Chapter 7 Countable Models of Peano Arithmetic

By GÖDEL'S COMPLETENESS THEOREM 5.5 we know that every consistent theory T has a model, and if T has an infinite model, then it has also arbitrarily large models. So, if we assume that Peano Arithmetic PA is consistent—what seems sensible—then there exists a model of PA, and because this model is infinite, PA must have arbitrarily large models as well.

In this chapter we provide a few models of PA. First, we construct the so-called *standard model*, then we extend this model to countable *non-standard models*, and finally we construct uncountable models of PA.

The Standard Model

For the sake of completeness, let us first recall the language and the seven axioms of Peano Arithmetic PA:

PA: The language PA is $\mathscr{L}_{PA} = \{0, s, +, \cdot\}$, where "0" is a constant symbol, "s" is a unary function symbol, and "+" & "·" are binary function symbols.

- $\mathsf{PA}_{\mathsf{0}}: \ \neg \exists x(\mathsf{s}x = \mathsf{0})$
- $\mathsf{PA}_1: \ \forall x \forall y (\mathbf{s}x = \mathbf{s}y \to x = y),$
- $\mathsf{PA}_2: \ \forall x(x + \mathbf{0} = x)$
- $\mathsf{PA}_3: \ \forall x \forall y (x + \mathsf{s}y = \mathsf{s}(x + y))$
- $\mathsf{PA}_4: \ \forall x(x \cdot \mathsf{0} = \mathsf{0})$
- PA₅: $\forall x \forall y (x \cdot \mathbf{s}y = (x \cdot y) + x)$

If φ is any $\mathscr{L}_{\mathsf{PA}}$ -formula with $x \in \operatorname{free}(\varphi)$, then:

$$\mathsf{PA}_6: \ (\varphi(0) \land \forall x(\varphi(x) \to \varphi(\mathbf{s}(x)))) \to \forall x\varphi(x)$$

The domain \mathbb{N} of our standard model consists of the elements in the list of natural numbers introduced in Chapter 0. So, each natural number in the set \mathbb{N} is either 0

or of the form $\mathbf{s} \cdots \mathbf{s}0$ for some FINITE string $\mathbf{s} \cdots \mathbf{s}$. Notice the difference between \mathbf{s} (which is an unary function symbol) and \mathbf{s} (which is a symbol we use to build the elements of the set \mathbb{N} , *i.e.*, the objects in the domain of our standard model of Peano Arithmetic). In order to write this more formally, we extend the signature \mathscr{L}_{PA} by the unary relation symbol N and add the following statement as a kind of meta-axiom to PA:

$$\Phi \equiv \forall x \left(\left\{ \mathtt{N}(\mathtt{O}), \forall \mathtt{z} \big(\mathtt{N}(\mathtt{z}) \to \mathtt{N}(\mathtt{s}\mathtt{z}) \big) \right\} \vdash \mathtt{N}(\mathtt{x}) \right)$$

Notice that this statement is *not* a statement in first-order logic since it involves the symbol " \vdash ", which incorporates implicitly the metamathematical notion of F I N I T E N E S S. However, the statement Φ makes sure that every model of PA+ Φ is isomorphic to the standard-model.

Now, we are going to define the standard model of PA with domain \mathbb{N} . For this, we have to define first an \mathscr{L}_{PA} -structure \mathbb{N} . Let If σ and τ are both (possibly empty) finite strings of the form $\mathbf{s} \cdots \mathbf{s}$. Then we can interpret the non-logical symbols in \mathscr{L}_{PA} as follows:

Note that if either σ or τ is the empty string, then $\sigma \mathbf{0} \cdot \nabla \tau \mathbf{0}$ is $\mathbf{0}$. The main feature of the \mathscr{L}_{PA} -structure \mathbb{N} is that every element of \mathbb{N} corresponds to a certain \mathscr{L}_{PA} -term. In order to prove this, we introduce the following notion: To each finite string $\sigma \equiv \mathbf{s} \cdots \mathbf{s}$ we assign a FINITE string $\sigma \equiv \mathbf{s} \cdots \mathbf{s}$ such that σ is obtained from σ by replacing each occurrence of \mathbf{s} with \mathbf{s} . As a consequence of this definition we get the following

FACT 7.1. For all FINITE strings σ and τ of the form $\mathbf{s} \cdots \mathbf{s}$ we have:

(a) If σ is not the empty string, then $PA \vdash \sigma 0 \neq 0$

The Standard Model

(b)
$$\mathsf{PA} \vdash \underline{\sigma} \mathsf{0} = \underline{\tau} \mathsf{0} \quad \iff \quad \sigma \mathbf{0} \equiv \tau \mathbf{0}.$$

Proof. (a) follows from PA_0 , and (b) follows from PA_1 and L_{14} .

