of the finitely
many formulae of the former proof. Notice that every logical axiom becomes a logi-
cal axiom of the same type and that L -sentences ofT are not affected (since they do
not contain special constants). Furthermore, also Lc-sentences of Σ are not affected
since they do not contain the special constant cj (recall that the special constants
cj1 , . . . , cjk are pairwise distinct). Finally, each application of MODUS PONENS or
GENERALISATION becomes a new application of the same inference rule (notice
that we do not apply GENERALISATION to ν, since otherwise, we would have ap-
plied GENERALISATION to cj , but cj is a term-constant). Now, we construct a proof
of ∃vnσ̃(vn) → � fromT+Σ as follows:
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T+Σ ⊢ σ̃(ν) → � by assumption

T+Σ ⊢ ∀ν
(
σ̃(ν) → �

)
by GENERALISATION

T+Σ ⊢ ∀ν
(
σ̃(ν) → �

)
→

(
∃νσ̃(ν) → �

)
L13

T+Σ ⊢ ∃νσ̃(ν) → � by MODUS PONENS

T+Σ ⊢ ∃vnσ̃(vn) → � TAUTOLOGY ??

Therefore, we finally have ¬Con
(
T+Σ + ∃vnσ̃(vn)

)
. ⊣Claim

Let us now consider σi. Let m ≤ n be the largest natural number such that for
each l with 1 ≤ l ≤ m we have that “∀vn−l” appears in σi. For example if m = 0,
then for no n′ < n, En′ is the quantifier “∀”, and if m = n, then for no n′ < n, En′

is the quantifier “∃”. In general, σi is of the form

σi ≡ E0v0 · · ·︸ ︷︷ ︸
“∃” or “∀”

∃vn−m−1∀vn−m · · · ∀vn−1︸ ︷︷ ︸
only “∀”

∃vn σi,n(v0, . . . , vn) .

Consider now the formula

σ̃m :≡ σi,n−m−1(v0/t0, . . . , vn−m−1/tn−m−1) .

Then either σ̃m ∈ T (in casem = n), or “∃vn−m−1” appears in σi (in case m < n),
and therefore, we are in one of following two cases:

σ̃m ∈ T: First notice that in this case,

σ̃m ≡ ∀vn · · · ∀vn−1∃vnσi,n(v0, . . . , vn) .

Since σ̃m ∈ T and t0, . . . , tn−1 are closed terms, by L10 we get T ⊢ ∃vnσ̃(vn).
Hence, by the CLAIM, ¬Con(T + Σ). This shows that we do not need σik ,nk

[cjk ]
to derive a contradiction from

T+
{
σi1,n1

[cj1 ], . . . , σik,nk
[cjk ]

}
,

which is a contradiction to the minimality of the sum n1 + . . . nk + k.

“∃vn−m−1” appears in σi: Notice that since cj ≡ (i, t0, . . . , tn−1, n) witnesses σi,

tn−m−1 ≡ (i, t0, . . . , tn−m−2, n−m− 1)

witnesses σi, too. Similar as above, with L10 we get

T+ σi,n−m−1[tn−m−1] ⊢ ∃vnσ̃(vn) ,

and with the DEDUCTION THEOREM we obtain

T ⊢ σi,n−m−1[tn−m−1] → ∃vnσ̃(vn) .

This shows that if we derive a contradiction from
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T+Σ+ ∃vnσ̃(vn) ,

then we also derive a contradiction from

T+Σ + σi,n−m−1[tn−m−1] ,

which is again a contradiction to the minimality of the sum n1 + . . . nk + k.

Therefore, T +
{
σi1,n1

[cj1 ], . . . , σik,nk
[cjk ]

}
is consistent, and since the finitely

many Lc-sentences σi1,n1
[cj1 ], . . . , σik ,nk

[cjk ] were arbitrary, we obtain that Tc is
consistent, which completes the proof. ⊣

The Completeness Theorem for Countable Signatures

In this section we shall construct a model of the Lc-theory Tc, which is of course
also a model of the L -theory T + ¬σ0. However, since we extended the signature
L , we first have to extend the binary relation “=”, as well as relation symbols in
L , to the new closed Lc-terms.

LEMMA 5.2. The list Tc can be extended to a consistent list T̃ of Lc-sentence, such
that the new Lc-sentences are variable-free and for each variable-free Lc-senctence
σ we have

either σ ∈ T̃ or ¬σ ∈ T̃ .

