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First-Order Logic is the system of Symbolic Logic concerned not only to repre-
sent the logical relations between sentences or propositions as wholes (like Propo-
sitional Logic), but also to consider their internal structure in terms of subject and
predicate. First-Order Logic can be considered as a kind of language which is dis-
tinguished from higher-order languages in that it does not allow quantification over
subsets of the domain of discourse or other objects of higher type (like statements
of infinite length or statements about formulas). Nevertheless, First-Order Logic is
strong enough to formalise all of Set Theory and thereby virtually all of Mathemat-
ics.

The goal of this brief introduction to First-Order Logic is to introduce the ba-
sic concepts of formal proofs and models, which shall be investigated further in
Parts II & III.





Chapter 1

Syntax: The Grammar of Symbols

The goal of this chapter is to develop the formal language of First-Order Logic from
scratch. At the same time, we introduce some terminology of the so-called meta-
language, which is the language we use when we speak about the formal language
(e.g., when we like to express that two strings of symbols are equal).

Alphabet

Like any other written language, First-Order Logic is based on an alphabet, which
consists of the following symbols:

(a) Variables such as x, y, v0, v1, . . . , which are place holders for objects of the
domain under consideration (which can for example be the elements of a group,
natural numbers, or sets). We use mainly lower case Latin letters (with or without
subscripts) for variables.

(b) logical operators which are “ ” (not), “^” (and ), “_” (or), and “Ñ” (implies).

(c) Logical quantifiers which are the existential quantifier “D” (there is or there
exists) and the universal quantifier “@” ( for all or for each), where quantification
is restricted to objects only and not to formulae or sets of objects (but the objects
themselves may be sets).

(d) Equality symbol ““”, which stands for the particular binary equality relation.

(e) Constant symbols like the number 0 in Peano Arithmetic, or the neutral element
e in Group Theory. Constant symbols stand for fixed individual objects in the
domain.

(f) Function symbols such as ˝ (the operation in Group Theory), or`, ¨ , s (the op-
erations in Peano Arithmetic). Function symbols stand for fixed functions taking
objects as arguments and returning objects as values. With each function symbol
we associate a positive natural number, its co-called “arity” (e.g., “˝” is a 2-ary
or binary function, and the successor operation “s” is a 1-ary or unary function).
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More formally, to each function symbol F we adjoin a fixed F I N I T E string
of place holders x ¨ ¨ ¨ x and write F x ¨ ¨ ¨ x .

(g) Relation symbols or predicate constants (such as P in Set Theory) stand for
fixed relations between (or properties of) objects in the domain. Again we asso-
ciate an “arity” with each relation symbol (e.g., “P” is a binary relation). More
formally, to each relation symbol R we adjoin a fixed F I N I T E string of place
holders x ¨ ¨ ¨ x and write R x ¨ ¨ ¨ x .

The symbols in (a)–(d) form the core of the alphabet and are called logical symbols.
The symbols in (e)–(g) depend on the specific topic we are investigating and are
called non-logical symbols. The set of non-logical symbols which are used in order
to formalise a certain mathematical theory is called the language (or signature) of
this theory, denoted by L , and formulae which are formulated in a language L

are usually called L -formulae. For example if we investigate groups, then the only
non-logical symbols we use are “e” and “˝”, thus, L “ te, ˝u is the language of
Group Theory.

Terms & Formulae

With the symbols of our alphabet we can now start to compose names. In the lan-
guage of First-Order Logic, these names are called called terms.

Terms. A string of symbols is a term, if it results from applying F I N I T E L Y

many times the following rules:

(T0) Each variable is a term.
(T1) Each constant symbol is a term.
(T2) If τ1, . . . , τn are any terms which we have already built and F x ¨ ¨ ¨ x is an n-

ary function symbol, then Fτ1 ¨ ¨ ¨ τn is a term (each place holder x is replaced
with a term).

In order to define rule (T2) we had to use variables for terms, but since the variables
of our alphabet stand just for objects of the domain and not for terms or other objects
of the formal language, we had to introduce new symbols. For these new symbols,
which do not belong to the alphabet of the formal language, we have chosen Greek
letters. In fact, we shall mainly use Greek letters for variables which stand for ob-
jects of the formal language, also to emphasise the distinction between the formal
language and the metalanguage However, we shall use the Latin letters F &R as
variables for function and relation symbols respectively.

