Chapter 6 Language Extensions by Definitions

Sometimes it is convenient to extend a given signature \mathscr{L} by adding new non-logical symbols which have to be defined properly within the language \mathscr{L} or with respect to a given \mathscr{L} -theory T. Let the extended signature be \mathscr{L}^* and let the corresponding extended \mathscr{L}^* -theory be T^{*}. Since T is an \mathscr{L} -theory, we can just prove \mathscr{L} -sentences from T but no \mathscr{L}^* -sentences which contain symbols from $\mathscr{L}^* \setminus \mathscr{L}$. However, this does not imply that we can prove substantially more from T^{*} than from T: It might be that for each \mathscr{L}^* -sentence σ^* which is provable from T^{*} there is an \mathscr{L} -sentence $\tilde{\sigma}$, such that $T^* \vdash \sigma^* \leftrightarrow \tilde{\sigma}$ and $T \vdash \tilde{\sigma}$; which is indeed the case as we shall see below.

Defining new Relation Symbols

Let us first consider an example from Peano Arithmetic: Extend the signature \mathscr{L}_{PA} of Peano Arithmetic by adding the binary relation symbol "<" and denote the extended signature by $\mathscr{L}_{PA}^* := \mathscr{L}_{PA} \cup \{<\}$. In order to define the binary relation "<", we give an \mathscr{L}_{PA} -formula $\psi_{<}$ with two free variables (e.g., x and y) and say that the relation x < y holds if and only if $\psi_{<}(x, y)$ holds. In our case, $\psi_{<}(x, y) \equiv \exists z(x + sz = y)$. So, we would define "<" by stipulating:

$$x < y :\iff \exists z(x + \mathbf{s}z = y)$$

The problem is now to find for each \mathscr{L}_{PA}^* -sentence σ^* an \mathscr{L}_{PA} -sentence $\tilde{\sigma}$ and an extension PA^{*} of PA, such that PA^{*} $\vdash \sigma^* \leftrightarrow \tilde{\sigma}$ and whenever PA^{*} $\vdash \sigma^*$, then PA $\vdash \tilde{\sigma}$.

The following result provides an algorithm which transforms sentences σ^* in the extended language into equivalent sentences $\tilde{\sigma}$ in the original language:

THEOREM 6.1. Let \mathscr{L} be a signature, let R be an n-ary relation symbol which does not belong to \mathscr{L} , and let $\mathscr{L}^* := \mathscr{L} \cup \{R\}$. Furthermore, let $\psi_R(v_1, \ldots, v_n)$ be an \mathscr{L} -formula with free $(\psi_R) = \{v_1, \ldots, v_n\}$ and let

6 Language Extensions by Definitions

$$\vartheta_R \equiv \forall v_1 \cdots \forall v_n (Rv_1 \cdots v_n \leftrightarrow \psi_R(v_1, \dots, v_n)).$$

Finally, let T be a consistent \mathscr{L} -theory and let $\mathsf{T}^* := \mathsf{T} + \vartheta_R$.

Then there exists an effective algorithm which transforms each \mathscr{L}^* -formula φ^* into an \mathscr{L} -formula $\tilde{\varphi}$, such that:

- (a) If R does not appear in φ^* , then $\tilde{\varphi} \equiv \varphi^*$.
- (b) $\widetilde{\neg \varphi} \equiv \neg \tilde{\varphi}$ (for $\varphi^* \equiv \neg \varphi$)
- (c) $\widetilde{\wedge \varphi_1 \varphi_2} \equiv \wedge \tilde{\varphi}_1 \tilde{\varphi}_2$ (for $\varphi^* \equiv \wedge \varphi_1 \varphi_2$)
- (d) $\widetilde{\exists \nu \varphi} \equiv \exists \nu \tilde{\varphi} \quad (\text{for } \varphi^* \equiv \exists \nu \varphi)$
- (e) $\mathsf{T}^* \vdash \varphi^* \leftrightarrow \tilde{\varphi}$
- (f) If $\mathsf{T}^* \vdash \varphi^*$, then $\mathsf{T} \vdash \tilde{\varphi}$.