LEMMA 7.2. Every element of \mathbb{N} corresponds to a unique FINITE application of the function s to 0, or in other words, every element of \mathbb{N} is equal to a unique FINITE application of the function $s^{\mathbb{N}}$ to $0^{\mathbb{N}}$. More formally, for every element $\sigma \mathbf{0}$ of \mathbb{N} there is a unique \mathscr{L}_{PA} -term $\underline{\sigma} 0$ such that

$$(\sigma 0)^{\mathbb{N}}$$
 is the same object as $\sigma \mathbf{0}$,

or equivalently,

$$(\underline{\sigma}\mathbf{0})^{\mathbb{N}} \equiv \sigma\mathbf{0}$$
.

Proof. By definition of $\mathbf{s}^{\mathbb{N}}$, for every FINITE string $\tau \equiv \mathbf{s} \cdots \mathbf{s}$ we get that $\mathbf{s}^{\mathbb{N}}(\tau \mathbf{0})$ is the same element of \mathbb{N} as $\mathbf{s}\tau \mathbf{0}$, and after applying this fact FINITELY many times we get:

$$\underbrace{\begin{array}{c} (\underline{\sigma} \mathbf{0})^{\mathbb{N}} \\ \mathbf{s}^{\mathbb{N}} \mathbf{s}^{\mathbb{N}} \cdots \mathbf{s}^{\mathbb{N}} \mathbf{0}^{\mathbb{N}} \\ \mathbf{s} \mathbf{s} \cdots \mathbf{s} \mathbf{s} \mathbf{0} \\ \mathbf{s} \mathbf{s} \cdots \mathbf{s} \mathbf{0} \\ \mathbf{\sigma} \mathbf{0} \end{array}}_{\mathbf{\sigma} \mathbf{0}}$$

The uniqueness of $\underline{\sigma}$ 0 follows from FACT 7.1.

Now, we are ready to prove that the \mathscr{L}_{PA} -structure \mathbb{N} , which is called the **standard model** of Peano Arithmetic, is indeed a model of PA.

Theorem 7.3. $\mathbb{N} \models \mathsf{PA}$.

Proof. By definition of $\mathbf{s}^{\mathbb{N}}$ we get $\mathbb{N} \models \mathsf{PA}_0$ and by FACT 7.1 we also have $\mathbb{N} \models \mathsf{PA}_1$. Further, by definition of $+^{\mathbb{N}}$ and $\cdot^{\mathbb{N}}$ we get $\mathbb{N} \models \mathsf{PA}_2$ and $\mathbb{N} \models \mathsf{PA}_4$ respectively. For PA_3 let σ and τ be (possibly empty) finite strings of the form $\mathbf{s} \cdots \mathbf{s}$. Then

$$\sigma \mathbf{0} +^{\mathbb{N}} \mathbf{s}^{\mathbb{N}} \tau \mathbf{0} \equiv \sigma \mathbf{s} \tau \mathbf{0} \equiv \mathbf{s} \sigma \tau \mathbf{0} \equiv \mathbf{s}^{\mathbb{N}} (\sigma \mathbf{0} +^{\mathbb{N}} \tau \mathbf{0}).$$

Similarly, we can show $\mathbb{N} \models \mathsf{PA}_5$ (see EXERCISE 7.0). In order to show that $\mathbb{N} \models \mathsf{PA}_6$, let $\varphi(x)$ be an $\mathscr{L}_{\mathsf{PA}}$ -formula and let us assume that

$$\mathbb{N} \vDash \varphi(\mathbf{0}) \land \forall x (\varphi(x) \to \varphi(\mathbf{s}x)) . \tag{(*)}$$

We have to show that $\mathbb{N} \vDash \forall x\varphi(x)$. By definition of models we get that $\varphi(\mathbf{0})$ holds in \mathbb{N} and for all $n \in \mathbb{N}$: if $\varphi(n)$ holds in \mathbb{N} , then also $\varphi(\mathbf{s}^{\mathbb{N}}n)$ holds in \mathbb{N} . Let $\sigma\mathbf{0}$ be an arbitrary element of \mathbb{N} . Since σ is a FINITE string, by (*), the logical axiom L₁₀, and by applying FINITELY many times MODUS PONENS, we get $\mathbb{N} \vDash \varphi(\sigma\mathbf{0})$. Hence, since $\sigma\mathbf{0}$ was arbitrary, for every string $n \in \mathbb{N}$, $\varphi(n)$ holds in \mathbb{N} , and therefore, $\mathbb{N} \vDash \forall x\varphi(x)$.

81

 \dashv

 \dashv

7 Countable Models of Peano Arithmetic

As a matter of fact we would like to mention that from a metamathematical point of view, every model of PA must contain an isomorphic copy of the standard model \mathbb{N} . So, it would also make sense to call \mathbb{N} the **minimal model** of Peano Arithmetic.