To make terms, relations, and other expressions in the formal language easier to
read, it is convenient to introduce some more symbols, like brackets and commas,
to our alphabet. For example we usually write F pτ1, . . . , τnq rather than Fτ1 ¨ ¨ ¨ τn.

To some extent, terms correspond to names, since they denote objects of the
domain under consideration. Like real names, they are not statements and cannot
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express or describe possible relations between objects. So, the next step is to build
sentences, or more precisely formulae, with these terms.

Formulae. A string of symbols is called a formula, if it results from applying
F I N I T E L Y many times the following rules:

(F0) If τ1 and τ2 are terms, then τ1 “ τ2 is a formula.
(F1) If τ1, . . . , τn are any terms and R x ¨ ¨ ¨ x is any non-logical n-ary relation

symbol, then Rτ1 ¨ ¨ ¨ τn is a formula.
(F2) If ϕ is any formula which we have already built, then  ϕ is a formula.
(F3) If ϕ and ψ are formulae which we have already built, then pϕ^ψq, pϕ_ψq,

and pϕ Ñ ψq are formulae. (To avoid the use of brackets one could write
these formulae for example in Polish notation, i.e., ^ϕψ, _ϕψ, et cetera.)

(F4) If ϕ is a formula which we have already built, and ν is an arbitrary variable,
then Dνϕ and @νϕ are formulae.

Formulae of the form (F0) or (F1) are the most basic expressions we have, and since
every formula is a logical connection or a quantification of these formulae, they are
called atomic formulae.

For binary relations R xx it is convenient to write xRy instead of Rpx, yq. For
example we write x P y instead of Ppx, yq, and we write x R y rather than px P yq.

If a formula ϕ is of the form Dxψ or of the form @xψ (for some formula ψ)
and x occurs in ψ, then we say that x is in the range of a logical quantifier. Every
occurrence of a variable x in a formula ϕ is said to be bound by the innermost
quantifier in whose range it occurs. If an occurrence of x is not in the range of a
quantifier, it is said to be free. Notice that it is possible that a variable occurs in a
given formula at a certain place bound and at another place free. For example, in the
formula Dzpx “ zq ^ @xpx “ yq, the variable x occurs bound and free, whereas
z occurs just bound and y occurs just free. However, one can always rename the
bound variables occurring in a given formula ϕ such that each variable in ϕ is either
bound or free (the rules for this procedure are given later). For a formula ϕ, the set
of variables occurring free in ϕ is denoted by freepϕq. A formula ϕ is a sentence (or
a closed formula) if it contains no free variables (i.e., freepϕq “ H). For example
@xpx “ xq is a sentence but px “ xq is just a formula.

In analogy to this definition we say that a term is a closed term if it contains no
variables. Obviously, the only terms which are closed are the constant symbols and
the function symbols followed by closed terms.

Sometimes it is useful to indicate explicitly which variables occur free in a
given formula ϕ, and for this we usually write ϕpx1, . . . , xnq to indicate that
tx1, . . . , xnu Ď freepϕq.

If ϕ is a formula, ν a variable, and τ a term, then ϕpν{τq is the formula we get
after replacing all free instances of the variable ν by τ . The process to obtain the
formula ϕpν{τq is called substitution. Now, a substitution is admissible iff no free
occurrence of ν in ϕ is in the range of a quantifier that binds any variable which
appears in τ (i.e., for each variable ν̃ appearing in τ , no place where ν occurs free in
ϕ is in the range of “Dν̃” or “@ν̃”). For example, if x R freepϕq, then ϕpx{τq is ad-
missible for any term τ . In this case, the formulae ϕ and ϕpx{τq are identical which
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we express by ϕ ” ϕpx{τq. In general, we use the symbol “”” in the metalanguage
to denote equality of strings of symbols of the formal language. Furthermore, if ϕ is
a formula and the substitution ϕpx{τq is admissible, then we write just ϕpτq instead
of ϕpx{τq. To express this we write ϕpτq :” ϕpx{τq, where we use “:”” in the
metalanguage to define symbols (or strings of symbols) of the formal language.

So far we have letters, and we can build names and sentences. However, these
sentences are just strings of symbols without any inherent meaning. Later we shall
interpret formulae in the intuitively natural way by giving the symbols the intended
meaning (e.g., “^” meaning “and”, “@x” meaning “for all x”, et cetera). But before
we shall do so, let us stay a little bit longer on the syntactical side—nevertheless,
one should consider the formulae also from a semantical point of view.

