
Chapter 8

Arithmetic in Peano Arithmetic

In this chapter we take a closer look at Peano Arithmetic (PA) which we have de-
fined in Chapter 1. In particular, we prove within PA some basic arithmetial results
starting with the commutativity and associativity of addition and multiplication, cul-
minating in some results about coprimality. This paves the way for the coding of
finite sequences of numbers which will be covered in the next chapter. Furthermore,
we introduce some alternative formulations of the induction principle PA6.

Addition & Multiplication

In this section we verify the basic computation rules involving addition and multi-
plication. Since the complete proofs are very long and tedious, we will show only
commutativity of “+” in a elaborate way. Subsequently, we will use semi-formal
proofs as described in Chapter 1 which include enough details to allow the reader
to reconstruct a corresponding formal proof.

LEMMA 8.1. PA ⊢ ∀x∀y(x + y = y + x)

Proof. We proceed by induction on x. Thus, we have to show

(a) PA ⊢ ∀y(0+ y = y + 0), and

(b) PA ⊢ ∀y(x+ y = y + x)→ ∀y(sx+ y = y + sx).

For (a), we first prove

⊢PA ∀y(0+ y = y)

by induction on y. The base case 0 + 0 = 0 is clearly an instance of PA2 and for
the induction step assume 0 + y = y for some y. Then 0 + sy = s(0 + y) by
PA3 and s(0 + y) = sy by assumption. To keep the notation short we just write
0+ sy = s(0+ y) = sy instead of 0+ sy = s(0+ y)∧ s(0+ y) = sy. So, by PA6
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we obtain ∀y(0 + y = y) and since by PA2 we have ∀y(y + 0 = y), by symmetry
and transitivity of “=” we have ∀y(0+ y = y + 0).

As a prerequisite for (b) we need

⊢PA ∀y(sx+ y = s(x+ y))

which again will be verified by induction on y: If y = 0, note that by PA2 we have
sx+ 0 = sx = s(x+ 0). For the induction step assume sx+ y = s(x+ y). Then,
by PA3, we have sx+ sy = s(sx+ y) = s(s(x+ y)) = s(x+ sy).

Now, we are ready to prove (b): Assume that x + y = y + x for some x and for
all y. Then sx+ y = s(x+ y) = s(y+x) = y+ sx by our computation above and
PA3, which, by PA6, shows (b). ⊣

In a similar manner we can derive other basic calculation rules whose proofs are
left as an exercise for the reader.

LEMMA 8.2.

(a) PA ⊢ ∀x∀y∀z((x + y) + z = x+ (y + z))

(b) PA ⊢ ∀x∀y∀z((x · y) · z = x · (y · z))

(c) PA ⊢ ∀x∀y(x · y = y · x)

(d) PA ⊢ ∀x∀y∀z(x · (y + z) = (x · y) + (x · z))

From now on, we will make use of these rules without explicitly mentioning them
anymore. The next lemma shows injectivity of left — and by commutativity also
right — addition.

LEMMA 8.3. PA ⊢ ∀x∀y∀z(x+ y = x+ z → y = z)

Proof. The proof is by induction on x. The base case follows from the proof of
LEMMA 8.1. For the induction step assume

∀y∀z(x+ y = x+ z → y = z)

and let sx + y = sx + z. Then s(x + y) = sx + y = sx + z = s(x + z), where
the first and the third equality again follow from LEMMA 8.1 and PA3. Then by PA2

we obtain x+ y = x+ z and in particular y = z. ⊣

The next result is crucial, because — as we will see in Chapter 10 — it is the only
application of PA6 which is indispensable for the proof of the FIRST INCOMPLETE-
NESS THEOREM 10.6.

LEMMA 8.4. PA ⊢ ∀x
(
x = 0 ∨ ∃y(x = sy)

)

Proof. We proceed by induction on x. The base case is trivial and the induction step
follows from the fact that x witnesses ∃y(sx = sy) ⊣
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From now on, we will use the convention that “ · ” binds stronger than “+” and
omit the multplication sign, e.g., the term xy+z stands for (x ·y)+z. Furthermore,
by associativity of “+” and “ · ” we may omit brackets when we have pure products
of pure sums of terms.

To keep the notatio short, for LPA-formulae ϕ we define

∀x 6= 0ϕ(x) :⇐⇒ ∀x
(
x 6= 0→ ϕ(x)

)
.

The next result shows a property of multiplication, which is similar to the one
given in LEMMA 8.3 for addition.

LEMMA 8.5.

