
Chapter 11

The First Incompleteness Theorem

Gödel’s First Incompleteness Theorem essentially that PA is incomplete, i.e. there
is a LPA-sentence σ such that PA & σ and PA &  σ. We prove the First Incom-
pleteness Theorem not only for PA but also for weaker and stronger theories.

The provability predicate

In this section we state some properties of the provability predicate that we have
introduced in Chapter 10.

LEMMA 11.1. The following statements hold:

(a) PA $ prvpxq ^ prvpimppx, yqq Ñ prvpyq

(b) PA $ prvpxq ^ prvpyq Ñ prvpandpx, yqq.

Proof. For (a) note that the assumptions prvpxq and prvpimppx, yqq implymppx, imppx, yq, yq.
Now if c, c1 satisfy c_prvpc, xq and c_prvpc1, imppx, yqq then we obtain c_prvpcac1axyy, yq
and hence prvpyq as desired.
For (b) assume prvpxq and prvpyq. In particular, this implies fmlpxq and fmlpyq.
note that using the formalised version of the axiom L5 we get

PA $ prvpimppy, imppx, andpx, yqqqq.

Using prvpyq and (a) we get prvpimppx, andpx, yqqq and a further application of
(a) yields prvpandpx, yqq. %

An immediate consequence of Lemma 11.1 is the following:

COROLLARY 11.2. Let ϕ and ψ be LPA-formulae. Then we have

(a) PA $ prvpxϕÑ ψyq Ñ pprvpxϕyq Ñ prvpxψyqq
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(b) PA $ prvpxϕyq ^ prvpxψyq Ñ prvpxϕ^ ψyq.

Note that (a) corresponds to a formalised version of the inference rule (MP).

COROLLARY 11.3. Let ϕ and ψ be LPA-formulae. Then the following statements
hold:

(a) If ϕôPA ψ, then prvpxϕyq ôPA prvpxψyq.

(b) prvpxϕyq ^ prvpxψyq ôPA prvpxϕ^ ψyq.

Proof. For (a) assume that ϕ ôPA ψ. By symmetry, it suffices to verify that
PA $ prvpxϕyq Ñ prvpxψyq. Since PA $ ϕ Ñ ψ, Corollary 10.13 yields
PA $ prvpxϕ Ñ ψyq. The assertion then follows from Corollary 11.2 using
MODUS PONENS. For (b) note that by part (b) Corollary 11.2 it suffices to prove
PA $ prvpxϕ ^ ψyq Ñ prvpxϕyq ^ prvpxψyq. But this is a direct consequence of
Corollary 11.2 (a) using L3 and L4. %

The Diagonalisation Lemma

Standard natural numbers are either 0 or the successor sn of a standard natural
number n. Hence we can introduce a binary relation which states that x codes the
natural number n in the following way:

c_natpc, n, xq :ðñ seqpcq ^ lhpcq “ sn^ c0 “ x0y^ @i ă n

pcsi “ succpciq ^ cn “ xq

natpn, xq :ðñDcpc_natpc, n, xqq.

Clearly, it follows from the definition that

PA $ c_natpc, n, xq Ñ c_natpcaxsuccpxqy, sn, succpxqq.

LEMMA 11.4. For any natural number n P N we have PA $ natpn, xnyq. In partic-
ular, if ϕ is an LPA-formula, then PA $ natpxϕy, xxϕyyq.

Proof. We proceed by metainduction on n. For n “ 0 the term 0 is the same
as 0 and clearly the singleton sequence c “ xx0yy witnesses c_natpc, 0, x0yq.
Now suppose that the claim holds for some n P N. Then there is c such that
c_natpc, n, xnyq. We put c1 “ caxxsnyy. Notice that then lhpc1q “ ssn and
pc1qsn “ xsny “ succpxnyq. Using the induction hypothesis and the observation
above we obtain c_natpc1, sn, xsnyq. %

We define

gnpnq “ x :ðñ natpn, xq _  Dypnatpn, yq ^ x “ 0q.
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This indeed defines a function, since one can easily prove that PA $ natpn, xq ^
natpn, yq Ñ x “ y using the definition of the predicate seq. In particular, by
Lemma 11.4 we have

PA $ gnpxϕyq “ xxϕyy. (˚)

Now we have assembled all the ingredients to prove the DIAGONALISATION LEMMA

which is an important tool for the proof of Gödel’s Incompleteness Theorems.

THEOREM 11.5 (DIAGONALISATION LEMMA). Let ϕpνq be an LPA-formula with
one free variable ν which does not occur bound in ϕ. Then there exists an LPA-
sentence σ such that

PA $ σ Ø ϕpν{xσyq ,

i.e., σ ôPA ϕpxσyq.

