
Chapter 15

Models and Ultraproducts

The goal of this chapter is to show that every consistent L -theory has a model, no
matter whether the signature L is countable or uncountable. In addition, we will
show that if a consistent L -theory T has an infinite model, then, on the one hand,
T has arbitrarily large models, and on the other hand, T has a model of size at most
max

{
ℵ0, |L |

}
.

In order to prove these results, we shall work within a model of ZFC, in partic-
ular, we shall make use of the Axiom of Choice. So, in contrast to the proofs of the
corresponding results in Part II, the proofs below are in general not constructive. As
a matter of fact we would like to mention that even though the proofs are carried out
in a model of ZFC, in general, they cannot be carried out in ZFC. In fact, we do not
work with ZFC as a formal system, but we just take a model of ZFC and use it as a
framework in which we carry out the proofs.

Filters and Ultrafilters

In this sections, we introduce the notions of filters and ultrafilters.
Let S be an arbitrary non-empty set and let P(S) be the power-set of S, i.e., the

set of all subsets of S. A set F ⊆ P(S) is called a filter over S, if F has the
following properties:

• S ∈ F and ∅ /∈ F

• (x ∈ F ∧ y ∈ F ) → (x ∩ y) ∈ F

• (x ∈ F ∨ y ∈ F ) → (x ∪ y) ∈ F

In particular, if x ∈ F and x ⊆ y, then y ∈ F . So, a filter over S is a set of subsets
of S which does not contain the empty set and which is closed under intersections
and supersets. For example the set {S} is a filter over S. A more interesting example
of a filter over S is the set

F :=
{
x ⊆ S : S \ x is finite

}
,
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176 15 Models and Ultraproducts

which is the so-called Fréchet-filter. Now, a set U ⊆ P(S) is called an ultrafilter

over S, if U is a filter over S and for each x ∈ P(S), either x ∈ U or (S\x) ∈ U .
In other words, a filter U is an ultrafilter if U is not properly contained in any filter.
For example, for each a ∈ S, the set

Ua :=
{
x ⊆ S : a ∈ x

}

is an ultrafilter over S, a so-called trivial ultrafilter. In particular, every ultrafilter
over a finite set is trivial. It is natural to ask whether there exist also non-trivial
ultrafiters, for example, ultrafilters which contain the Fréchet-filter. Or in general,
we can ask whether every filter can be extended to an ultrafiter. This is what the
Ultrafilter Theorem states:

Ultrafilter Theorem: If F is a filter over a set S, then F can be extended to
an ultrafilter.

Surprisingly, we cannot prove the Ultrafilter Theorem without assuming some form
of the Axiom of Choice. However, to prove the Ultrafilter Theorem within ZFC is not
so hard (see EXERCISE 15.0).

Ultraproducts and Ultrapowers

Let L be an arbitrary but fixed signature, let I be an non-empty set, and for each
ι ∈ I , let Mι be an L -structure with domain Aι. Furthermore, let A := ×ι∈I Aι
be the Cartesian product of the sets Aι. Below, we shall identify the elements of
A with function f : I →

⋃
ι∈I Aι, where for each ι ∈ I , f(ι) ∈ Aι. Finally, let

U ⊆ P(I) be an ultrafilter over I . With respect to U , we define a binary relation
“∼” on A by stipulating

f ∼ g : ⇐⇒
{
ι ∈ I : f(ι) = g(ι)

}
∈ U .

FACT 15.1. The relation “∼” is an equivalence relation.

Proof. We have to show that “∼” is reflexive, symmetric, and transitive.

• For all f ∈ A we obviously have f ∼ f .
• For all f, g ∈ A we obviously have f ∼ g ↔ g ∼ f .
• Let f, g, h ∈ A and assume that f ∼ g and g ∼ h. Furthermore, let x :=

{
ι ∈

I : f(ι) = g(ι)
}

and y :=
{
ι ∈ I : g(ι) = h(ι)

}
. Then x, y ∈ U , and since U

is a filter, x ∩ y ∈ U . Thus,

{
ι ∈ I : f(ι) = h(ι)

}
⊆ x ∩ y ∈ U ,

which shows that f ∼ h.
⊣
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For each f ∈ A, let
[f ] := {g ∈ A : g ∼ f}

and let

A∗ := ×
ι∈I

Aι /∼ or equivalently A∗ :=
{
[f ] : f ∈ A

}
.

We now construct the L -structure M∗ with domain A∗ as follows:

• For every constant symbol c ∈ L , let fc ∈ A be defined by stipulating

fc(ι) := cMι for all ι ∈ I ,

and let
cM

∗

:= [fc].

