
Chapter 6
Language Extensions by Definitions

Sometimes it is convenient to extend a given signature L by adding new non-logical
symbols which have to be defined properly within the language L or with respect
to a given L -theory T. Let the extended signature be L ∗ and let the corresponding
extended L ∗-theory be T∗. Since T is an L -theory, we can just prove L -sentences
from T but no L ∗-sentences which contain symbols from L ∗ \L . However, this
does not imply that we can prove substantially more from T∗ than from T: It might
be that for each L ∗-sentence σ∗ which is provable from T∗ there is an L -sentence
σ̃, such that T∗ ` σ∗ ↔ σ̃ and T ` σ̃; which is indeed the case as we shall see
below.

Defining new Relation Symbols

Let us first consider an example from Peano Arithmetic: Extend the signature LPA

of Peano Arithmetic by adding the binary relation symbol “<” and denote the
extended signature by L ∗PA := LPA ∪ {<}. In order to define the binary rela-
tion “<”, we give an LPA-formula ψ< with two free variables (e.g., x and y)
and say that the relation x < y holds if and only if ψ<(x, y) holds. In our case,
ψ<(x, y) ≡ ∃z(x+ sz = y). So, we would define “<” by stipulating:

x < y :⇐⇒ ∃z(x+ sz = y)

The problem is now to find for each L ∗PA-sentence σ∗ an LPA-sentence σ̃ and an
extension PA∗ of PA, such that PA∗ ` σ∗ ↔ σ̃ and whenever PA∗ ` σ∗, then
PA ` σ̃.

The following result provides an algorithm which transforms sentences σ∗ in the
extended language into equivalent sentences σ̃ in the original language:

THEOREM 6.1. Let L be a signature, let R be an n-ary relation symbol which
does not belong to L , and let L ∗ := L ∪ {R}. Furthermore, let ψR(v1, . . . , vn)
be an L -formula with free(ψR) = {v1, . . . , vn} and let
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70 6 Language Extensions by Definitions

ϑR ≡ ∀v1 · · · ∀vn
(
Rv1 · · · vn ↔ ψR(v1, . . . , vn)

)
.

Finally, let T be a consistent L -theory and let T∗ := T + ϑR.
Then there exists an effective algorithm which transforms each L ∗-formula ϕ∗

into an L -formula ϕ̃, such that:

(a) If R does not appear in ϕ∗, then ϕ̃ ≡ ϕ∗.

(b) ¬̃ϕ ≡ ¬ϕ̃ (for ϕ∗ ≡ ¬ϕ)

(c) ∧̃ϕ1ϕ2 ≡ ∧ϕ̃1ϕ̃2 (for ϕ∗ ≡ ∧ϕ1ϕ2)

(d) ∃̃νϕ ≡ ∃νϕ̃ (for ϕ∗ ≡ ∃νϕ)

(e) T∗ ` ϕ∗ ↔ ϕ̃

(f) If T∗ ` ϕ∗, then T ` ϕ̃.

Proof. Let ϕ∗ be an arbitrary L ∗-formula. In ϕ∗ we replace each occurrence of
R(v1/τ1, . . . , vn/τn) (where τ1, . . . , τn are L -terms) with a particular L ∗-formula
ψ′R(v1/τ1, . . . , vn/τn) such that

ψ′R(v1, . . . , vn)⇔ ψR(v1, . . . , vn)

and none of the bound variables in ψ′R is among v1, . . . , vn or appears in one of
the L -terms τ1, . . . , τn. In fact, to obtain ψ′R we just have to rename the bound
variables in ψR. For the resulting L -formula ϕ̃, (a)–(d) are obviously satisfied.

We prove (e) and (f) on the semantic level: For this, we first show how we can
extend a model M � T to a model M∗ � T∗. Let M be an L -structure with
domain A such that for each assignment j we have (M, j) � T (i.e., M � T). We
extend M to an L ∗-structure M∗ with the same domainA by stipulating M∗|L :=
M, and for any a1, . . . , an ∈ A:

RM∗(a1, . . . , an) :⇐⇒
(
M, j a1v1 · · ·

an
vn

)
� ψR(v1, . . . , vn) .

Then M∗ is an L ∗-structure and for every assignment j we have

(M∗, j) � T and (M∗, j) � ϑR ,

and therefore we obtain
M∗ � T∗ .