Proof. We define

ψpv0q :” @v1
`
sb_fmlps0, gnpv0q, v0, v1q Ñ ϕpν{v1q

˘

and
σϕ :” ψpv0{xψyq,

i.e., σϕ ” ψpxψyq and xσϕy “ xψpxψyqy. Then we have

σϕ ” @v1
`
sb_fmlps0, gnpxψpv0qyq, xψpv0qy, v1q Ñ ϕpν{v1q

˘

ôPA @v1
`
sb_fmlps0, xxψpv0qyy, xψpv0qy, v1q Ñ ϕpν{v1q

˘

ôPA @v1
`
v1 “ xψpv0{xψpv0qyqy Ñ ϕpν{v1q

˘

ôPA ϕpxψpv0{xψpv0qyqyq

” ϕpxψpxψyqyq

” ϕpxσϕyq,

where the first equivalence follows from (˚) and the second one from Lemma
10.11. %

The DIAGONALISATION LEMMA is often called FIXPOINT LEMMA, since the sen-
tence σ can be conceived as a fixed point of σ. It is a powerful tool, since it allows
us to make self-referential statements, i.e. for a formula ϕ with one free variable it
provides a sentence σ which states "I have the property ϕ".

The First Incompleteness Theorem

Now we are ready to prove a first version of Gödel’s First Incompleteness Theorem:
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THEOREM 11.6 FIRST INCOMPLETENESS THEOREM (FOR PA). PA is incom-
plete.

Proof. By the DIAGONALISATION LEMMA there is an LPA-sentence σ such that

σ ôPA  prvpxσyq.

To see this, let ϕpv0q :”  prvpv0q. Then σϕ ôPA ϕpxσϕyq and ϕpxσϕyq ”
ϕpv0{xσϕyq ”  prvpv0{xσϕyq ”  prvpxσϕyq.

Suppose for a contradiction that PA is complete. Then there are two cases:

Case 1. PA $ σ. Then by Corollary 10.13 we have PA $ prvpxσyq. On the other
hand, since σ ôPA  prvpxσyq, we have PA $  prvpxσyq and so PA $ �. But
since N ( PA, this contradicts the SOUNDNESS THEOREM.

Case 2. PA $  σ. From

 σ ôPA   prvpxσyq ôPA prvpxσyq

we obtain PA $ prvpxσyq. In particular, N ( prvp#σq and so there exists n P N

with N ( c_prvpn,#σq. But then by Lemma 10.12, n codes a formal proof of σ
and so PA $ σ, a contradiction.

Since both cases lead to a contradiction, PA is incomplete. %

In the proof of Theorem 11.6 above we proved that a sentence σ with the property
σ ôPA  prvpxσyq witnesses the incompleteness of PA. In N however, σ is true:
Note that if N (  σ, then N ( prvp#σq. But then Lemma 10.12 would imply
PA $ σ and hence also N ( σ, a contradiction. Observe that in N the sentence
σ expresses “I am not provable” – where provable is meant with respect to prv –
which is, of course, true.

The First Incompleteness Theorem in Other Theories of

Arithmetic

A first attempt to deal with the incompleteness phenomenon might be to replace
PA with T ” PA ` σ, since N ( T. Moreover, the gödelisation process could
be done in the same way, where one would just need to code an additional axiom,
namely σ. However this would lead to a modified provability predicate prvT which
additionally allows formal proofs to be initialised with σ. One could then prove
a version of the DIAGONALISATION LEMMA which would allow us to define a
version σT of σ with the property

T $ σT Ø  prvTpxσTyq.

But then we obtain a version of the FIRST INCOMPLETENESS THEOREM, since
T & σT and T &  σT. This suggests that Theorem 11.6 can be generalised. This
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is exactly the goal of this section, whereby we consider both weaker and stronger
theories than PA.

We investigate how much ofPA is really needed for the incompleteness proof. As we
have seen that exponentiation can be expressed using addition and multiplication,
one idea might be to leave out multiplication and thus delete PA4 and PA5. The re-
sulting theory, called Presburger Arithmetic, will however turn out to be complete
(see Chapter 13). The most critical axiom is certainly the induction schema PA6, so
we might consider the theory with PA6 deleted. This is still not strong enough, but
as we will see, one instance of PA6 actually suffices. Robinson Arithmetic RA is
the axiom system consisting of PA0-PA5 and the additional axiom

@xpx “ 0_ Dypx “ syqq.