Axioms

Below we shall label certain formulae or types of formulae as axioms, which are
used in connection with inference rules in order to derive further formulae. From a
semantical point of view we can think of axioms as “true” statements from which
we deduce or prove further results. We distinguish two types of axiom, namely logi-
cal axioms and non-logical axioms (which will be discussed later). A logical axiom

is a sentence or formula ϕ which is universally valid (i.e., ϕ is true in any possible
universe, no matter how the variables, constants, et cetera, occurring in ϕ are inter-
preted). Usually one takes as logical axioms some minimal set of formulae that is
sufficient for deriving all universally valid formulae (such a set is given below).

If a symbol is involved in an axiom which stands for an arbitrary relation, func-
tion, or even for a first-order formula, then we usually consider the statement as an
axiom schema rather than a single axiom, since each instance of the symbol rep-
resents a single axiom. The following list of axiom schemata is a system of logical
axioms.

Let ϕ, ϕ1, ϕ2, and ψ, be arbitrary first-order formulae:

L0: ϕ_ ϕ,
L1: ϕÑ pψ Ñ ϕq,
L2: pψ Ñ pϕ1 Ñ ϕ2qq Ñ ppψ Ñ ϕ1q Ñ pψ Ñ ϕ2qq,
L3: pϕ^ ψq Ñ ϕ,
L4: pϕ^ ψq Ñ ψ,
L5: ϕÑ pψ Ñ pψ ^ ϕqq,
L6: ϕÑ pϕ_ ψq,
L7: ψ Ñ pϕ_ ψq,
L8: pϕ1 Ñ ϕ3q Ñ ppϕ2 Ñ ϕ3q Ñ ppϕ1 _ ϕ2q Ñ ϕ3qq,
L9: pϕÑ ψq Ñ ppϕÑ  ψq Ñ  ϕq,
L10:  ϕÑ pϕÑ ψq.

If τ is a term, ν a variable, and the substitution which leads to ϕpν{τq is admissible,
then:
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L11: @νϕpνq Ñ ϕpτq,
L12: ϕpτq Ñ Dνϕpνq.

If ψ is a formula and ν a variable such that ν R freepψq, then:

L13: @νpψ Ñ ϕpνqq Ñ pψ Ñ @νϕpνqq,
L14: @νpϕpνq Ñ ψq Ñ pDνϕpνq Ñ ψq.

What is not covered yet is the symbol ““”, so, let us have a closer look at the
binary equality relation. The defining properties of equality can already be found
in Book VII, Chapter 1 of Aristotle’s Topics [1], where one of the rules to decide
whether two things are the same is as follows: . . . you should look at every possible
predicate of each of the two terms and at the things of which they are predicated and
see whether there is any discrepancy anywhere. For anything which is predicated of
the one ought also to be predicated of the other, and of anything of which the one is
a predicate the other also ought to be a predicate.

In our formal system, the binary equality relation is defined by the following
three axioms.

If τ, τ1, . . . , τn, τ 11, . . . , τ
1
n are any terms, R an n-ary relation symbol (e.g., the

binary relation symbol ““”), and F an n-ary function symbol, then:

L15: τ “ τ ,
L16: pτ1 “ τ 11 ^ ¨ ¨ ¨ ^ τn “ τ 1nq Ñ pRpτ1, . . . , τnq Ñ Rpτ 11, . . . , τ

1
nqq,

L17: pτ1 “ τ 1
1
^ ¨ ¨ ¨ ^ τn “ τ 1nq Ñ pF pτ1, . . . , τnq “ F pτ 1

1
, . . . , τ 1nqq.

Finally, we define the logical operator “Ø” and the binary relation symbol “‰” by
stipulating

ϕØ ψ :ðñ pϕÑ ψq ^ pψ Ñ ϕq

τ ‰ τ 1 :ðñ  pτ “ τ 1q

where we use “:ðñ” in the metalanguage to define relations between symbols (or
strings of symbols) of the formal language (i.e., “Ø” & “‰” are just abbreviations).

This completes the list of our logical axioms. In addition to these axioms, we
are allowed to state arbitrarily many formulae. In logic, such a (possibly empty) set
of formulae is also called a theory, or, when the signature L is specified, an L -

theory. Usually, a theory consists of arbitrarily many so-called non-logical axioms

which are sentences (i.e., closed formulae). Examples of theories (i.e., of sets of
non-logical axioms) which will be discussed in this book are the axioms of Set
Theory (see Part ??), the axioms of Peano Arithmetic PA (also known as Number
Theory), and the axioms of Group Theory GT, which we discuss first.