One might be tempted to think that \mathbb{N} is essentially the only model of PA, but this is not the case, as we shall see now.

Countable Non-Standard Models

The previous section shows that every natural number in the standard model \mathbb{N} corresponds to a unique \mathcal{L}_{PA} -term; more precisely, every element $\sigma \mathbf{0}$ of \mathbb{N} is the same object as the term $\underline{\sigma}\mathbf{0}$. In order to simplify notations, we will from now on use variables such as n, m, \cdots to denote elements of \mathbb{N} and $\underline{n}, \underline{m}, \cdots$ their counterpart in the formal language \mathcal{L}_{PA} , *i.e.*, if n stands for $\sigma \mathbf{0}$, then \underline{n} denotes $\underline{\sigma}\mathbf{0}$.

Since every model M of PA contains \underline{n}^{M} , the **standard natural numbers**, for every $n \in \mathbb{N}$, it is clear that M contains a copy of the standard model. However, M can also have **non-standard natural numbers**, *i.e.*, elements which are not the interpretations of terms of the form \underline{n} . In the following, we present the simplest way to construct such non-standard models.

Let \mathscr{L}_{PA^+} be the language \mathscr{L}_{PA} augmented with an additional constant symbol c, which is different from 0. Note that by setting

$$x < y : \iff \exists r(x + \mathbf{s}r = y)$$

one can introduce an ordering in PA, which in the standard model corresponds to the usual ordering of natural numbers (for further details see Chapters 8 and 9). Let PA^+ be the theory whose axioms are PA_0 – PA_6 together with the axioms

$$c > 0$$

$$c > s0$$

$$c > ss0$$

$$c > sss0$$

$$c > sss0$$

$$\vdots$$

Hence, PA^+ is $\mathsf{PA} \cup \{\mathsf{c} > \underline{n} : n \in \mathbb{N}\}.$

LEMMA 7.4. $Con(PA^+)$, *i.e.*, the theory PA^+ is consistent.

Proof. By the COMPACTNESS THEOREM it suffices to prove that every FINITE subset of PA⁺ is consistent. Let T be a FINITE subset of PA⁺. Now let $n \in \mathbb{N}$ be maximal such that the formula $c \neq \underline{n}$ belongs to T. Notice that such n exists, since T is finite. Then we can define a model M of T with domain N by interpreting

the constant and function symbols by $0^{\mathbf{M}} \equiv \mathbf{0}$, $\mathbf{s}^{\mathbf{M}} \equiv \mathbf{s}$, $+^{\mathbf{M}} \equiv +^{\mathbb{N}}$, $\cdot^{\mathbf{M}} \equiv \cdot^{\mathbb{N}}$ and $\mathbf{c}^{\mathbf{M}} \equiv \mathbf{s}n$. Since $\mathbb{N} \models \mathsf{PA}$ we get that $\mathbf{M} \models \mathsf{PA}$ and by construction $\mathbf{M} \models \mathbf{c} \neq \underline{m}$ for every $m \leq n$ and hence $\mathbf{M} \models \mathsf{PA}^+$.

Now, since \mathscr{L}_{PA^+} is a countable signature, by THEOREM 5.6 it follows that PA⁺ has a countable model M which is also a **non-standard model** of PA, *i.e.*, a model which is not isomorphic to the standard model \mathbb{N} . What does the order structure of M look like?

Note that c has a successor sc = c + 1, and c + 1 in turn has a successor, and so on. Furthermore, since

$$\mathsf{PA} \vdash \forall x (x = \mathsf{0} \lor \exists y (x = \mathbf{s}y))$$

(see LEMMA 8.4), c also has a predecessor, *i.e.*, there exists c - 1 with the property that s(c - 1) = c, and the same argument yields that c in fact has infinitely many predessors, which are all non-standard. Hence, the order structure of c and its predecessors and successors corresponds to $(\mathbb{Z}, <)$, so there are infinitely many such \mathbb{Z} -chains. Moreover, each multiple of c yields a further copy \mathbb{Z} -chain. Now, one can easily prove in PA that every number is even or odd (see EXERCISE 8.1), and hence there is d such that 2d = c or 2d = c + 1. We denote d by $\frac{c}{2}$. This shows that between the copy of the standard model and the \mathbb{Z} -chain given by c, there is a further \mathbb{Z} -chain given by $\frac{c}{2}$ and its predessors and successors. In fact, the \mathbb{Z} -chains are ordered like ($\mathbb{Q}, <$) (see EXERCISE 7.6).