Proof. Let φ^* be an arbitrary \mathscr{L}^* -formula. In φ^* we replace each occurrence of $R(v_1/\tau_1, \ldots, v_n/\tau_n)$ (where τ_1, \ldots, τ_n are \mathscr{L} -terms) with a particular \mathscr{L}^* -formula $\psi'_R(v_1/\tau_1, \ldots, v_n/\tau_n)$ such that

$$\psi'_R(v_1,\ldots,v_n) \Leftrightarrow \psi_R(v_1,\ldots,v_n)$$

and none of the bound variables in ψ'_R is among v_1, \ldots, v_n or appears in one of the \mathscr{L} -terms τ_1, \ldots, τ_n . In fact, to obtain ψ'_R we just have to rename the bound variables in ψ_R . For the resulting \mathscr{L} -formula $\tilde{\varphi}$, (a)–(d) are obviously satisfied.

We prove (e) and (f) on the semantic level: For this, we first show how we can extend a model $\mathbf{M} \models \mathsf{T}$ to a model $\mathbf{M}^* \models \mathsf{T}^*$. Let \mathbf{M} be an \mathscr{L} -structure with domain A such that for each assignment j we have $(\mathbf{M}, j) \models \mathsf{T}$ (*i.e.*, $\mathbf{M} \models \mathsf{T}$). We extend \mathbf{M} to an \mathscr{L}^* -structure \mathbf{M}^* with the same domain A by stipulating $\mathbf{M}^*|_{\mathscr{L}} := \mathbf{M}$, and for any $a_1, \ldots, a_n \in A$:

$$R^{\mathbf{M}^*}(a_1,\ldots,a_n) :\iff (\mathbf{M}, j\frac{a_1}{v_1}\cdots\frac{a_n}{v_n}) \vDash \psi_R(v_1,\ldots,v_n).$$

Then M^* is an \mathcal{L}^* -structure and for every assignment j we have

$$(\mathbf{M}^*, j) \vDash \mathsf{T} \quad \text{and} \quad (\mathbf{M}^*, j) \vDash \vartheta_R,$$

and therefore we obtain

$$\mathbf{M}^* \models \mathsf{T}^*$$
.

To prove (e), by the GÖDEL-HENKIN COMPLETENESS THEOREM it is enough to show that $\varphi^* \leftrightarrow \tilde{\varphi}$ holds in every model \mathbf{M}^* of T^* . So, let \mathbf{M}^* be an arbitrary model of T^* . In particular, $\mathbf{M}^* \models \vartheta_R$. If φ^* does not contain R, then we are done. Otherwise, if φ^* is atomic, then $\varphi^* \equiv Rt_1 \cdots t_n$ for some \mathscr{L} -terms t_1, \ldots, t_n . Since $\mathbf{M}^* \models \vartheta_R$, we get

$$\mathbf{M}^* \vDash Rt_1 \cdots t_n \leftrightarrow \psi'_R(t_1, \ldots, t_n).$$

70

Defining new Function Symbols

This shows $\mathbf{M}^* \models \varphi^* \leftrightarrow \tilde{\varphi}$ for atomic formulas and by (b)–(d) we get the result for arbitrary formulas.

For (f), we first extend an arbitrary model $\mathbf{M} \models \mathsf{T}$ to a model $\mathbf{M}^* \models \mathsf{T}^*$. By (e), for each \mathscr{L}^* -formula φ^* we have

$$\mathbf{M}^* \models \varphi^* \quad \Longleftrightarrow \quad \mathbf{M}^* \models \tilde{\varphi}$$

Now, if $\mathsf{T}^* \vdash \varphi^*$, then $\mathbf{M}^* \models \varphi^*$, which implies that $\mathbf{M}^* \models \tilde{\varphi}$. Since $\tilde{\varphi}$ is an \mathscr{L} -formula, we get $\mathbf{M} \models \tilde{\varphi}$, and since the model \mathbf{M} of T was arbitrary, by the GÖDEL-HENKIN COMPLETENESS THEOREM we get $\mathsf{T} \vdash \tilde{\varphi}$.