• For every n-ary function symbol F ∈ L , let FM
∗

: (A∗)n → A∗ be such that

FM
∗(
[f0], . . . , [fn−1]

)
= [f ] ⇐⇒

{
ι ∈ I : FMι

(
f0(ι), . . . , fn−1(ι)

)
= f(ι)

}
∈ U .

• For every n-ary relation symbol R ∈ L , let RM
∗

⊆ (A∗)n be such that

〈
[f0], . . . , [fn−1]

〉
∈ RM

∗

⇐⇒

{
ι ∈ I :

〈
f0(ι), . . . , fn−1(ι)

〉
∈ RMι

}
∈ U .

FACT 15.2. The constants cM
∗

, the functions FM
∗

, and the relations RM
∗

are
well-defined.

Proof. We just show that the function FM
∗

: (A∗)n → A is well-defined and leave
the proofs for cM

∗

and RM
∗

as an exercise (see EXERCISE 15.1). Let F ∈ L be
an n-ary function symbol and let 〈f0, . . . , fn−1〉, 〈g0, . . . , gn−1〉 ∈ An be such that
for each 0 ≤ i < n we have

fi ∼ gi or equivalently [fi] = [gi] .

Furthermore, define f, g ∈ A by stipulating

f(ι) := FMι
(
f0(ι), . . . , fn−1(ι)

)
and g(ι) := FMι

(
g0(ι), . . . , gn−1(ι)

)
.

By definition of “∼” and since U is an ultrafilter over I , we have

{
ι ∈ I : f0(ι) = g0(ι) ∧ · · · ∧ fn−1(ι) = gn−1(ι)

}
∈ U ,
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and consequently we obtain
{
ι ∈ I : FMι

(
f0(ι), . . . , fn−1(ι)

)
= FMι

(
g0(ι), . . . , gn−1(ι)

)}
∈ U .

Hence,
{
ι ∈ I : f(ι) = g(ι)

}
∈ U , which shows that [f ] = [g] and implies that

FM
∗(
[f0], . . . , [fn−1]

)
= FM

∗(
[g0], . . . , [gn−1]

)
.

Therefore, the value of the function FM
∗

does not depend on the particular repre-
sentatives we choose from the equivalence classes [fi]. ⊣

The L -structure M∗ with domain A∗ is called the ultraproduct of the L -
structures Mι (ι ∈ I) with respect to the ultrafilter U over I . If for all ι ∈ I
we have Mι = M for some L -structure M, then M∗ is called the ultrapower of
M with respect to U .

In the next section we show that if each L -structure Mι is a model of some
L -theory T, then also the ultraproduct M∗ is a model of T.

Łoś’s Theorem

As above, let L be an arbitrary signature, let I be an non-empty set, and for each
ι ∈ I , let Mι be an L -structure with domain Aι. Finally, let U be an ultrafilter
over I and let M∗ be the ultraproduct of the L -structures Mι (ι ∈ I) with respect
to U .

The following result allows us to decide whether a given L -sentence is valid
in M∗.

ŁOŠ’S THEOREM 15.3. For each L -sentence σ we have

M∗ � σ Î===Ï
{
ι ∈ I : Mι � σ

}
∈ U .

Proof. By THEOREM 1.2, for every L -sentence σ there is an equivalent L -sentence
σ′ which contains only “¬” and “∧” as logical operators and “∃” as quantifier. So, it
is enough to prove ŁOŚ’S THEOREM for L -sentence σ′. The proof is by induction
on the number of the symbols “¬”, “∧”, and “∃” which appear in the L -sentence σ′.

By construction of M∗, ŁOŚ’S THEOREM holds for atomic L -sentences σ′. Now,
assume that σ′ ≡ ¬σ0 and that ŁOŚ’S THEOREM holds for σ0. Then we have:

M∗ � ¬σ0 Î===Ï M∗ 2 σ0
Î===Ï

{
ι ∈ I : Mι � σ0

}
/∈ U

Î===Ï I \
{
ι ∈ I : Mι � σ0

}
∈ U

Î===Ï
{
ι ∈ I : Mι � ¬σ0

}
∈ U
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Now, assume that σ′ ≡ σ1 ∧ σ2 and that ŁOŚ’S THEOREM holds for σ1 and σ2.
Then we have:

M∗ � σ1 ∧ σ2 Î===Ï M∗ � σ1 AND M∗ � σ2

Î===Ï
{
ι ∈ I : Mι � σ1

}
︸ ︷︷ ︸

=:x1

∈ U AND
{
ι ∈ I : Mι � σ2

}
︸ ︷︷ ︸

=:x2

∈ U

Î===Ï x1 ∩ x2 ∈ U

Î===Ï
{
ι ∈ I : Mι � σ1 ∧ σ2

}
∈ U

Finally, assume that σ′ ≡ ∃νσ0 (for some variable ν) and that for any [g] ∈ A∗,
ŁOŚ’S THEOREM holds for σ0

(
ν/[g]

)
. Then

M∗ � ∃νσ0 Î===Ï IT EXISTS [g0] IN A∗ : M∗ � σ0
(
ν/[g0]

)

Î===Ï
{
ι ∈ I : Mι � σ0

(
ν/g0(ι)

)}
︸ ︷︷ ︸

=:x

∈ U .