Proof. Like in the proof of LINDENBAUM’S LEMMA 4.5, we go through the list of
all variable-free Lc-sentences and successively extend the list Tc to a maximally
consistent list T̃. ⊣

Now we are ready to construct the domain of a model of T̃, which shall be a list
of lists: For this, let

Λτ = [t0, t1, . . . , tn, . . .]

be the list of all term-constants (ordered with respect to their codes). We go through
the list Λτ and construct step by step a list of lists: First, we set A0 := [ ]. Now,
assume that An is already defined and consider the Lc-sentences

tn = t0, tn = t1, . . . tn = tn−1 .

If, for some m with 0 ≤ m < n, the sentence tn = tm belongs to T̃, then we
append tn to that list in An which contains tm; the resulting list is An+1. If none
of the sentences tn = tm (for 0 ≤ m < n) belongs to T̃ (e.g., if n = 0), then
An+1 := An+

[
[tn]

]
. Finally, letA =

[
[tn0

, . . .], [tn1
, . . .] . . .

]
be the resulting list.

Then, A is a finite or potentially infinite list of potentially infinite lists.
The lists in the list A are the objects of the domain of our model M � T̃. To

simplify the notation, for term-constants τ let τ̃ be the unique list of A which con-
tains τ .
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In order to get an Lc-structure M with domain A, we have to define a mapping
which assigns to each constant symbol c ∈ Lc an element cM ∈ A, to each n-ary
function symbol F ∈ L a function FM : An → A, and to each n-ary relation
symbol R ∈ L a set RM ⊆ An:

• If c ∈ Lc is a constant symbol of L or a special constant, then let

cM := c̃ .

• If F ∈ L is an n-ary function symbol and t̃1, . . . , t̃n are elements of A, then
let

FMt̃1 · · · t̃n := ˜Ft1 · · · tn .

• IfR ∈ L is an n-ary relation symbol and t̃1, . . . , t̃n are elements ofA, then we
define

〈t̃1, . . . , t̃n〉 ∈ RM :Î===Ï Rt1 · · · tn ∈ T̃ .

FACT 5.3. The definitions above, which rely on representatives of the lists in A, are
well-defined.

Proof. This follows easily by L14, L15, and L16, and the construction of T̃; the details
are left as an exercise to the reader. ⊣

THEOREM 5.4. The Lc-structure M is a model of T̃, and therefore also of the
L -theory T+ ¬σ0.

Proof. We have to show that for each Lc-sentence σ, if σ ∈ T̃ then M � σ. We
show slightly more, namely that for each Lc-sentence σ we have

T̃ ⊢ σ ===Ï M � σ , or equivalently M 2 σ ===Ï T̃ 0 σ .

First we consider the case when σ is variable-free: The proof is by induction on
the number of logical operators. By LEMMA 5.2 we know that for each variable-free
Lc-sentences σ we have either σ ∈ T̃ or ¬σ ∈ T̃. Hence, we must show that for
each variable-free Lc-sentences σ we have σ ∈ T̃ if and only if M � σ.

If σ is variable-free and does not contain logical operators, then σ is atomic. In
this case, we have either σ ≡ t1 = t2 (for some term-constants t1 and t1) or σ ≡
Rt1 · · · tn (for an n-ary relation symbolR ∈ L and term-constants t1, . . . , tn), and
by construction of M, in both cases we get σ ∈ T̃ if and only if M � σ.

Before we consider the case when σ is variable-free and contains logical oper-
ators, recall that for any Lc-sentence σ̃ with σ ⇔ σ̃, by the SOUNDNESS THE-
OREM 3.7 we get M � σ if and only if M � σ̃. So, by the 3-SYMBOLS THEO-
REM 1.2, we may assume that σ is either of the form ¬σ′ or of the form ∧σ1σ2.
Now, let σ be a non-atomic, variable-free Lc-sentence, and assume that for each
variable-free Lc-sentence σ′ which contains fewer logical operators than σ, we have
σ′ ∈ T̃ if and only if M � σ′. By our former assumption, we just have to consider
the following two cases:
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σ ≡ ¬σ′: Since σ′ has fewer logical operators than σ, we have σ′ ∈ T̃ if and only
if M � σ′. This shows that

¬σ′ /∈ T̃ Î===Ï M 2 ¬σ′ , or equivalently σ ∈ T̃ Î===Ï M � ¬σ .