Defining new Function Symbols

The situation is slightly more subtle if we define new functions. However, there is also an algorithm which transforms sentences σ^* in the extended language into equivalent sentences $\tilde{\sigma}$ in the original language:

THEOREM 6.2. Let \mathscr{L} be a signature, let f be an n-ary function symbol which does not belong to \mathscr{L} , let $\mathscr{L}^* := \mathscr{L} \cup \{f\}$ and let T be a consistent \mathscr{L} -theory. Furthermore, let $\psi_f(v_1, \ldots, v_n, y)$ be an \mathscr{L} -formula with $\operatorname{free}(\psi_f) = \{v_1, \ldots, v_n, y\}$ such that

$$\mathsf{T} \vdash \forall v_1 \cdots \forall v_n \exists ! y \psi_f(v_1, \ldots, v_n, y).$$

Finally, let

$$\vartheta_f \equiv \forall v_1 \cdots \forall v_n \forall y (fv_1 \cdots v_n = y \leftrightarrow \psi_f(v_1, \dots, v_n, y))$$

and let $T^* := T + \vartheta_f$.

Then there exists an effective algorithm which transforms each \mathscr{L}^* -formula φ^* into an \mathscr{L} -formula $\tilde{\varphi}$, such that:

- (a) If f does not appear in φ^* , then $\tilde{\varphi} \equiv \varphi^*$.
- (b) $\widetilde{\neg \varphi} \equiv \neg \tilde{\varphi}$ (for $\varphi^* \equiv \neg \varphi$)
- (c) $\widetilde{\wedge \varphi_1 \varphi_2} \equiv \wedge \tilde{\varphi}_1 \tilde{\varphi}_2$ (for $\varphi^* \equiv \wedge \varphi_1 \varphi_2$)
- (d) $\widetilde{\exists \nu \varphi} \equiv \exists \nu \tilde{\varphi} \quad (\text{for } \varphi^* \equiv \exists \nu \varphi)$
- (e) $\mathsf{T}^* \vdash \varphi^* \leftrightarrow \tilde{\varphi}$
- (f) If $\mathsf{T}^* \vdash \varphi^*$, then $\mathsf{T} \vdash \tilde{\varphi}$.

Proof. By an *elementary* f-term we mean an \mathscr{L}^* -term of the form $ft_1 \cdots t_n$, where t_1, \ldots, t_n are \mathscr{L}^* -terms which do not contain the symbol f. We first prove the theorem for atomic \mathscr{L}^* -formulae φ^* (*i.e.*, for formulae which are free of quantifiers and

logical operators). Let $\varphi^*(f|w)$ be the result of replacing the leftmost occurence of an elementary *f*-term in φ^* with a new symbol *w*, which stands for a new variable. Then, the formula

$$\exists w \big(\psi_f(t_1, \dots, t_n, w) \land \varphi^*(f | w) \big)$$

is called the *f*-transform of φ^* . If φ^* does not contain *f*, then let φ^* be its own *f*-transform. Before we proceed, let us prove the following

CLAIM.
$$\mathsf{T}^* \vdash \exists w \big(\psi_f(t_1, \dots, t_n, w) \land \varphi^*(f | w) \big) \leftrightarrow \varphi^*$$

Proof of Claim. Let \mathbf{M}^* be a model of T^* with domain A, let j be an arbitrary assignment which assigns to w an element of A, and let $\mathbf{M}_j^* := (\mathbf{M}^*, j)$ be the corresponding \mathscr{L}^* -interpretation.