Note that the proof of LEMMA 7.4 implies that there are non-standard models of PA which are elementarily equivalent to \mathbb{N} . To see this, let $\mathbf{Th}(\mathbb{N})$ denote the theory of all \mathscr{L}_{PA} -sentences which are true in \mathbb{N} . Then one could simply replace PA by $\mathbf{Th}(\mathbb{N})$ in LEMMA 7.4 and thus obtain a model of $\mathbf{Th}(\mathbb{N})$ augmented with all formulae of the form $c > \underline{n}$ for $n \in \mathbb{N}$. By construction, this model is elementarily equivalent to \mathbb{N} . For a more general result see EXERCISE 7.2.

NOTES

An early attempt at formalising arithmetic was given by Hermann Grassmann [19] in 1861, who defined addition and multiplication and proved elementary results such as the associative and commutative laws using induction. Richard Dedekind [4] also identified induction as a key principle in 1888 as well as the first two axioms of Peano Arithmetic; however, he introduced them as a definition rather than as axioms. Giuseppe Peano [36] presented his five axioms in 1889,

7 Countable Models of Peano Arithmetic

where he only introduces zero and the successor function axiomatically, and the induction axiom is given in second-order logic in the following form: Every set of natural numbers which contains 0 and is closed under the successor function is the set of all natural numbers. The version of Peano's Axioms formalised in first-order logic, where the induction axiom is replaced by an axiom schema, and the axioms defining addition and multipliation are included, goes back to the advent of first-order logic in the 1920's. The first explicit construction of a non-standard model of arithmetic was given by Thoralf Skolem in [41]. Fur further reading on non-standard models consult [28].

EXERCISES

- 7.0 Prove that $\mathbb{N} \models \mathsf{PA}_5$.
- 7.1 Prove that PA_0 and PA_1 are independent of the other axioms of PA.
- 7.2 Show that there are uncountably many countable models of PA which are all elementarily equivalent and pairwise non-isomorphic.

Hint: Let \mathbb{P} be the set of prime numbers and let c be a constant symbol which is different from 0. For any distinct prime numbers p and q let $\varphi_{p,q}$ be the formula

 $p \mid \mathsf{c} \land q \nmid \mathsf{c}$.

For every subset $S \subseteq \mathbb{P}$, let Φ_S be the collection of all formulae $\varphi_{p,q}$ such that $p \in S$ and $q \notin S$. Now, for each $S \subseteq \mathbb{P}$, \mathbb{N} is a model for every finite subset of $\mathsf{T}(\mathbb{N}) + \Phi_S$, and hence, for every $S \subseteq \mathbb{P}$, $\mathsf{T}(\mathbb{N}) + \Phi_S$ has a countable model, say \mathbf{N}_S . Notice for all these models \mathbf{N}_S we have $\mathbf{N} \models \mathsf{T}(\mathbb{N})$, and that for each model \mathbf{N}_S , there are only countably many subsets $S \subseteq \mathbb{P}$ such that $\mathbf{N}_S \models \Phi_S$. Since by CANTOR'S THEOREM 13.4 the set of all subsets $S \subseteq \mathbb{P}$ is uncountable, we obtain uncountably many countable models \mathbf{N}_S of PA which are pairwise non-isomorphic.

7.3 Prove the following so-called *Overspill Principle*: If M is a non-standard model of PA with domain M, φ is a formula with n + 1 free variables and $b_1, \ldots, b_n \in M$, then

$$\mathbf{M} \models \varphi(n, b_1, \dots, b_n)$$
 for all $n \in \mathbb{N}$

implies that there is a non-standard element $a \in M$ such that

$$\mathbf{M} \vDash \forall x (x < a \to \varphi(x, b_1, \dots, b_n)).$$

- 7.4 Show that it is not possible to introduce a relation standard(x) by a language extension of $\mathscr{L}_{\mathsf{PA}}$ such that for every model **M** of PA with domain M and for every $a \in M$ we have $\mathbf{M} \models \operatorname{standard}(a)$ if and only if $a = \underline{n}^{\mathbf{M}}$ for some $n \in \mathbb{N}$.
- 7.5 Let M be a non-standard model of PA with domain M. Show that there is an $a \in M$ such that every standard prime number divides a.
- 7.6 Let M be a countable non-standard model of PA with domain M. For every non-standard element c of M, let

 $\mathbb{Z}_c := \{ d \in M : \text{there exists } n \in \mathbb{N} \text{ such that } d + n = c \text{ or } c + n = d \}.$

and let $\mathbb{Z}_c < \mathbb{Z}_d$, if c + n < d for all $n \in \mathbb{N}$. Show that $\{\mathbb{Z}_c : c \in M \text{ is non-standard}\}$ is a dense linearly ordered set (see EXERCISE 3.5) and use EXERCISE 5.1 to conclude that the order structure of **M** corresponds to the disjoint union of \mathbb{N} and $\mathbb{Q} \times \mathbb{Z}$.

84