
Chapter 7
Countable Models of Peano Arithmetic

By GÖDEL’S COMPLETENESS THEOREM 5.5 we know that every consistent the-
ory T has a model, and if T has an infinite model, then it has also arbitrarily large
models. So, if we assume that Peano Arithmetic PA is consistent—what seems
sensible—then there exists a model of PA, and because this model is infinite, PA
must have arbitrarily large models as well.

In this chapter we provide a few models of PA. First, we construct the so-called
standard model, then we extend this model to countable non-standard models, and
finally we construct uncountable models of PA.

The Standard Model

For the sake of completeness, let us first recall the language and the seven axioms
of Peano Arithmetic PA:
PA: The language PA is LPA = {0, s,+, · }, where “0” is a constant symbol, “s”

is a unary function symbol, and “+” & “ · ” are binary function symbols.

PA0: ¬∃x(sx = 0)

PA1: ∀x∀y(sx = sy → x = y),

PA2: ∀x(x+ 0 = x)

PA3: ∀x∀y(x+ sy = s(x+ y))

PA4: ∀x(x · 0 = 0)

PA5: ∀x∀y(x · sy = (x · y) + x)

If ϕ is any LPA-formula with x ∈ free(ϕ), then:

PA6:
(
ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(s(x)))

)
→ ∀xϕ(x)

The domainN of our standard model consists of the elements in the list of natural
numbers introduced in Chapter 0. So, each natural number in the set N is either 0
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80 7 Countable Models of Peano Arithmetic

or of the form s · · · s0 for some F I N I T E string s · · · s. Notice the difference
between s (which is an unary function symbol) and s (which is a symbol we use to
build the elements of the setN, i.e., the objects in the domain of our standard model
of Peano Arithmetic). In order to write this more formally, we extend the signature
LPA by the unary relation symbol N and add the following statement as a kind of
meta-axiom to PA:

Φ ≡ ∀x
({

N(0),∀z
(
N(z)→ N(sz)

)}
` N(x)

)
Notice that this statement is not a statement in first-order logic since it involves
the symbol “`”, which incorporates implicitly the metamathematical notion of
F I N I T E N E S S. However, the statement Φ makes sure that every model of PA+Φ
is isomorphic to the standard-model.

Now, we are going to define the standard model of PA with domain N. For this,
we have to define first an LPA-structure N. Let If σ and τ are both (possibly empty)
finite strings of the form s · · · s. Then we can interpret the non-logical symbols in
LPA as follows:

0N := 0

sN : N → N

σ0 7→ sσ0

+N : N×N → N

〈σ0, τ0〉 7→ στ0

·N : N×N → N

〈σ0, τ0〉 7→ σσ · · · σ0
↑↑ · · · ↑
s s · · · s︸ ︷︷ ︸

τ

Note that if either σ or τ is the empty string, then σ0 ·N τ0 is 0. The main feature
of the LPA-structure N is that every element of N corresponds to a certain LPA-
term. In order to prove this, we introduce the following notion: To each finite string
σ ≡ s · · · s we assign a F I N I T E string σ ≡ s · · · s such that σ is obtained from
σ by replacing each occurrence of s with s. As a consequence of this definition we
get the following

FACT 7.1. For all F I N I T E strings σ and τ of the form s · · · s we have:

(a) If σ is not the empty string, then PA ` σ0 6= 0
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(b) PA ` σ0 = τ0 Î===Ï σ0 ≡ τ0.

Proof. (a) follows from PA0, and (b) follows from PA1 and L14. a

LEMMA 7.2. Every element of N corresponds to a unique F I N I T E application
of the function s to 0, or in other words, every element of N is equal to a unique
F I N I T E application of the function sN to 0N. More formally, for every element
σ0 of N there is a unique LPA-term σ0 such that

(σ0)N IS THE SAME OBJECT AS σ0 ,

or equivalently,
(σ0)N ≡ σ0 .

Proof. By definition of sN, for every F I N I T E string τ ≡ s · · · s we get that
sN(τ0) is the same element ofN as sτ0, and after applying this fact F I N I T E L Y
many times we get:

(σ0)N︷ ︸︸ ︷
sN sN · · · sN 0N

l l · · · l l
s s · · · s 0︸ ︷︷ ︸

σ0

The uniqueness of σ0 follows from FACT 7.1. a

Now, we are ready to prove that the LPA-structureN, which is called the standard
model of Peano Arithmetic, is indeed a model of PA.