(a) PA ⊢ ∀x∀y
(
xy = 0↔ (x = 0 ∨ y = 0)

)

(b) PA ⊢ ∀x 6= 0 ∀y∀z(xy = xz → y = z)

Proof. For (a) let xy = 0 and suppose towards a contradiction that x, y 6= 0. Then
by LEMMA 8.4 there are x′, y′ such that x = sx′ and y = sy′. By PA5 and PA3, we
obtain

0 = xy = sx′ · sy′ = sx′ · y′ + sx′ = s(sx′ · y′ + x′) ,

which contradicts PA0.

For (b) suppose that x 6= 0. We proceed by induction on y. If y = 0, then xy = 0.
So, xy = xz implies xz = 0 and by (a) we obtain z = 0 and consequently y = z.
Now assume that

∀z(xy = xz → y = z).

Let z be arbitrary such that x·sy = xz. By refinj, we can rule out the possibility that
z = 0, hence, by LEMMA 8.4, there is a z′ such that z = sz′. Therefore, by PA5,

xy + x = x · sy = xz = x · sz′ = xz′ + x .

Using LEMMATA 8.1 and 8.3 we obtain that xy = xz′ and thus the induction hy-
pothesis implies y = z′. So, we finally get sy = sz′ = z as desired. ⊣

The Natural Ordering on Natural Numbers

In Chapter 6 we have seen how to extend languages by incorporating new symbols
for relations, functions or constants. In this sense we can now introduce the binary
relations ≤ and < in PA by stipulating

x ≤ y :⇐⇒ ∃r(x + r = y) ,

x < y :⇐⇒ x ≤ y ∧ x 6= y .

An alternative definition of x < y is given by
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x < y :⇐⇒ ∃r 6= 0 (x+ r = y) .

Furthermore, we define

x ≥ y :⇐⇒ y ≤ x

x > y :⇐⇒ y < x.

Now, we define bounded quantification by stipulating:

∃x ⊳ y ϕ(x) :⇐⇒ ∃x
(
x ⊳ y ∧ ϕ(x)

)
,

∀x ⊳ y ϕ(x) :⇐⇒ ∀x
(
x ⊳ y → ϕ(x)

)
,

where “⊳” stands either for “<” or for “≤”. The next result shows some properties
of “<” and “≤”.

LEMMA 8.6.

(a) PA ⊢ ∀x∀y(x < sy ↔ x ≤ y)

(b) PA ⊢ ∀x∀y(x < y ↔ sx ≤ y)

Proof. We only consider (a) and leave (b) as an excercise. Fix x and y. Firstly,
assume that x < sy and take r 6= 0 such that x + r = sy. By LEMMA 8.4 we find
an r′ such that r = sr′. Then s(x + r′) = x + sr′ = x + r = sy by PA3, and by
PA2 we obtain x+ r′ = y which shows that x ≤ y.

Conversely, let x ≤ y and take r such that x+r = y. Then x+sr = s(x+r) = sy
which shows that x < sy. ⊣

The next result implies that “≤” defines a total ordering on the natural numbers.

LEMMA 8.7.

(a) PA ⊢ ∀x(x ≤ x)

(b) PA ⊢ ∀x∀y(x ≤ y ∧ y ≤ x→ x = y)

(c) PA ⊢ ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z)

(d) PA ⊢ ∀x∀y(x < y ∨ x = y ∨ x > y)

Proof. Condition (a) is a trivial consequence of PA2.

For (b) assume that x ≤ y and y ≤ x. Then there are r, s such that x+ r = y and
y + s = x. We obtain that

y + (s+ r) = (y + s) + r = x+ r = y = y + 0,

and by LEMMA 8.3, this implies s + r = 0 and hence, by PA0, s = 0 = r, which
shows that x = y.

For (c) let x ≤ y and y ≤ z and take witnesses r, s satisfying x + r = y and
y + s = z. Then x+ (r + s) = (x+ r) + s = y + s = z and thus x ≤ z.
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We show (d) by induction on x. If x = 0, we can make a case distinction according
to LEMMA 8.4: If y = 0 then x = y and otherwise x < y. For the induction step fix
y and assume that x < y ∨ x = y ∨ x > y. Now, we make a case distinction, where
in the case that x < y, LEMMA 8.6 implies that sx ≤ y and thus either sx < y or
sx = y. Secondly, if x = y then

sx = sy = s(y + 0) = y + s0

which shows that sx > y. The case when x > y is similar. ⊣

Finally, one can show that addition and multiplication with non-zero numbers
preserve the natural odering (the proof is left as an excercise to the reader):

LEMMA 8.8.