To prove (e), by the GÖDEL-HENKIN COMPLETENESS THEOREM it is enough
to show that ϕ∗ ↔ ϕ̃ holds in every model M∗ of T∗. So, let M∗ be an arbitrary
model of T∗. In particular, M∗ � ϑR. If ϕ∗ does not contain R, then we are done.
Otherwise, if ϕ∗ is atomic, then ϕ∗ ≡ Rt1 · · · tn for some L -terms t1, . . . , tn.
Since M∗ � ϑR, we get

M∗ � Rt1 · · · tn ↔ ψ′R(t1, . . . , tn) .
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This shows M∗ � ϕ∗ ↔ ϕ̃ for atomic formulas and by (b)–(d) we get the result for
arbitrary formulas.

For (f), we first extend an arbitrary model M � T to a model M∗ � T∗. By (e),
for each L ∗-formula ϕ∗ we have

M∗ � ϕ∗ Î===Ï M∗ � ϕ̃ .

Now, if T∗ ` ϕ∗, then M∗ � ϕ∗, which implies that M∗ � ϕ̃. Since ϕ̃ is an
L -formula, we get M � ϕ̃, and since the model M of T was arbitrary, by the
GÖDEL-HENKIN COMPLETENESS THEOREM we get T ` ϕ̃. a

Defining new Function Symbols

The situation is slightly more subtle if we define new functions. However, there
is also an algorithm which transforms sentences σ∗ in the extended language into
equivalent sentences σ̃ in the original language:

THEOREM 6.2. Let L be a signature, let f be an n-ary function symbol which does
not belong to L , let L ∗ := L ∪ {f} and let T be a consistent L -theory. Fur-
thermore, let ψf (v1, . . . , vn, y) be an L -formula with free(ψf ) = {v1, . . . , vn, y}
such that

T ` ∀v1 · · · ∀vn∃!y ψf (v1, . . . , vn, y) .

Finally, let

ϑf ≡ ∀v1 · · · ∀vn∀y
(
fv1 · · · vn = y ↔ ψf (v1, . . . , vn, y)

)
and let T∗ := T + ϑf .

Then there exists an effective algorithm which transforms each L ∗-formula ϕ∗

into an L -formula ϕ̃, such that:

(a) If f does not appear in ϕ∗, then ϕ̃ ≡ ϕ∗.

(b) ¬̃ϕ ≡ ¬ϕ̃ (for ϕ∗ ≡ ¬ϕ)

(c) ∧̃ϕ1ϕ2 ≡ ∧ϕ̃1ϕ̃2 (for ϕ∗ ≡ ∧ϕ1ϕ2)

(d) ∃̃νϕ ≡ ∃νϕ̃ (for ϕ∗ ≡ ∃νϕ)

(e) T∗ ` ϕ∗ ↔ ϕ̃

(f) If T∗ ` ϕ∗, then T ` ϕ̃.

Proof. By an elementary f -term we mean an L ∗-term of the form ft1 · · · tn, where
t1, . . . , tn are L ∗-terms which do not contain the symbol f . We first prove the theo-
rem for atomic L ∗-formulae ϕ∗ (i.e., for formulae which are free of quantifiers and
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logical operators). Let ϕ∗(f w) be the result of replacing the leftmost occurence of
an elementary f -term in ϕ∗ with a new symbol w, which stands for a new variable.
Then, the formula

∃w
(
ψf (t1, . . . , tn, w) ∧ ϕ∗(f w)

)
is called the f -transform of ϕ∗. If ϕ∗ does not contain f , then let ϕ∗ be its own
f -transform. Before we procceed, let us prove the following

CLAIM. T∗ ` ∃w
(
ψf (t1, . . . , tn, w) ∧ ϕ∗(f w)

)
↔ ϕ∗

Proof of Claim. Let M∗ be a model of T∗ with domain A, let j be an arbitrary
assignment which assigns to w an element of A, and let M∗

j := (M∗, j) be the
corresponding L ∗-interpretation.
Assume that

M∗
j � ∃w

(
ψf (t1, . . . , tn, w) ∧ ϕ∗(f w)

)
.

Then, since T∗ ` ∀v1 · · · ∀vn∃!y ψf (v1, . . . , vn, y), there exists a unique b ∈ A
such that

M∗
j b
w
� ψf (t1, . . . , tn, w) ∧ ϕ∗(f w) ,

which is the same as saying that

M∗
j � ψf (t1, . . . , tn, b) ∧ ϕ∗(f b) .

Now, since M∗
j � ϑf , b is the same object as f

M∗j t
M∗j
1 · · · tM

∗
j

n . This implies

M∗
j � ft1 · · · tn = b ,

and shows that
M∗

j � ϕ
∗ .

For the reverse implication assume that M∗
j � ϕ∗ and let b be the same object as

f
M∗j t

M∗j
1 · · · tM

∗
j

n . Then M∗
j � ϕ

∗(f b) and, since M∗
j � ϑf ,

M∗
j � ψf (t1, . . . , tn, w)↔ ft1 · · · tn = w .