Because x ⊆
{
ι ∈ I : Mι � ∃νσ0

}
, we have

{
ι ∈ I : Mι � ∃νσ0

}
∈ U ,

which shows that

M∗ � ∃νσ0 ===Ï
{
ι ∈ I : Mι � ∃νσ0

}
∈ U .

In order to show the converse implication, we have to make use of the Axiom of

Choice. If, for ι ∈ I , Mι � ∃νσ0, then let aι ∈ Aι be such that Mι � σ0(ν/aι),
otherwise, let aι be an arbitrary element of Aι. Now, for the function

g0 : I →
⋃
A

ι 7→ aι

we have {
ι ∈ I : Mι � ∃νσ0

}
=

{
ι ∈ I : Mι � σ0

(
ν/g0(ι)

)}
.

In particular, if
{
ι ∈ I : Mι � ∃νσ0

}
∈ U , then also

{
ι ∈ I : Mι � σ0

(
ν/g0(ι)

)}
∈ U ,

which shows that

{
ι ∈ I : Mι � ∃νσ0

}
∈ U ===Ï M∗ � ∃νσ0,

and consequently we obtain M∗ � ∃νσ0 Î===Ï
{
ι ∈ I : Mι � ∃νσ0

}
∈ U . ⊣
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The Completeness Theorem for Uncountable Signatures

In Chapter 5 we have proven GÖDEL’S COMPLETENESS THEOREM 5.5 (i.e., the
COMPLETENESS THEOREM for countable signatures). The proof we have given
was based on potentially infinite lists and the metamathematical assumptions we
made were very mild. In fact, our proof for GÖDEL’S COMPLETENESS THEO-
REM 5.5 can be carried out effectively in a kind of algorithmic way. In contrast to
the proof for countable signatures, the proof of the COMPLETENESS THEOREM for
uncountable signatures — which will follow from the semantic form of the COM-
PACTNESS THEOREM 2.12 — is much more formal. In particular, it makes use of
ŁOŚ’S THEOREM 15.3, which is based on the existence of ultrafilters and choice
functions, and is carried out in a model of ZFC— but not in ZFC itself.

THEOREM 15.4 (Semantic Form of the Compactness Theorem). Let T be an L -
theory such that for every finite subset Φ ⊆ T there is an L -structure MΦ such
that MΦ � Φ. Then T has a model.

Proof. Let I be the set of all finite subsets of T, i.e.,

I :=
{
Φ ⊆ T : Φ is finite

}
,

and for each Φ ∈ I , let MΦ be an L -structure with domainAΦ such that MΦ � Φ.
Furthermore, for every Φ ∈ I let

∆(Φ) :=
{
Φ′ ∈ I : Φ ⊆ Φ′}.

In other words,∆(Φ) is the set of all finite supersets Φ′ ⊇ Φ. In particular, for every
Φ ∈ I we have Φ ∈ ∆(Φ). Now, for all Φ1,Φ2 ∈ I we have ∆(Φ1) ∩∆(Φ1) =
∆(Φ1 ∪ Φ2), where Φ1 ∪ Φ2 ∈ I . Therefore, the set

F :=
{
Ψ ⊆ I : ∃Φ ∈ I

(
∆(Φ) ⊆ Ψ

)}

is a filter over I , which, by the Ultrafilter Theorem, can be extended to an ultrafil-
ter U .

Let M∗ with domain A∗ be the ultraproduct of the L -structures MΦ (Φ ∈ I)
with respect to the ultrafilter U over I , and let σ0 ∈ T be an arbitrary L -sentence.
Then {σ0} ∈ I , and M{σ0} � σ0. Moreover, for every Φ ∈ ∆

(
{σ0}

)
we have

MΦ � σ0. Therefore, we have

∆
(
{σ0}

)
=

{
Φ ∈ I : σ0 ∈ Φ

}
⊆

{
Φ ∈ I : MΦ � σ0

}
.

Now, since ∆
(
{σ0}

)
∈ F ⊆ U , by ŁOŚ’S THEOREM 15.3 we obtain

M∗ � σ0,

and since σ0 ∈ T was arbitrary, this shows that M∗ � T, hence, T has a model. ⊣
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As a consequence of THEOREM 15.4 and GÖDEL’S COMPLETENESS THEO-
REM 5.5 we obtain the the COMPLETENESS THEOREM for arbitrarily large sig-
natures.