The language of RA is also LPA, so we can express the same statements as in PA

but prove less theorems. Thus it is clear that RA must be incomplete. In fact, RA is
so weak that it fails to prove @p0 ` x “ xq:

Example 11.1. We show that RA & @xp0`x “ xq and hence, in particular,RA fails
to prove that addition is commutative. To achieve this, we provide a model M of RA
in which @xp0`x “ xq is false. The domain of the model isM “ NYta, bu, where
a and b are any two distinct mathematical objects which are not in N. Furthermore,
let ā ” b and b̄ ” a. Then we can interpret 0M by 0 and the functions by

sMpxq ”

#
sNpxq x P N

x x P ta, bu

x`M y ”

$
’&
’%

x`N y x, y P N

x y P N and x R N

ȳ y R N.

x ¨M y ”

$
’&
’%

x ¨N y x, y P N

y y P t0, a, bu

x̄ y ı 0 and x P ta, bu.

It is easy to check that M is a model of RA, and 0`M b ” a ı b ” b`M 0.

Note that N0–N5 in Proposition 10.1 are also provable in RA, since the proof uses
metainduction rather than induction in PA and the only non-trivial argument uses
Lemma 9.6 which can easily be seen to hold in RA.

In the following, we prove that all relations and functions that are introduced in
Chapters 9 and 10 are N-conform. To achieve this, we prove that each such relation
and function can be defined both by an D-formula and a @-formula. The represen-
tations with an D-formula are already given, and functions defined by an D-formula
always have an equivalent definition by a @-formula by part(b) of Corollary 10.3.
The only relations whose representation by a @-formula is non-trivial, are term, fml
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as well as all relations used to formalise substitution and formal proofs. Note that if
we are able to show that the existential quantifiers in term and fml can be replaced
by a bounded existential quantifier, then the same can be achieved for all subsequent
relations.

LEMMA 11.7. If ψ is a formula of the form ψ ” Dcpseqpcq ^ ϕpcqq for some ∆-
formula ϕ, and there is a term τ whose variables are among freepψq such that

PA $ seqpcq ^ ϕpcq Ñ plhpcq ă τ ^ @i ă lhpcqpci ă τqq

then ψ is also a ∆-formula.

Proof. We go once more through the proof of Theorem 10.8 and show that the
quantifier Dc can be replaced by a bounded quantifier.
Suppose that F piq is a function defined by a ∆-formula. Let F 1piq “ oppτ, iq ` 1

andm “ maxiăτ F
1piq. Moreover, note that by Exercise 34 we can define factorials

in PA. Let y “ m!. Furthermore, put Gpjq “ 1 ` pj ` 1qy. By Lemma 9.14, we
have that for all i, j ă m, Gpiq and Gpjq are coprime. Now Lemma 10.7 allows us
to pick x with χpxq, where

χpxq ” @j ă mpGpjq | xØ Di ă τpj “ oppτ, iqq.

We check that if F piq ă τ for every i ă τ then we can find an upper bound τ 1

whose variables coincide with the variables of τ such that there is c ă τ 1 with
βpc, iq “ F piq for all i ă τ . If this can be accomplished, then we have

ψ ôPA Dc ă τ 1pseqpcq ^ ϕpcqq :

To see this, suppose that seqpcq ^ ϕpcq with c ě τ 1. Now take F piq :“ βpc, iq ă τ .
By our assumption, there is c1 ă τ 1 ď c with βpc1, iq “ F piq “ βpc, iq for all i ă τ .
Moreover, note that lhpc1q “ βpc1, 0q “ βpc, 0q “ lhpcq and lhpc1q “ F p0q ă τ

and hence c1i “ ci for all i ă lhpcq, contradicting seqpcq.
It remains to find τ 1. Note that we clearly have m ď τ1 with τ1 ” oppτ, τq ` 1

and hence y ď τ1!. Furthermore, we have Gpjq ă 1 ` pτ1 ` 1q! for each j ă m.
Therefore, since Gpiq and Gpjq are coprime for all i, j ă m, we can find x which
satisfies χpxq such that x ă τ2 with τ2 ” p1 ` pτ1 ` 1q!qτ1 . In particular, there is
c “ oppx, yq with seqpcq ^ ϕpcq and c ă oppτ1, τ2q.

%

LEMMA 11.8. The relations term and fml are N-conform.