Assume that

$$\mathbf{M}_{j}^{*} \vDash \exists w \big(\psi_{f}(t_{1}, \dots, t_{n}, w) \land \varphi^{*}(f | w) \big) .$$

Then, since $\mathsf{T}^* \vdash \forall v_1 \cdots \forall v_n \exists ! y \psi_f(v_1, \ldots, v_n, y)$, there exists a unique $b \in A$ such that

$$\mathbf{M}_{j\frac{b}{w}}^* \vDash \psi_f(t_1, \dots, t_n, w) \land \varphi^*(f | w),$$

which is the same as saying that

$$\mathbf{M}_{i}^{*} \vDash \psi_{f}(t_{1}, \ldots, t_{n}, b) \land \varphi^{*}(f | b)$$

Now, since $\mathbf{M}_j^* \models \vartheta_f$, b is the same object as $f^{\mathbf{M}_j^*} t_1^{\mathbf{M}_j^*} \cdots t_n^{\mathbf{M}_j^*}$. This implies

$$\mathbf{M}_j^* \vDash f t_1 \cdots t_n = b \,,$$

and shows that

$$\mathbf{M}_{j}^{*} \models \varphi^{*}$$

For the reverse implication assume that $\mathbf{M}_{j}^{*} \models \varphi^{*}$ and let b be the same object as $f^{\mathbf{M}_{j}^{*}} t_{1}^{\mathbf{M}_{j}^{*}} \cdots t_{n}^{\mathbf{M}_{j}^{*}}$. Then $\mathbf{M}_{j}^{*} \models \varphi^{*}(f|b)$ and, since $\mathbf{M}_{j}^{*} \models \vartheta_{f}$,

$$\mathbf{M}_{i}^{*} \vDash \psi_{f}(t_{1}, \ldots, t_{n}, w) \leftrightarrow ft_{1} \cdots t_{n} = w.$$

In particular we get

$$\mathbf{M}_{j\underline{b}}^* \vDash \psi_f(t_1, \dots, t_n, b) \leftrightarrow ft_1 \cdots t_n = b,$$

and because $f^{\mathbf{M}_j^*} t_1^{\mathbf{M}_j^*} \cdots t_n^{\mathbf{M}_j^*}$ is the same object as b, we get $\mathbf{M}_j^* \models \psi_f(t_1, \ldots, t_n, b)$, and since we already know $\mathbf{M}_j^* \models \varphi^*(f|b)$, we have

$$\mathbf{M}_{j}^{*} \vDash \psi_{f}(t_{1}, \ldots, t_{n}, b) \land \varphi^{*}(f | b).$$

So, there exists a b in A, such that

72

Defining new Constant Symbols

$$\mathbf{M}_{\underline{i}\,\underline{b}}^* \vDash \psi_f(t_1,\ldots,t_n,w) \land \varphi^*(f|w)\,,$$

which is the same as saying that

$$\mathbf{M}_{i}^{*} \vDash \exists w \big(\psi_{f}(t_{1}, \ldots, t_{n}, w) \land \varphi^{*}(f | w) \big) \,.$$

Since the model \mathbf{M}^* of T^* was arbitrary, by the GÖDEL-HENKIN COMPLETENESS THEOREM we get $\mathsf{T}^* \vdash \exists w (\psi_f(t_1, \ldots, t_n, w) \land \varphi^*(f|w)) \leftrightarrow \varphi^*$. \neg_{Claim}

Since the f-transform $\exists w (\psi_f(t_1, \ldots, t_n, w) \land \varphi^*(f|w))$ of φ^* contains one less f than φ^* , if we take successive f-transforms (introducing always new variables), eventually we obtain an an atomic \mathscr{L} -formula $\tilde{\varphi}$ (*i.e.*, a formula which does not contain f) such that $\mathsf{T}^* \vdash \varphi^* \leftrightarrow \tilde{\varphi}$. We call $\tilde{\varphi}$ the f-less transform of φ^* .

In order to get *f*-less transforms of non-atomic \mathscr{L}^* -formulae φ^* , we just extend the definition by letting $\neg \varphi$ be $\neg \varphi$, $\land \varphi_1 \varphi_2$ be $\land \varphi_1 \varphi_2$, and $\exists \nu \varphi$ be $\exists \nu \varphi$; properties (a)–(e) are then obvious.