COMPLETENESS THEOREM 15.5. If L is an arbitrary signature and T is a consis-
tent set of L -sentences, then T has a model.

Proof. Firstly, if T is consistent, then, by the COMPACTNESS THEOREM 2.12, ev-
ery finite subset Φ ⊆ T is consistent. Secondly, as in the proof of GÖDEL’S COM-
PLETENESS THEOREM 5.5, for every finite subset of Φ ⊆ T we can construct an
L ′-structure M′

Φ with domain AΦ, such that M′
Φ � Φ, where L ′ is the finite

subset of L consisting of all non-logical symbols which appear in sentences of Φ.
Now, we extend each L ′-structure M′

Φ to an L -structure MΦ with the same do-
main AΦ, such that MΦ � Φ (see EXERCISE 3.2). Hence, for every finite subset of
Φ ⊆ T there is an L -structure MΦ such that MΦ � Φ, and therefore, we can apply
THEOREM 15.4 in order to construct a model M∗ � T. ⊣

As an immediate consequences of the COMPLETENESS THEOREM 15.5 and the
SOUNDNESS THEOREM ?? we obtain the following

COROLLARY 15.6. For any signature L , a set T of L -sentences has a model if
and only if T is consistent.

The Upward Löwenheim-Skolem Theorem

We show now that every L -theory which has an infinite model, has arbitrarily large
models.

UPWARD LÖWENHEIM-SKOLEM THEOREM 15.7. Let T be an L -theory which
has an infinite model, and let C be an arbitrarily large set. Then there exists a model
M∗ � T with domain A∗ such that |A∗| ≥ |C| (i.e., the cardinality of A∗ is at least
the cardinality of C).

Proof. For each γ ∈ C we define a constant symbol cγ which does not belong to L .
Let L ∗ := L ∪ {cγ : γ ∈ C}. Furthermore, let T∗ be the L ∗-theory consisting of
the sentences in T together with the sentences cγ 6= cγ′ (for any distinct γ, γ′ ∈ C).
As in the proof of THEOREM 15.4, let I be the set of all finite subsets of T∗. Now,
let M � T be a model with infinite domain A. For any Φ ∈ I we can extent the
L -structure M to an L ∗-structure MΦ such that

MΦ � T+Φ.

To see this, notice that the domain A of M is infinite and that there are just finitely
many constant symbols cγ which appear in Φ. Therefore, we can apply THEO-
REM 15.4 in order to construct an L ∗-structure M∗ with domain A∗ such that
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M∗ � T∗. Finally, by definition of T∗, the elements cM
∗

γ in A∗ (for γ ∈ C) are
pairwise distinct, which shows that |A∗| ≥ |C|. ⊣

As an immediate consequence of the UPWARD LÖWENHEIM–SKOLEM THEO-
REM 15.7 we get the following

COROLLARY 15.8. If an L -theory T has a countably infinite model, then T has
also an uncountable model. In particular, PA has an uncountable model.

As a matter of fact, we would like to mention that the proof of the UPWARD

LÖWENHEIM–SKOLEM THEOREM 15.7 can be carried out neither in the formal
language of ZFC (since we use an infinite set of constant symbols), nor in the lan-
guage of meta-mathematics (since we use THEOREM 15.4, which is based on ŁOŚ’S

THEOREM 15.3 and therefore on ultrafilters).

The Downward Löwenheim-Skolem Theorem

The last result of this chapter provides an upper bound for the minimum size of a
model of a given theory.

DOWNWARD LÖWENHEIM-SKOLEM THEOREM 15.9. If a consistent L -theory T

has an infinite model, then T has a model of size at most max
{
ℵ0, |L |

}
.

Proof. If the signature L is countable, then, by GÖDEL’S COMPLETENESS THE-
OREM 5.5, T has a model, which is — by construction — a countable model.

Now, assume that |L | (i.e., the cardinality of L ) is uncountable. First notice that
with the signature L we can build at most L terms. To see this, recall that a term
is just a special finite string of logical and non-logical symbols, and by FACT 13.7,
the cardinality of the set of such strings is max

{
ℵ0, |L |

}
. Now, in order to build a

model M � T of cardinality at most max
{
ℵ0, |L |

}
, we can essentially follow the

proof of GÖDEL’S COMPLETENESS THEOREM 5.5. However, instead of potentially
infinite lists we have to work with actual infinite sequences of length at most |L |.
At the end of the construction, the domain of M will be a sequence of length at
most |L | of sequences of length at most |L |. ⊣

As an immediate consequence of the DOWNWARD LÖWENHEIM–SKOLEM THE-
OREM 15.9 we get the following

COROLLARY 15.10. If T is a consistent L -theory and the signature L is count-
able, then T has a countable model.


