Chapter 6
Language Extensions by Definitions

Sometimes it is convenient to extend a given signature . by adding new non-logical
symbols which have to be defined properly within the language . or with respect
to a given .Z-theory T. Let the extended signature be .Z* and let the corresponding
extended .£*-theory be T*. Since T is an .Z-theory, we can just prove .£-sentences
from T but no .£*-sentences which contain symbols from .Z* \ .Z. However, this
does not imply that we can prove substantially more from T* than from T: It might
be that for each .Z*-sentence o* which is provable from T* there is an .Z-sentence
o, such that T* + o™ < 6 and T &; which is indeed the case as we shall see
below.

Defining new Relation Symbols

Let us first consider an example from Peano Arithmetic: Extend the signature Zpa
of Peano Arithmetic by adding the binary relation symbol “<” and denote the
extended signature by Z3, = Zpa U {<}. In order to define the binary rela-
tion “<”, we give an Zpa-formula 1) with two free variables (e.g., = and y)
and say that the relation < y holds if and only if 1 (z,y) holds. In our case,
Ve (x,y) = Jz(x + sz = y). So, we would define “<” by stipulating:

r<y:<= Jz(x+sz=1y)

The problem is now to find for each £, -sentence o* an Zpa-sentence ¢ and an
extension PA* of PA, such that PA* - o* < & and whenever PA* o*, then
PA&.

The following result provides an algorithm which transforms sentences ¢* in the
extended language into equivalent sentences ¢ in the original language:

THEOREM 6.1. Let .Z be a signature, let R be an n-ary relation symbol which
does not belong to ., and let .£* := . U {R}. Furthermore, let Yg(vy,...,vy)
be an £ -formula with free(yg) = {v1,...,v,} and let

69

70 6 Language Extensions by Definitions
dp = Vo -- -Vv”(va cevp > UR(ve, ,vn)) .

Finally, let T be a consistent .£-theory and let T* := T + Jg.

Then there exists an effective algorithm which transforms each £*-formula ¢*
into an £ -formula @, such that:

(a) If R does not appear in ©*, then p = p*.
(b) ~p=-¢ (for p* =)

(© Apip2 = NGy (for 9" = Apips)
) =g (forg* = vy

e TFFp* ¢

) T @* then T - Q.

Proof. Let ¢* be an arbitrary .Z*-formula. In ¢* we replace each occurrence of
R(v1/71,...,0n/Tn) (Where 71, ..., T, are Z-terms) with a particular .#*-formula
Yp(vi/T1,. .., v, /Ty) such that

Yr(V1s. s vn) & YR(V1,. .., vp)
and none of the bound variables in 9, is among v+, ..., v, or appears in one of
the Z-terms 74, ..., 7,. In fact, to obtain ¢}; we just have to rename the bound

variables in ¢ g. For the resulting .Z-formula ¢, (a)—(d) are obviously satisfied.

We prove (e) and (f) on the semantic level: For this, we first show how we can
extend a model M E T to a model M* E T*. Let M be an .Z-structure with
domain A such that for each assignment j we have (M, j) E T (i.e, M E T). We
extend M to an .Z*-structure M* with the same domain A by stipulating M*| ¢ :=
M, and for any aq, ..., a, € A:

RM*(al,...,an) D= (M,]%%) EvYr(vi,...,vn).

Then M* is an .Z*-structure and for every assignment j we have
(M, j)ET and (M",j)F Ur,
and therefore we obtain
M*ET".

To prove (e), by the GODEL-HENKIN COMPLETENESS THEOREM it is enough
to show that ¢* <+ ¢ holds in every model M* of T*. So, let M* be an arbitrary
model of T*. In particular, M* F Jp. If ©* does not contain R, then we are done.
Otherwise, if ¢* is atomic, then ¢* = Rty ---t, for some Z-terms t1,...,t,.
Since M* F ¥, we get

M*E Rty -ty <> PRt .. tn).

Defining new Function Symbols 71

This shows M* F ¢* < ¢ for atomic formulas and by (b)—(d) we get the result for
arbitrary formulas.
For (f), we first extend an arbitrary model M F T to a model M* F T*. By (e),
for each .Z*-formula ¢* we have
M*E p* <=—»> M*Eg.

Now, if T* F ¢*, then M* E ¢*, which implies that M* F ¢. Since ¢ is an
Z-formula, we get M F @, and since the model M of T was arbitrary, by the
GODEL-HENKIN COMPLETENESS THEOREM we get T - ¢. —

Defining new Function Symbols

The situation is slightly more subtle if we define new functions. However, there
is also an algorithm which transforms sentences ¢* in the extended language into
equivalent sentences ¢ in the original language:

THEOREM 6.2. Let .Z be a signature, let f be an n-ary function symbol which does
not belong to .2, let £* := £ U{f} and let T be a consistent .Z-theory. Fur-
thermore, let V¢ (v1,. .., vy, y) be an £-formula with free(v¢) = {v1,...,v,, y}
such that

TE VYo - -Vo,lyvs(v,...,00,Y) .
Finally, let
19)" = vlul o 'vvan(fvl T Up =Y & ¢f(U1a R 7Unay))
andlet T* :=T + 5.