THEOREM 7.3. N � PA.

Proof. By definition of sN we get N � PA0 and by FACT 7.1 we also have N � PA1.
Further, by definition of +N and ·N we get N � PA2 and N � PA4 respectively.
For PA3 let σ and τ be (possibly empty) finite strings of the form s · · · s. Then

σ0 +N sNτ0 ≡ σsτ0 ≡ sστ0 ≡ sN(σ0 +N τ0).

Similarly, we can show N � PA5 (see EXERCISE 7.0). In order to show that N �
PA6, let ϕ(x) be an LPA-formula and let us assume that

N � ϕ(0) ∧ ∀x
(
ϕ(x)→ ϕ(sx)

)
. (∗)

We have to show that N � ∀xϕ(x). By definition of models we get that ϕ(0) holds
in N and for all n ∈ N: if ϕ(n) holds in N, then also ϕ(sNn) holds in N. Let σ0
be an arbitrary element of N. Since σ is a F I N I T E string, by (∗), the logical
axiom L10, and by applying F I N I T E L Y many times MODUS PONENS, we get
N � ϕ(σ0). Hence, since σ0 was arbitrary, for every string n ∈ N, ϕ(n) holds in
N, and therefore, N � ∀xϕ(x). a
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As a matter of fact we would like to mention that from a metamathematical
point of view, every model of PA must contain an isomorphic copy of the stan-
dard model N. So, it would also make sense to call N the minimal model of Peano
Arithmetic.

One might be tempted to think that N is essentially the only model of PA, but this
is not the case, as we shall see now.

Countable Non-Standard Models

The previous section shows that every natural number in the standard model N cor-
responds to a unique LPA-term; more precisely, every element σ0 of N is the same
object as the term σ0. In order to simplify notations, we will from now on use vari-
ables such as n,m, · · · to denote elements of N and n,m, · · · their counterpart in
the formal language LPA, i.e., if n stands for σ0, then n denotes σ0.

Since every model M of PA contains nM, the standard natural numbers, for
every n ∈ N, it is clear that M contains a copy of the standard model. However,
M can also have non-standard natural numbers, i.e., elements which are not the
interpretations of terms of the form n. In the following, we present the simplest way
to construct such non-standard models.

Let LPA+ be the language LPA augmented with an additional constant symbol c,
which is different from 0. Note that by setting

x < y :⇐⇒ ∃r(x+ sr = y)

one can introduce an ordering in PA, which in the standard model corresponds to
the usual ordering of natural numbers (for further details see Chapters 8 and 9). Let
PA+ be the theory whose axioms are PA0–PA6 together with the axioms

c > 0

c > s0

c > ss0

c > sss0

...

Hence, PA+ is PA ∪ {c > n : n ∈ N}.

LEMMA 7.4. Con(PA+), i.e., the theory PA+ is consistent.

Proof. By the COMPACTNESS THEOREM it suffices to prove that every F I N I T E
subset of PA+ is consistent. Let T be a F I N I T E subset of PA+. Now let n ∈ N
be maximal such that the formula c 6= n belongs to T. Notice that such n exists,
since T is finite. Then we can define a model M of T with domainN by interpreting
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the constant and function symbols by 0M ≡ 0, sM ≡ s, +M ≡ +N, ·M ≡ ·N and
cM ≡ sn. Since N � PA we get that M � PA and by construction M � c 6= m for
every m ≤ n and hence M � PA+. a

Now, since LPA+ is a countable signature, by THEOREM 5.6 it follows that PA+

has a countable model M which is also a non-standard model of PA, i.e., a model
which is not isomorphic to the standard model N. What does the order structure of
M look like?