Proof. We want to apply Lemma 11.7 to the defining formulae of term and
formula. Since both cases are similar, we only consider term. We prove that
Dc c_termpc, tq is equivalent to the formula

ϕptq ” Dcpc_termpc, tq ^ @i ă lhpcq@j ă ipcj ă ciqq.
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Then Lemma 11.7 for τ ” t ` 1 concludes the proof. We proceed by strong in-
duction on lhpcq. If lhpcq “ 1, then there is nothing to prove. Suppose now that
for all t1 ă t, termptq Ñ ϕptq holds and assume c_termpc, tq. If t “ 0 or varptq,
then c_termpxty, tq and hence ϕptq holds. Hence we either have t “ succpciq, t “
addpci, cjq or t “ multpci, cjq for i, j ă lhpcq. We only focus on the first case, since
the others can be handled in the same way. Note that by Exercise 37 we can restrict
c to xcj | j ď iywhich we denote by c æ sci. Clearly, ci ă c and c_termpc æ si, ciq.
Hence by our induction hypothesis, there is d with c_termpd, ciq and dk ă dj for
all j ă lhpdq and k ă j. But then daxty witnesses ϕptq. %

Lemma 11.8 implies that if n P N is a natural number which is not the Gödel
number of a term or formula, then

RA $  termpnq

RA $  fmlpnq.

Moreover, the relation c_prv is also a ∆-formula and hence

RA $  c_prvpn, xϕyq

whenever n does not encode a formal proof of ϕ. However, the existential quantifier
in the definition of the provability relation prv cannot be bounded: Otherwise RA &
ϕ would imply RA $  prvpxϕyq, contradicting the incompleteness of RA.

There are two ways to generalise the FIRST INCOMPLETENESS THEOREM: Firstly,
one can modify the underlying language and, secondly, one can use a different ax-
iom system. If the language satisfies L Ě LPA and we have N-conformity of all
relevant relations, then, as we shall see, the proof can easily be transferred to the
new setting. However, there are two issues which are affected: The gödelisation of
the language, and the gödelisation of the axioms. The coding of terms, formulae and
proofs can then be realised in the same way as in Chapter 10.
A language L Ě LPA is said to be gödelisable, if it is countable. Note that if L

is gödelisable, then its constant, relation and function symbols admit Gödel coding
as described in Chapter 10. A theory T in some gödelisable language L Ě LPA is
gödelisable, if there is a ∆-formula axT in the language LPA with the property that
N ( axTp#ϕq if and only if ϕ P T, where #ϕ is the Gödel code of ϕ. As in the
case of PA, we introduce Gödel codes on the formal level by xϕy :” #ϕ.

Refer somehow to recursion theory

Note that if T is gödelisable and satisfies N0 – N5, then by Corollary 10.3 every
∆-formula ϕ in the language LPA is N-conform. In particular, by Lemma 11.8 is
possible to define ∆-formulae termT and fmlT such that

N ( termTpnq ÎùùùÏ n ” #τ for some L -term τ

N ( fmlTpnq ÎùùùÏ n ” #ϕ for some L -formula ϕ.
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Moreover, by gödelisability of T, the axioms can be coded by some ∆-formula axT.
One can then proceed to define a ∆-formula c_prvT and an D-formula prvT such
that

N ( c_prvTpn,#ϕq ÎùùùÏ n codes a formal proof of ϕ

N ( prvTp#ϕq ÎùùùÏ T $ ϕ

for every n P N and L -formula ϕ. Notice that it is crucial that c_prvT and prvT
are LPA-formulae, since otherwise we would have to specify how to interpret them
in the standard model N. Moreover, using Corollary 10.3, we obtain

P0: N ( c_prvTpn,#ϕq ùùùÏ T $ c_prvTpn, xϕyq

P1: N (  c_prvTpn,#ϕq ùùùÏ T $  c_prvTpn, xϕyq.

In the following, we present two proofs of the FIRST INCOMPLETENESS THEOREM

for gödelisable theories T Ě RA. The restriction to extensions of RA ensures that
N0 –N5 and hence also Corollary 10.3 hold.
Gödel’s original proof uses the assumption of a slightly stronger property than con-
sistency: An LPA-theory T is said to be ω-consistent, if whenever T $ Dxϕpxq for
some LPA-formula ϕpxq, then there exists n P N such that T &  ϕpnq.

FACT 11.9. If T is an LPA-theory with N ( T, then T is ω-consistent. In particular,
PA and RA are ω-consistent.

Proof. If T $ Dxϕpxq, the N ( Dxϕpxq. Hence there is n P N with N ( ϕpnq. But
then T` ϕpnq is consistent and so T &  ϕpnq. %

THEOREM 11.10 FIRST INCOMPLETENESS THEOREM (GÖDEL’S VERSION). Let
T Ě RA be a gödelisable LPA-theory. If T is ω-consistent, then T is incomplete.