Then there exists an effective algorithm which transforms each .Z*-formula ¢*
into an £ -formula @, such that:

(a) If f does not appear in ©*, then ¢ = p*.

d) p=-¢ (forp* =)

(© Apips = AG1$y (for " = Aprps)

) Jvp =g (forp* = Ivp)

e T Fe" =0

(f) IfF T* - @*, then T = .

Proof. By an elementary f-term we mean an .£*-term of the form ft; - - - ¢,,, where

ty,...,t, are Z*-terms which do not contain the symbol f. We first prove the theo-
rem for atomic £*-formulae ¢* (i.e., for formulae which are free of quantifiers and

72 6 Language Extensions by Definitions

logical operators). Let ¢*(f |w) be the result of replacing the leftmost occurence of
an elementary f-term in ¢* with a new symbol w, which stands for a new variable.
Then, the formula

is called the f-transform of @*. If ¢* does not contain f, then let * be its own
f-transform. Before we procceed, let us prove the following

CLAIM. T* b 3w (vy(ts, ... th,w) A@*(flw)) <> ¢*

Proof of Claim. Let M* be a model of T* with domain A, let j be an arbitrary
assignment which assigns to w an element of A, and let M; = (M*, j) be the
corresponding .Z*-interpretation.

Assume that
M;k F 3w(¢f(t17 oty w) A @*(f‘w)) .

Then, since T* F Voq --- Vo, 3lys(vi,. .., v,,y), there exists a unique b € A
such that

which is the same as saying that

*

Now, since M F 1y, b is the same object as s tllvlj -ty . This implies
M E fty oty = b,

and shows that
\Y o

For the reverse implication assume that M’ F ¢* and let b be the same object as
fthlle 425 Then M F ¢*(f|b) and, since M} F oy,

M} E st ... tn,w) & ft1t = w.
In particular we get

M;L = ¢f(t1,...,tn,b) A4 ft1~'~tn = b,

*

and because fMj tllvlj i tnMj is the same object as b, we get MIS F ¢ (t1,...,t,,b),
and since we already know M = *(f|b), we have

So, there exists a b in A, such that

Defining new Constant Symbols 73
M;kz% h¢f(t1,,t7L,W)A¢*(f‘w),
which is the same as saying that

M E Jw (gt ot w) A 9™ (flw))

Since the model M* of T* was arbitrary, by the GODEL-HENKIN COMPLETENESS
THEOREM we get T* |- Ew(d}f(tl, ety w) A @*(f\w)) — p*. A Glaim

Since the f-transform 3w (¢¢(t1, ..., tn, w) A @*(f|w)) of ¢* contains one less
f than ¢*, if we take successive f-transforms (introducing always new variables),
eventually we obtain an an atomic .Z-formula ¢ (i.e., a formula which does not
contain f) such that T* F ¢* <> @. We call ¢ the f-less transform of p*.

In order to get f-less transforms of non-atomic .Z*-formulae ¢*, we just extend
the definition by letting = be —¢, WQ be A@1¢2, and ETI):D be Jvp; proper-
ties (a)—(e) are then obvious.

It remains to prove property (f). Let M be an abitrary model of T with domain
A. Then, since T F Yy - - Vo, 3ly s (v1,...,vp,y), forall ay, ..., a, in A there
exists a unique b in A such that

MO E pr(al, ceeyQp, b)
and we define the n-ary function f* on A by stipulating:
far,...,an) =0

With this definition, we can extend the .Z-structure M to an .Z*-structure Mg,
where we still have M* E T. With the definition of f* we get in addition M F ¥y,
which implies Mj; E T*. If we have T* - ¢, for some .Z’*-formula ¢*, then there
exists an .Z-formula @, such that T* F ¢* < @, i.e., T* - @. Since T* - ¢ implies
Mg E ¢, and because ¢ is an .Z-formula, we have My = ¢. Now, since the model
My of T was arbitrary, by the GODEL-HENKIN COMPLETENESS THEOREM we
get T - . =

Defining new Constant Symbols

Constant symbols can be handled like 0-are function symbols:

FACT 6.3. Let £ be a signature, let c be constant symbol which does not belong to
L, let £* .= £ U{c} and let T be a consistent £ -theory. Furthermore, let 1. (y)
be an £ -formula with free(1.) = {y} such that T - 3y ¢.(y) . Finally, let

Je =Vy(e=y < ve(y))

andlet T* :=T 4+ 9.

74 6 Language Extensions by Definitions

Then there exists an effective algorithm which transforms each .£*-formula ¢*
into an £ -formula @, such that:

(a) If f does not appear in ©*, then ¢ = @*.
(b) ~p=-¢ (for " = —p)

© Apipa = Ap1@2 (for p* = Ap1p2)
) =g (forg™ = vy

) T"Fp* < ¢

() FT*F @* then T+ &.

Proof. The algorithm is constructed in exactly the same way as in the proof of
THEOREM 6.2. B

NOTES

In this chapter, we mainly followed Mendelson [25, Sec. 2.9].

EXERCISES

6.0 Show that in a signature .Z, constant symbols and functions symbols are dispensable (i.e., as
non-logical symbols we need only relation symbols).
Hint: Notice that n-ary function symbols can be replaced with n + 1-ary relation symbols,
and that constant symbols can be replaced with unary relation symbols.