(a) PA ⊢ ∀x∀y∀z
(
x ≤ y ↔ (x+ z ≤ y + z)

)

(b) PA ⊢ ∀x∀y∀z 6= 0

(
x ≤ y ↔ (x · z ≤ y · z)

)

Subtraction & Divisibility

With the help of the ordering that we have introduced in the previous section, we are
ready to define a version of subtraction which rounds up to 0 in order to preserve
non-negativity. For this, we first show the following

LEMMA 8.9. PA ⊢ ∀x∀y
(
x ≤ y → ∃!r(x + r = y)

)

Proof. Assume that x ≤ y. The existence of r follows directly from the definition
of “≤” and the uniqueness of r is a consequence of LEMMA 8.3. ⊣

So, we can define within PA the binary function “−”, called bounded subtrac-

tion, by stipulating

x− y = z :⇐⇒ (y ≤ x ∧ y + z = x) ∨ (x < y ∧ z = 0) .

Observe that PA ⊢ ∀x∀y ≤ x((x − y) + y = x), from which we can easily derive
computation rules for bounded subtraction such as

PA ⊢∀x∀y∀z
(
x(y − z) = xy − xz

)
, or

PA ⊢∀x∀y∀z
(
x ≤ y → (x − z ≤ y − z)

)
.

Let us turn now to divisibility, which can easily be formalised by stipulating

x | y :⇐⇒ ∃r(rx = y).
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If the binary divisibility relation “ | ” holds for the ordered pair (x, y), then we say
that “x divides y”. Without much effort, one can verify that the divisibility relation
is reflexive, antisymmetric, and transitive. So, we will omit the proof of the next
result.

LEMMA 8.10.

(a) PA ⊢ ∀x(x |x)

(b) PA ⊢ ∀x∀y(x | y ∧ y |x→ x = y)

(c) PA ⊢ ∀x∀y∀z(x | y ∧ y | z → x | z)

Also without much effort we can prove the following

LEMMA 8.11.

(a) PA ⊢ ∀x∀y∀z(x | y ∧ x | z → x | y ± z), where the symbol “±” stands for
either“+” or “−”.

(b) PA ⊢ ∀x∀y∀z(x | y → x | yz)

Proof. For (a) assume that x divides y and z. Then there are r, s such that y = rx
and z = sx. Then y± z = rx± sx = (r± s)x, thus x divides y± z. Condition (b)
is obvious. ⊣

In most textbooks, one defines two numbers to be coprime (or relatively prime),
if they have no common divisor. Nevertheless, for our purpose it is more convenient
to use the following equivalent definition:

coprime(x, y) :⇐⇒ x 6= 0 ∧ y 6= 0 ∧ ∀z
(
x | yz → x | z

)

Since we are working with this somewhat unusual definition of relative primality,
we first check that it is a symmetric relation.

LEMMA 8.12. PA ⊢ ∀x∀y
(
coprime(x, y)↔ coprime(y, x)

)

Proof. Assume coprime(x, y). We have to show that for every z we have y |xz
implies y | z. So, let z be such that y |xz. Since y |xz, there is an r with yr = xz.
Furthermore, since x |xz and xz = yr, we get x | yr, and by coprime(x, y) we have
x | r. Thus, there is an s such that xs = r, and hence, xsy = ry = yr = xz. Now,
by LEMMA 8.5 we obtain sy = z, and therefore y | z, as desired. ⊣

If the binary relation “coprime” holds for x and y, then we say that “x and y are
coprime”.

LEMMA 8.13. PA ⊢ ∀x∀y∀k
(
k |x ∧ coprime(x, y)→ coprime(k, y)

)
.
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Proof. Assume that x and y are coprime. Let k be a divisor of x and let r be such
that rk = x. Assume y | kz for some arbitrary z. We have to show that y | z. First
notice that by LEMMA 8.11 (b), y | rkz, and since rkz = xz, we have y |xz. Now,
since coprime(x, y), we obtain y | z as desired. ⊣

The following result will be crucial in the construction of Gödel’s β-function
(see THEOREM 9.8), which will be the key to the FIRST INCOMPLETENESS THE-
OREM 10.6.

LEMMA 8.14. PA ⊢ ∀k ∀x 6= 0 ∀j
(
k |x→ coprime

(
1+ (j + k)x, 1+ jx

))

Proof. We first show PA ⊢ ∀x 6= 0 ∀j
(
coprime(x, 1 + jx)

)
, i.e., we show that for

all z,
x | (1 + jx)z → x | z .