σ ≡ ∧σ1σ2: Since each if σ1 and σ2 has fewer logical operators than σ̃, we have
σ1 ∈ T̃ if and only if M � σ1, and σ2 ∈ T̃ if and only if M � σ2. Hence, we obtain

∧σ1σ2 ∈ T̃ Î===Ï σ1 ∈ T̃ AND σ2 ∈ T̃ Î===Ï

M � σ1 AND M � σ2 Î===Ï M � ∧σ1σ2

which shows that σ ∈ T̃ Î===Ï M � σ.

We now consider the case when the Lc-sentence σ ∈ T̃ contains variables: The
proof is by induction on the number of different variables which appear in σ. If
σ ∈ T̃ is an Lc-sentence which contains variables, then, by the construction of Tc,
there is a σ̃ ∈ Tc in sPNF, say

σ̃ ≡ E0v0 · · · Envnσi,n(v0, . . . , vn) , where σi,n is quantifier free,

such that for some natural numbers i, k, n with k ≤ n and some term-constants
t0, . . . , tk−1 we have

σ ≡ Ekvk · · · Envnσi,n(v0/t0, . . . , vk−1/tk−1, vk, . . . , vn) .

Now, let σ an Lc-sentence of the above form and assume that for each Lc-
sentence σ′ which contains fewer variables than σ we have

T̃ ⊢ σ′ ===Ï M � σ′ , or equivalently M 2 σ′ ===Ï T̃ 0 σ′ .

We are in exactly one of the following two cases:

• If Ek is the quantifier “∃” and T̃ ⊢ σ, then σ ∈ Tc and for the special constant

tk ≡ (i, t0, . . . , tk−1, k)

and the Lc-sentence

σ′ ≡ Ek + 1vk+1 · · · Envnσi,n(v0/t0, . . . , vk/tk, vk+1, . . .) ,

we have σ′ ∈ Tc, and consequently σ′ ∈ T̃. Now, since σ′ has fewer variables
than σ, by our assumption we conclude that M � σ′, and therefore, by L11 and
the SOUNDNESS THEOREM 3.7, we obtain M � σ. Hence,

T̃ ⊢ σ ===Ï M � σ .

• If Ek is the quantifier “∀” and M 2 σ, then M � ¬σ. Now, for the Lc-sentence
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σ̃ ≡ ∃vkEk + 1vk+1 · · · Envn¬σi,n(v0/t0, . . . , vk−1/tk−1, vk, . . . , vn) ,

where for k < i ≤ n, the quantifier Ei is “∃” if Ei is “∀”, and vice versa, we
have σ̃ ⇔ ¬σ, and therefore M � σ̃. For the special constant

tk ≡ (i, t0, . . . , tk−1, k)

and the Lc-sentence

σ̄ ≡ Ek + 1vk+1 · · · Envn¬σi,n(v0/t0, . . . , vk/tk, vk+1, . . . , vn) ,

we obtain M � σ̄, i.e., M 2 ¬σ̄. Now, since ¬σ̄ has fewer variables than σ, by
our assumption we conclude that T̃ 0 ¬σ̄, i.e.,

T̃ 0 Ek + 1vk+1 · · · Envnσi,n(v0/t0, . . . , vk/tk, vk+1, . . . , vn) ,

and finally obtain T̃ 0 σ (notice that by L10, T̃ ⊢ σ implies T̃ ⊢ ¬σ̄). Hence,

M 2 σ ===Ï T̃ 0 σ ,
⊣

The following theorem just summarises what we have achieved so far:

GÖDEL’S COMPLETENESS THEOREM 5.5. If L is a countable signature and T

is a consistent set of L -sentences, then T has a model. Moreover, if T 0 σ0 (for
some L -sentence σ0), then T+ ¬σ0 has a model.

In our construction, it was essential that the signature L was countable, so that
the symbols in L could be encoded by finite strings. However, in the more formal
setting of axiomatic Set Theory, we can prove the COMPLETENESS THEOREM also
for arbitrarily large signatures (see Chapter ??).

Some Consequences and Equivalents

We conclude this chapter by discussing some consequences and equivalent formu-
lations of GÖDEL’S COMPLETENESS THEOREM 5.5 which follow directly or in
combination with the COMPACTNESS THEOREM 2.12.

Let L be a countable signature, T a set of L -sentences, and σ0 an L -sentence.