GT: The language of Group Theory is LGT “ te, ˝u, where “e” is a constant
symbol and “˝” is a binary function symbol.

GT0: @x@y@zpx˝py˝zq “ px˝yq˝zq (i.e., “˝” is associative)
GT1: @xpe˝x “ xq (i.e., “e” is a left-neutral element)
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GT2: @xDypy˝x “ eq (i.e., every element has a left-inverse)

PA: The language of Peano Arithmetic is LPA “ t0, s,`, ¨ u, where “0” is a con-
stant symbol, “s” is a unary function symbol, and “`” & “ ¨ ” are binary function
symbols.

PA0:  Dxpsx “ 0q
PA1: @x@ypsx “ sy Ñ x “ yq,
PA2: @xpx ` 0 “ xq
PA3: @x@ypx` sy “ spx` yqq
PA4: @xpx ¨ 0 “ 0q
PA5: @x@ypx ¨ sy “ px ¨ yq ` xq

If ϕ is any LPA-formula with x P freepϕq, then:

PA6:
`
ϕp0q ^ @xpϕpxq Ñ ϕpspxqqq

˘
Ñ @xϕpxq

Notice that PA6 is an axiom schema, known as the induction schema, and not just
a single axiom like PA0–PA5.

It is often convenient to add certain defined symbols to a given language so that
the expressions get shorter or at least are easier to read. For example in Peano
Arithmetic—which is an axiomatic system for the natural numbers—we usually
replace for example the expression s0 with 1 and ss0 with 2. More formally, we
define

1 :” s0 and 2 :” ss0 .

Obviously, all that can be expressed in the language LPA Y t1, 2u can also be ex-
pressed in LPA.

Formal Proofs and Tautologies

So far we have a set of logical and non-logical axioms in a certain language and
can define, if we wish, as many new constants, functions, and relations as we like.
However, we are still not able to deduce anything from the given axioms, since until
now, we do not have inference rules which allow us for example to infer a certain
sentence from a given set of axioms.

Surprisingly, just two inference rules are sufficient, namely:

MODUS PONENS (MP):
ϕÑ ψ, ϕ

ψ
and GENERALISATION p@q:

ϕ

@νϕ
.

In the former case we say thatψ is obtained fromϕÑ ψ andϕ by MODUS PONENS,
abbreviated (MP), and in the latter case we say that @νϕ (where ν can be any vari-
able) is obtained from ϕ by GENERALISATION, abbreviated p@q.
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Using these two inference rules, we are now able to define the notion of formal

proof: Let L be a signature (i.e., a possibly empty set of non-logical symbols) and
let T be an L -theory (i.e., a possibly empty set of L -formulae). An L -formula
ψ is provable from T (or provable in T), denoted T $ ψ, if there is a F I N I T E

sequence ϕ0, . . . , ϕn of L -formulae such that ϕn ” ψ (i.e., the formulae ϕn and
ψ are identical), and for all i with i ď n we have:

• ϕi is a logical axiom, or
• ϕi P T, or
• there are j, k ă i such that ϕj ” ϕk Ñ ϕi, or
• there is a j ă i such that ϕi ” @ν ϕj for some variable ν.

If a formula ψ is not provable from T, i.e., if there is no formal proof for ψ which
uses just formulae from T, then we write T & ψ.

Formal proofs, even of very simple statements, can get quite long and tricky.
Nevertheless, we shall give two examples:

Example 1.1. For every formula ϕ we have:

$ ϕÑ ϕ

A formal proof of ϕÑ ϕ is given by

ϕ0: pϕÑ ppϕÑ ϕq Ñ ϕqq Ñ ppϕÑ pϕÑ ϕqq Ñ pϕÑ ϕqq instance of L2

ϕ1: ϕÑ ppϕÑ ϕq Ñ ϕq instance of L1

ϕ2: pϕÑ pϕÑ ϕqq Ñ pϕÑ ϕq from ϕ0 and ϕ1 by (MP)

ϕ3: ϕÑ pϕÑ ϕq instance of L1

ϕ4: ϕÑ ϕ from ϕ2 and ϕ3 by (MP)