For this, suppose x | (1 + jx)z for some arbitrary z. Since (1 + jx)z = z + jxz,
by LEMMA 8.11 (b) we have x | jxz, and as a consequence of LEMMA 8.11 (a) we
obtain x | z.

Now, let k and x 6= 0 be such that k |x. Notice that since x 6= 0, this implies that
k 6= 0. Furthermore, let j be arbitrary but fixed. We have to show

coprime
(
1+ jx, 1+ (j + k)x

)
,

i.e., we have to show that for all z,

(1+ jx) |
(
1+ (j + k)x

)
z → (1+ jx) | z .

First notice that

(
1+ (j + k)x

)
z = (1+ jx+ kx)z = (1+ jx)z + kxz .

Assume now that for some z,

(1 + jx) | (1 + jx)z + kxz .

By LEMMA 8.11 (b) we have (1 + jx) | (1 + jx)z, and by LEMMA 8.11 (a), this
implies (1 + jx) | kxz. Now, since coprime(x, 1 + jx), as shown above, we get

(1+ jx) |x(kz)→ (1+ jx) | kz .

Finally, since by assumption k |x, by LEMMA 8.13 and coprime(x, 1+ jx) we get
coprime(k, 1+ jx). Hence, we obtain (1+ jx) | z as desired. ⊣
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Alternative Induction Schemata

A fundamental principle in elementary number theory states that if there is a nat-
ural number fulfilling some property Ψ, then there must be a least natural number
satisfying Ψ. This principle can be shown in PA; actually, every instance of this
principle (i.e., by considering Ψ to be some LPA-formula) is equivalent to the cor-
responding instance of the induction schema PA6. In order to prove this, we need
another induction principle which will also turn out to be quite useful.

PROPOSITION 8.15 (STRONG INDUCTION PRINCIPLE). Let ϕ(x) be an LPA-
formula. Then in PA, ϕ satisfies the following principle of strong induction:

PA ⊢ ∀x
(
∀y < xϕ(y)→ ϕ(x)

)
→ ∀xϕ(x)

Proof. Suppose ∀x
(
∀y < xϕ(y)→ ϕ(x)

)
. Using PA6, we first show ∀xψ(x) for

ψ :≡ ∀y < xϕ(y).

Notice that ψ(0) vacuously holds, since there is no y < 0 with ¬ϕ(y). Now, if ψ(x)
holds, then by our assumption we have ϕ(x). So, we have ψ(x) and ϕ(x), which is
the same as ψ(sx). So, by PA6 we obtain ∀xψ(x). Now, because for every x, ψ(sx)
implies ϕ(x), we finally obtain ∀xϕ(x). ⊣

PROPOSITION 8.16 (LEAST NUMBER PRINCIPLE). Let ϕ(x) be an LPA-formula.
Then

PA ⊢ ∃xϕ(x)→ ∃x
(
ϕ(x) ∧ ∀y < x ¬ϕ(y)

)
.

Informally, the LEAST NUMBER PRINCIPLE states that if there is a witness to an
arithmetic statement, then there is always a least witness. Often, this is used in the
following equivalent form: If a universally quantified formula does not hold, then
there is a least counterexample.

Proof of Proposition 8.16. By TAUTOLOGY (K) and the 3-SYMBOLS THEOREM 1.2,
we have

∃xϕ(x)→ ∃x
(
ϕ(x) ∧ ∀y < x ¬ϕ(y)

)
⇔

∀x¬ϕ(x) ∨ ∃x
(
ϕ(x) ∧ ∀y < x ¬ϕ(y)

)
,

where the latter is equivalent to the implication

∀x
(
¬ϕ(x) ∨ ¬∀y < x ¬ϕ(y)

)
→ ∀x¬ϕ(x).

Now, by TAUTOLOGY (K), this implication is equivalent to

∀x
(
∀y < x ¬ϕ(y)→ ¬ϕ(x)

)
→ ∀x¬ϕ(x),
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which is the STRONG INDUCTION PRINCIPLE 8.15 applied to the formula ¬ϕ(x),
and consequently we have PA ⊢ ∃xϕ(x)→ ∃x

(
ϕ(x) ∧ ∀y < x ¬ϕ(y)

)
. ⊣

Relative Primality revisited

We conclude this chapter by providing an alternative definition of relative primal-
ity, which shall be useful in the next chapter. First, we introduce the Principle of
Division with Remainder:

PROPOSITION 8.17 (PRINCIPLE OF DIVISION WITH REMAINDER).

PA ⊢ ∀x∀y > 0 ∃q ∃r
(
x = qy + r ∧ r < b

)
.