• If T 0 σ0, then there is an L -structure M such that M � T+ ¬σ0:

T 0 σ0 ===Ï E M
(
M � T+ ¬σ0

)

This is just a reformulation of GÖDEL’S COMPLETENESS THEOREM 5.5.
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• If T is consistent, then T has a model:

Con(T) ===Ï E M
(
M � T

)

This follows from the fact that Con(T) is equivalent to the existence of an L -
sentence σ0 such that T 0 σ0.

• If each model of T is also a model of σ0, then T ⊢ σ0:

AM
(
M � T ===Ï M � σ0

)
===Ï T ⊢ σ0

This follows by contraposition: If T 0 σ0, then, by GÖDEL’S COMPLETENESS

THEOREM 5.5, there is a model M � T+ ¬σ0.

• In combination with the COMPACTNESS THEOREM 2.12 we obtain the follow-
ing implication:

If every finite subset T′ of T has a model, then T has a model.

If every finite subset T′ of T has a model, then every finite subset T′ of T is con-
sistent, and therefore, by the COMPACTNESS THEOREM 2.12, T is consistent.
Thus, T has a model.

The most important consequence of the COMPACTNESS THEOREM 2.12 and the
SOUNDNESS THEOREM 3.7 is the following equivalence:

AM
(
M � T ===Ï M � σ0

)
︸ ︷︷ ︸

denoted T � σ0

Î===Ï T ⊢ σ0

This equivalence allows us to replace formal proofs with mathematical proofs: For
example, instead of proving formally the uniqueness of the neutral element in groups
from the axioms of Group Theory GT, we just show that in every model of GT (i.e.,
in every group), the neutral element is unique. So, instead of GT ⊢ σ0, we just show
GT � σ0.

As a last consequence we would like to mention the so-called Skolem’s Para-
dox, which is in fact just the countable version of the DOWNWARD LÖWENHEIM–
SKOLEM THEOREM ??.

THEOREM 5.6 (Skolem’s Paradox). If L is a countable signature and T is a con-
sistent set of L -sentences, then T has a countable model.

Proof. In the previous chapter, we began with a countable signature L and a consis-
tent set of L -sentences T, and at the end, we obtained a model of T whose domain
was a finite or potentially infinite list of lists. So, the model of T we constructed is
countable. ⊣
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NOTES

The COMPLETENESS THEOREM for countable signatures was first proved by Gödel [10, 11].
Later, a modified proof was given by Henkin, LeonHenkin [15] (see also [16]). The proof given
here is essentially Henkin’s proof, but in contrast to Henkin’s proof, our construction does not rely
on the assumption that an actually infinite set exists.

EXERCISES

5.0 Let L be a countable signature and let T be a consistent set of L -sentences. For each subset
Φ ⊆ T let MΦ be a model for Φ, let Σ :=

{
MΦ : Φ ⊆ T and Con(Φ)

}
, and for each

L -sentence ϕ ∈ T, let Xϕ := {M ∈ Σ : M � ϕ}.

(a) Show that the set {Xϕ : ϕ an L -sentence} is a basis for a topology on Σ.

(b) Show that for each ϕ ∈ T, Xϕ is closed.

(c) Show with the topological compactness theorem that each open covering of Σ contains a
finite sub-covering, i.e., the topological space Σ is compact.

5.1 Let DLO be the — assumingly consistent — theory of dense linearly ordered sets without end-
points (see EXERCISE 3.5).

(a) Show that the theory DLO is complete, (i.e., for all LDLO-sentences σ we have either
DLO ⊢ σ or DLO ⊢ ¬σ).

Hint : Assume towards a contradiction that there exists an LDLO-sentence σ, such that
DLO 0 ¬σ and DLO 0 σ. Then DLO + σ and DLO + ¬σ are both consistent, and
therefore, by SKOLEM’S PARADOX 5.6, there are countable models M and N such that
M � DLO + σ and N � DLO + ¬σ, which contradicts the fact that any two countable
models of DLO are isomorphic (see EXERCISE 3.5).

(b) Show that the converse of EXERCISE 3.4 does not hold.

Hint : Let Q be the set of rational numbers, let R be the set of real numbers, and let
“<” be the natural ordering on Q and R, respectively. Then the two non-isomorphic
LDLO-structures (Q, <) and (R, <) are both models of DLO.

5.2 Let L be a countable signature and let T be a consistent set of L -sentences sucht that T has
arbitrarily large finite models.

(a) Show that T has an infinite model.

Hint : Use the COMPACTNESS THEOREM 2.12.

(b) Show that the notion of F I N I T E N E S S cannot be formalised in First-Order Logic.