In particular we get

M∗
j b
w
� ψf (t1, . . . , tn, b)↔ ft1 · · · tn = b ,

and because f
M∗j t

M∗j
1 · · · tM

∗
j

n is the same object as b, we get M∗
j � ψf (t1, . . . , tn, b),

and since we already know M∗
j � ϕ

∗(f b), we have

M∗
j � ψf (t1, . . . , tn, b) ∧ ϕ∗(f b) .

So, there exists a b in A, such that
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M∗
j b
w
� ψf (t1, . . . , tn, w) ∧ ϕ∗(f w) ,

which is the same as saying that

M∗
j � ∃w

(
ψf (t1, . . . , tn, w) ∧ ϕ∗(f w)

)
.

Since the model M∗ of T∗ was arbitrary, by the GÖDEL-HENKIN COMPLETENESS
THEOREM we get T∗ ` ∃w

(
ψf (t1, . . . , tn, w) ∧ ϕ∗(f w)

)
↔ ϕ∗. aClaim

Since the f -transform ∃w
(
ψf (t1, . . . , tn, w) ∧ ϕ∗(f w)

)
of ϕ∗ contains one less

f than ϕ∗, if we take successive f -transforms (introducing always new variables),
eventually we obtain an an atomic L -formula ϕ̃ (i.e., a formula which does not
contain f ) such that T∗ ` ϕ∗ ↔ ϕ̃. We call ϕ̃ the f -less transform of ϕ∗.

In order to get f -less transforms of non-atomic L ∗-formulae ϕ∗, we just extend
the definition by letting ¬̃ϕ be ¬ϕ̃, ∧̃ϕ1ϕ2 be ∧ϕ̃1ϕ̃2, and ∃̃νϕ be ∃νϕ̃; proper-
ties (a)–(e) are then obvious.

It remains to prove property (f). Let M0 be an abitrary model of T with domain
A. Then, since T ` ∀v1 · · · ∀vn∃!y ψf (v1, . . . , vn, y), for all a1, . . . , an in A there
exists a unique b in A such that

M0 � ψf (a1, . . . , an, b)

and we define the n-ary function f∗ on A by stipulating:

f∗(a1, . . . , an) := b

With this definition, we can extend the L -structure M0 to an L ∗-structure M∗
0,

where we still have M∗ � T. With the definition of f∗ we get in addition M∗
0 � ϑf ,

which implies M∗
0 � T∗. If we have T∗ ` ϕ∗, for some L ∗-formula ϕ∗, then there

exists an L -formula ϕ̃, such that T∗ ` ϕ∗ ↔ ϕ̃, i.e., T∗ ` ϕ̃. Since T∗ ` ϕ̃ implies
M∗

0 � ϕ̃, and because ϕ̃ is an L -formula, we have M0 � ϕ̃. Now, since the model
M0 of T was arbitrary, by the GÖDEL-HENKIN COMPLETENESS THEOREM we
get T ` ϕ̃. a

Defining new Constant Symbols

Constant symbols can be handled like 0-are function symbols:

FACT 6.3. Let L be a signature, let c be constant symbol which does not belong to
L , let L ∗ := L ∪{c} and let T be a consistent L -theory. Furthermore, let ψc(y)
be an L -formula with free(ψc) = {y} such that T ` ∃!y ψc(y) . Finally, let

ϑc ≡ ∀y
(
c = y ↔ ψc(y)

)
and let T∗ := T + ϑc.
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Then there exists an effective algorithm which transforms each L ∗-formula ϕ∗

into an L -formula ϕ̃, such that:

(a) If f does not appear in ϕ∗, then ϕ̃ ≡ ϕ∗.

(b) ¬̃ϕ ≡ ¬ϕ̃ (for ϕ∗ ≡ ¬ϕ)

(c) ∧̃ϕ1ϕ2 ≡ ∧ϕ̃1ϕ̃2 (for ϕ∗ ≡ ∧ϕ1ϕ2)

(d) ∃̃νϕ ≡ ∃νϕ̃ (for ϕ∗ ≡ ∃νϕ)

(e) T∗ ` ϕ∗ ↔ ϕ̃

(f) If T∗ ` ϕ∗, then T ` ϕ̃.

Proof. The algorithm is constructed in exactly the same way as in the proof of
THEOREM 6.2. a

NOTES

In this chapter, we mainly followed Mendelson [25, Sec. 2.9].

EXERCISES

6.0 Show that in a signature L , constant symbols and functions symbols are dispensable (i.e., as
non-logical symbols we need only relation symbols).

Hint : Notice that n-ary function symbols can be replaced with n + 1-ary relation symbols,
and that constant symbols can be replaced with unary relation symbols.