It remains to prove property (f). Let \mathbf{M}_0 be an abitrary model of T with domain A. Then, since $\mathsf{T} \vdash \forall v_1 \cdots \forall v_n \exists ! y \psi_f(v_1, \ldots, v_n, y)$, for all a_1, \ldots, a_n in A there exists a unique b in A such that

$$\mathbf{M}_0 \vDash \psi_f(a_1, \dots, a_n, b)$$

and we define the *n*-ary function f^* on A by stipulating:

$$f^*(a_1,\ldots,a_n):=b$$

With this definition, we can extend the \mathscr{L} -structure \mathbf{M}_0 to an \mathscr{L}^* -structure \mathbf{M}_0^* , where we still have $\mathbf{M}^* \models \mathsf{T}$. With the definition of f^* we get in addition $\mathbf{M}_0^* \models \vartheta_f$, which implies $\mathbf{M}_0^* \models \mathsf{T}^*$. If we have $\mathsf{T}^* \vdash \varphi^*$, for some \mathscr{L}^* -formula φ^* , then there exists an \mathscr{L} -formula $\tilde{\varphi}$, such that $\mathsf{T}^* \vdash \varphi^* \leftrightarrow \tilde{\varphi}$, *i.e.*, $\mathsf{T}^* \vdash \tilde{\varphi}$. Since $\mathsf{T}^* \vdash \tilde{\varphi}$ implies $\mathbf{M}_0^* \models \tilde{\varphi}$, and because $\tilde{\varphi}$ is an \mathscr{L} -formula, we have $\mathbf{M}_0 \models \tilde{\varphi}$. Now, since the model \mathbf{M}_0 of T was arbitrary, by the GÖDEL-HENKIN COMPLETENESS THEOREM we get $\mathsf{T} \vdash \tilde{\varphi}$.

Defining new Constant Symbols

Constant symbols can be handled like 0-are function symbols:

FACT 6.3. Let \mathscr{L} be a signature, let c be constant symbol which does not belong to \mathscr{L} , let $\mathscr{L}^* := \mathscr{L} \cup \{c\}$ and let T be a consistent \mathscr{L} -theory. Furthermore, let $\psi_c(y)$ be an \mathscr{L} -formula with free $(\psi_c) = \{y\}$ such that $\mathsf{T} \vdash \exists ! y \psi_c(y)$. Finally, let

$$\vartheta_c \equiv \forall y (c = y \leftrightarrow \psi_c(y))$$

and let $T^* := T + \vartheta_c$.

Then there exists an effective algorithm which transforms each \mathscr{L}^* -formula φ^* into an \mathscr{L} -formula $\tilde{\varphi}$, such that:

- (a) If f does not appear in φ^* , then $\tilde{\varphi} \equiv \varphi^*$.
- (b) $\widetilde{\neg \varphi} \equiv \neg \tilde{\varphi}$ (for $\varphi^* \equiv \neg \varphi$)
- (c) $\widetilde{\wedge \varphi_1 \varphi_2} \equiv \wedge \tilde{\varphi}_1 \tilde{\varphi}_2$ (for $\varphi^* \equiv \wedge \varphi_1 \varphi_2$)
- (d) $\widetilde{\exists \nu \varphi} \equiv \exists \nu \tilde{\varphi}$ (for $\varphi^* \equiv \exists \nu \varphi$)
- (e) $\mathsf{T}^* \vdash \varphi^* \leftrightarrow \tilde{\varphi}$
- (f) If $\mathsf{T}^* \vdash \varphi^*$, then $\mathsf{T} \vdash \tilde{\varphi}$.

Proof. The algorithm is constructed in exactly the same way as in the proof of THEOREM 6.2. \dashv

NOTES

In this chapter, we mainly followed Mendelson [25, Sec. 2.9].

EXERCISES

6.0 Show that in a signature \mathcal{L} , constant symbols and functions symbols are dispensable (*i.e.*, as non-logical symbols we need only relation symbols).

Hint: Notice that *n*-ary function symbols can be replaced with n + 1-ary relation symbols, and that constant symbols can be replaced with unary relation symbols.

74