Proof. Let ϕ(x) ≡ ∀y > 0 ∃q ∃r
(
x = qy + r ∧ r < q

)
. The proof is by induction

on x. We obviously have ϕ(0). Now, assume that we have ϕ(x) for some x, i.e., for
each y > 0 there are q, r such that

x = qy + r ∧ r < q .

If we replace x with sx, then for each y > 0 there are q, r such that

sx = qy + sr ∧ sr ≤ q .

If sr < q, let r′ := sr and q′ := q, and if sr = q, let r′ := 0 and q′ := sq. Now, in
both cases we obtain

sx = q′y + r′ ∧ r′ =< q′ ,

which shows ϕ(sx). ⊣

The following result gives a relation between PRINCIPLE OF DIVISION WITH

REMAINDER and relatively prime numbers:

LEMMA 8.18. For any x, y > 0 with x = qy + r and r < q we have

PA ⊢ coprime(y, x)↔ coprime(y, r) .

Proof. By definition we have coprime(y, x) ↔ ∀z(y | xz → y | z), and since
x = qy + r, we obtain

coprime(y, x)↔ ∀z(y | yqz + rz → y | z) .

Now, by LEMMA 8.11 we have (y | yqz + rz)↔ (y | rz), and therefore we obtain

coprime(y, x) ↔ ∀z(y | rz → y | z) ↔ coprime(y, r) .

⊣
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Now we are ready to give the promised alternative definition of relative primality.

PROPOSITION 8.19.

PA ⊢ ∀x∀y
(
coprime(x, y) ↔ x 6= 0 ∧ y 6= 0 ∧ ∀z

(
(z | x ∧ z | y)→ z = 1

))
.

Proof. The statement is obvious for x = y, or if at least one of x and y is equal to 1.
So, without loss of generality, let us assume that x > y > 1.

(→) The proof is by contraposition. Assume that there is a z such that z | x, z | y,
and z > 1. So, there is a u < x such that uz = x. Now, since z | y, we obtain
x | yu, and since u < x, we have x ∤ u, which implies ¬ coprime(x, y).

(←) Assume towards a contradiction that there is a pair of numbers (x, y) with
x > y > 0, such that for all z we have

(z | x ∧ z | y)→ z = 1 ,

but ¬ coprime(x, y). By the LEAST NUMBER PRINCIPLE, let (x0, y0) be the such
a pair of numbers where x0 is minimal. Let q and r be such x0 = qy0 + r. Since
¬ coprime(x0, y0), by LEMMA 8.18 we have ¬ coprime(y0, r). On the other hand,
if there is a z0 > 1 with z0 | y0 and z0 | r, then this would imply that

z0 | qy0 + r , i.e., z0 | x0 ,

but since z0 > 1, this contradicts the fact that (z0 | x0 ∧ z0 | y0)→ z0 = 1. So, for
the pair (y0, r) we have ¬ coprime(y0, r), for all z we have

(z | y0 ∧ z | r)→ z = 1 ,

and in addition we have y0 < x0, which is a contradiction to the minimality of x0. ⊣

As an immediate consequence of PROPOSITION 8.19 we get the following

COROLLARY 8.20. For all x and y, the following statement is provable in PA.

coprime(x, y) ↔ x 6= 0 ∧ y 6= 0 ∧ ∀z < (x + y)
(
(z | x ∧ z | y)→ z = 1

)

EXERCISES

8.0 Prove that addition is associtative, i.e., PA ⊢ ∀x∀y∀z(x + (y + z) = (x+ y) + z).

8.1 Introduce the unary relations even(x) and odd(x) formalising evenness and oddness, and
show that

PA ⊢ ∀x
(
even(x) ∨ odd(x)

)
.
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8.2 Show that BÉZOUT’S LEMMA is provable in PA, i.e., show that

PA ⊢ ∀x∀y
(

coprime(x, y) ↔
(
x 6= 0 ∧ y 6= 0 ∧ ∃a < y ∃b < x (ax+ 1 = by)

))

.

Hint : Show first ∃a∃b(ax + 1 = by) ↔ ∃a′∃b′(a′x = b′y + 1) (e.g., let a′ := y − a and
b′ := x − b). Then use the PRINCIPLE OF DIVISION WITH REMAINDER and the LEAST

NUMBER PRINCIPLE.

8.3 Prove PA6 from PA0–PA5 and the LEAST NUMBER PRINCIPLE.

8.4 Prove the following alternative induction principle:

PA ⊢
(
ϕ(1) ∧ ∀x(ϕ(x) → ϕ(2x) ∧ ϕ(x− 1))

)
→ ∀xϕ(x)