Note that c has a successor sc = c + 1, and c + 1 in turn has a successor, and so
on. Furthermore, since

PA ` ∀x
(
x = 0 ∨ ∃y(x = sy)

)
(see LEMMA 8.4), c also has a predecessor, i.e., there exists c − 1 with the prop-
erty that s(c − 1) = c, and the same argument yields that c in fact has infinitely
many predessors, which are all non-standard. Hence, the order structure of c and
its predecessors and successors corresponds to (Z, <), so there are infinitely many
such Z-chains. Moreover, each multiple of c yields a further copy Z-chain. Now,
one can easily prove in PA that every number is even or odd (see EXERCISE 8.1),
and hence there is d such that 2d = c or 2d = c+ 1. We denote d by c

2 . This shows
that between the copy of the standard model and the Z-chain given by c, there is a
further Z-chain given by c

2 and its predessors and successors. In fact, the Z-chains
are ordered like (Q, <) (see EXERCISE 7.6).
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Note that the proof of LEMMA 7.4 implies that there are non-standard models
of PA which are elementarily equivalent to N. To see this, let Th(N) denote the
theory of all LPA-sentences which are true in N. Then one could simply replace PA
by Th(N) in LEMMA 7.4 and thus obtain a model of Th(N) augmented with all
formulae of the form c > n for n ∈ N. By construction, this model is elementarily
equivalent to N. For a more general result see EXERCISE 7.2.

NOTES

An early attempt at formalising arithmetic was given by Hermann Grassmann [19] in 1861,
who defined addition and multiplication and proved elementary results such as the associative
and commutative laws using induction. Richard Dedekind [4] also identified induction as a key
principle in 1888 as well as the first two axioms of Peano Arithmetic; however, he introduced
them as a definition rather than as axioms. Giuseppe Peano [36] presented his five axioms in 1889,



84 7 Countable Models of Peano Arithmetic

where he only introduces zero and the successor function axiomatically, and the induction axiom is
given in second-order logic in the following form: Every set of natural numbers which contains 0
and is closed under the successor function is the set of all natural numbers. The version of Peano’s
Axioms formalised in first-order logic, where the induction axiom is replaced by an axiom schema,
and the axioms defining addition and multipliation are included, goes back to the advent of first-
order logic in the 1920’s. The first explicit construction of a non-standard model of arithmetic was
given by Thoralf Skolem in [41]. Fur further reading on non-standard models consult [28].

EXERCISES

7.0 Prove that N � PA5.

7.1 Prove that PA0 and PA1 are independent of the other axioms of PA.

7.2 Show that there are uncountably many countable models of PA which are all elementarily
equivalent and pairwise non-isomorphic.

Hint : Let P be the set of prime numbers and let c be a constant symbol which is different
from 0. For any distinct prime numbers p and q let ϕp,q be the formula

p | c ∧ q - c .

For every subset S ⊆ P, let ΦS be the collection of all formulae ϕp,q such that p ∈ S and
q /∈ S. Now, for each S ⊆ P, N is a model for every finite subset of T(N) + ΦS , and hence,
for every S ⊆ P, T(N) + ΦS has a countable model, say NS . Notice for all these models
NS we have N � T(N), and that for each model NS , there are only countably many subsets
S ⊆ P such that NS � ΦS . Since by CANTOR’S THEOREM 13.4 the set of all subsets S ⊆ P
is uncountable, we obtain uncountably many countable models NS of PA which are pairwise
non-isomorphic.

7.3 Prove the following so-called Overspill Principle: If M is a non-standard model of PA with
domain M , ϕ is a formula with n+ 1 free variables and b1, . . . , bn ∈M , then

M � ϕ(n, b1, . . . , bn) for all n ∈ N

implies that there is a non-standard element a ∈M such that

M � ∀x(x < a→ ϕ(x, b1, . . . , bn)).

7.4 Show that it is not possible to introduce a relation standard(x) by a language extension of
LPA such that for every model M of PA with domain M and for every a ∈ M we have
M � standard(a) if and only if a = nM for some n ∈ N.

7.5 Let M be a non-standard model of PA with domain M . Show that there is an a ∈ M such
that every standard prime number divides a.

7.6 Let M be a countable non-standard model of PA with domain M . For every non-standard
element c of M , let

Zc :≡
{
d ∈M : there exists n ∈ N such that d+ n = c or c+ n = d

}
.

and let Zc < Zd, if c + n < d for all n ∈ N. Show that {Zc : c ∈ M is non-standard} is
a dense linearly ordered set (see EXERCISE 3.5) and use EXERCISE 5.1 to conclude that the
order structure of M corresponds to the disjoint union ofN and Q×Z.