Proof. Observe that the proof of DIAGONALISATION LEMMA still works if we re-
place PA by T. Take a sentence σ such that

σ ôPA  prvTpxσyq.

Suppose for a contradiction that T is complete. Then we have that either T $ σ or
T $  σ.

Case 1. T $ σ. In this case the argument is the same as in Theorem 11.6.

Case 2. T $  σ. Then T $ prvTpx σyq. On the other hand, by assumption
 σ ôT   prvTpxσyq ôT prvTpxσyq and so T $ prvTpxσyq. By Corollary
11.2 we have T $ prvTpxσ ^  σyq and so by ω-consistency there is n P N

such that T &  c_prvTpn, xσ ^  σyq. By ω-consistency there is n P N such that
T &  c_prvTpn, xσ ^  σyq. However, since T is consistent, T & σ ^  σ and so
N (  c_prvTpn,#pσ ^ σqq. But then P1 implies T $  c_prvTpn, xσ ^  σyq,
a contradiction. %
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Rosser showed in [16] how to get rid of this dependency on ω-consistency by mod-
ifying slightly the provability predicate:

c_prvR
Tpc, xq :ðñ c_prvTpc, xq ^  Dc

1 ă cpc_prvTpc
1, notpxqqq

prvR
Tpxq :ðñ Dcpc_prvR

Tpc, xqq.

THEOREM 11.11 FIRST INCOMPLETENESS THEOREM (USING ROSSER’S TRICK).
Let L Ě LPA be a gödelisable language and let T be a gödelisable L -theory. If T
is consistent, then it is incomplete.

Proof. As before, we want to apply the DIAGONALISATION LEMMA; this time to
the formula prvRpxq. Thus we obtain an L -sentence σ with

σ ôPA  prvRpxσyq.

Again, we want to prove that neither σ nor its negation can be inferred from T.
Observe first that our assumption on σ implies

σ ôPA @cpc_prvpc, xσyq Ñ Dc1 ă cpc_prvpc1, x σyqqq

since notpxσyq “ x σy. Assume, towards a contradiction, that T is complete. As
before, we have two cases:

Case 1. T $ σ. Then by P0 there is n P N such that T $ c_prvTpn, xσyq. On the
other hand, by our computation above we have T $ Dc ă npc_prvTpc, x σyqq.
Since T satisfies N5, this means that there exists k ă n in N such that T $
c_prvTpk, x σyq. But then there is m P N with T $ c_prvTpm, xσ ^  σyq. But
then by N-conformity of c_prvT, N ( c_prvTpm,#pσ^ σqq and so T $ σ^ σ,
contradicting our assumption that T is consistent.

Case 1. T $  σ. Then there is n P N such that T $ c_prvTpn, x σyq. On the other
hand, we have T $ prvR

T
pxσyq and hence there is c with c_prvR

T
pc, xσyq. By defini-

tion of c_prvR
T

, we get c ă n. Now we can use N5 to reach the same contradiction
as in Case 1. %

Tarski’s Theorem

The DIAGONALISATION LEMMA allows us to make self-referential statements such
as the Gödel sentence which formalizes the sentence “This sentence is not prov-
able”. Recall that we call an LPA-sentence ϕ true in N, if N ( ϕ. Is it possible to
express truth in the standard model N by a formula, i.e. is there a formula truthpxq
with one free variable x such that for every LPA-sentence ϕ,

N ( truthp#ϕq ÎùùùÏ N ( ϕ
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which is equivalent to
N ( truthp#ϕq Ø ϕ ?

Using the DIAGONALISATION LEMMA we provide a negative answer.

THEOREM 11.12 (TARSKI’S THEOREM). There is no LPA-formula truthpxq with
one free variable x such that N ( truthp#ϕq Ø ϕ.

Proof. Suppose for a contradiction that such a formula truth exists. By the DIAG-
ONALISATION LEMMA there exists an LPA-sentence σ such that

PA $ σ Ø  truthpxσyq.

But then

N ( truthp#σq ÎùùùÏ N ( σ

ÎùùùÏ N (  truthp#σq

which is impossible. %

Note that we have solved the so-called Liar paradox concerned with the sentence

“This sentence is false”

which is obviously true iff it is false. Clearly, the above sentence corresponds to the
sentence σ in the proof of TARSKI’S THEOREM. In order to express it (in PA) one
would need to be able to define truth which is impossible by TARSKI’S THEOREM.

EXERCISES

42. Something else

43. Prove PA $ termpgnpxqq.


