8. Beweise formal die Transitivität der Gleichheitsrelation:

$$\vdash \forall x \forall y \forall z ((x = y \land y = z) \rightarrow x = z)$$

Lösung:

Wir zeigen zuerst $\{x = y \land y = z\} \vdash x = z$:

$$T \ni x = y \land y = z$$

$$\mathsf{L}_4 \quad (x = y \land y = z) \to y = z$$

MP
$$y = z$$

$$\mathsf{L}_5 \quad y = z \to (x = x \to (x = x \land y = z))$$

$$\mathsf{MP} \quad x = x \to (x = x \land y = z)$$

$$L_{14}$$
 $x=x$

$$\mathsf{MP} \quad x = x \land y = z$$

$$\mathsf{L}_{15} \quad (x = x \land y = z) \to (x = y \to x = z)$$

$$\mathsf{MP} \quad x = y \to x = z$$

$$L_3$$
 $(x = y \land y = z) \rightarrow x = y$

MP
$$x = y$$

$$\mathsf{MP} \quad x = z$$

Mit dem Deduktionstheorem folgt also

$$\vdash (x = y \land y = z) \rightarrow x = z.$$

Nach drei Anwendungen der Verallgemeinerungsregel haben wir schliesslich

$$\vdash \forall x \forall y \forall z \big((x = y \land y = z) \to x = z \big),$$

was zu beweisen war.

- 9. (a) Schreibe die Gruppenaxiome mit der Signatur $\mathcal{L}_{\mathsf{GT}'} = \{\circ\}$, wobei " \circ " ein binäres Funktionssymbol ist.
 - (b) Schreibe in der Sprache $\mathscr{L}_{\mathsf{GT'}}$ den folgenden Satz auf:

Es gibt ein x, so dass $x \circ x$ das Neutralelement ist.

Lösung:

(a)
$$\forall x \forall y \forall z (x \circ (y \circ z) = (x \circ y) \circ z)$$

 $\exists e (\forall x (e \circ x = x \land \exists y : y \circ x = e))$

(b)
$$\exists x \forall y ((x \circ x) \circ y = y)$$

- 10. In dieser Aufgabe soll gezeigt werden, dass die Bedingung bezüglich der freien Variablen in der Verallgemeinerungsregel (\forall) notwendig ist, da sonst zum Beispiel das DEDUKTIONSTHEOREM (DT) nicht mehr allgemein gilt. Um dies zu zeigen, wählen wir für T die Theorie PA, für ψ die Formel $\exists y (s(y) = x)$, und für φ die Formel $\forall x \psi$.
 - (a) Zeige, dass gilt: $PA \cup \{\psi\} \vdash \varphi$.
 - (b) Zeige, dass $\mathsf{PA} \vdash \psi \to \varphi$ nur dann gilt, wenn PA inkonsistent ist. Das heisst:

$$\operatorname{Con}(\mathsf{PA}) \implies \left(\mathsf{PA} \cup \{\psi\} \vdash \varphi \implies \mathsf{PA} \vdash \psi \to \varphi \right)$$

Lösung:

(a)
$$T \ni \exists y (s(y) = x)$$

 $(\forall) \forall x \exists y (s(y) = x)$

(b) Annahme
$$\exists y (\mathbf{s}(y) = x) \rightarrow \forall x \exists y (\mathbf{s}(y) = x)$$

(\forall) $\forall x (\exists y (\mathbf{s}(y) = x) \rightarrow \forall x \exists y (\mathbf{s}(y) = x))$
 $\mathsf{L}_{10} + \mathsf{MP} \quad \exists y (\mathbf{s}(y) = \mathsf{s0}) \rightarrow \forall x \exists y (\mathbf{s}(y) = x)$
 $\mathsf{L}_{14} \quad \mathsf{s0} = \mathsf{s0}$
 $\mathsf{L}_{11} + \mathsf{MP} \quad \exists y (\mathbf{s}(y) = \mathsf{s0})$
 $\mathsf{MP} \quad \forall x \exists y (\mathbf{s}(y) = x)$
 $\mathsf{L}_{10} + \mathsf{MP} \quad \exists y (\mathbf{s}(y) = 0)$
 $\mathsf{PA}_0 \quad \neg \exists y (\mathbf{s}(y) = 0),$

woraus sich ein Widerspruch ableiten lässt.

- 11. Sei T eine konsistente Menge von \mathscr{L} -Formeln und φ ein \mathscr{L} -Satz; dann gilt:
 - (a) φ ist konsistent mit T genau dann wenn T $\not\vdash \neg \varphi$.
 - (b) φ ist unabhängig von T genau dann wenn T $\not\vdash \varphi$ & T $\not\vdash \neg \varphi$.

Lösung:

- (a) Wir zeigen beide Richtungen der Äquivalenz mittels Kontraposition.
 Angenommen T ⊢ ¬φ. Dann lässt sich zeigen, dass gilt: T ∪ {φ} ⊢ φ ∧ ¬φ, also ¬Con(T ∪ {φ}).
 Gilt umgekehrt ¬Con(T ∪ {φ}), können wir jede Aussage aus T ∪ {φ} beweisen, zum Beispiel ¬φ. Da φ ein ℒ-Satz ist, folgt aus T ∪ {φ} ⊢ ¬φ, dass T ⊢ φ → ¬φ. Damit können wir T ⊢ ¬φ zeigen, zum Beispiel mithilfe von Aufgabe 12.
- (b) Mithilfe von 11a und mit der Tautologie $\neg\neg\varphi\leftrightarrow\varphi$ können wir zeigen, dass $T\not\vdash\varphi\&T\not\vdash\neg\varphi$ äquivalent zu $\operatorname{Con}(T\cup\{\neg\varphi\})\&\operatorname{Con}(T\cup\{\varphi\})$ ist, was zu beweisen war.
- 12. Zeige, zum Beispiel mit L_0 , L_1 , L_8 , L_{10} , (MP) und (DT), dass gilt:

$$\vdash (\varphi \to \psi) \to ((\varphi \to \neg \psi) \to \neg \varphi)$$

Lösung:

Betrachte $\mathsf{T} = \{\varphi \to \psi, \varphi \to \neg \psi, \varphi\}$ und den folgenden formalen Beweis:

$$\begin{array}{lll} \mathsf{T} \ni & \varphi \\ \mathsf{T} \ni & \varphi \to \psi \\ \mathsf{MP} & \psi \\ \mathsf{T} \ni & \varphi \to \neg \psi \\ \mathsf{MP} & \neg \psi \\ \mathsf{L}_9 & \neg \psi \to (\psi \to \neg \varphi) \\ \mathsf{MP} & \psi \to \neg \varphi \\ \mathsf{MP} & \neg \varphi \end{array}$$

Nach zweimaliger Anwendung des Deduktionstheorems erhalten wir also

$$\{\varphi\} \vdash (\varphi \to \psi) \to ((\varphi \to \neg \psi) \to \neg \varphi).$$

Mithilfe von L_1 und Modus Ponens erhalten wir leicht

$$\{\neg\varphi\} \vdash (\varphi \to \psi) \to ((\varphi \to \neg\psi) \to \neg\varphi).$$

Schreibe $\chi := (\varphi \to \psi) \to ((\varphi \to \neg \psi) \to \neg \varphi)$. Mit dem Deduktionstheorem sehen wir also, dass $\varphi \to \chi$ und $\neg \varphi \to \chi$ Tautologien sind. Nun können wir zeigen:

$$\begin{array}{ll} \mathsf{L}_8 & (\varphi \to \chi) \to \Big((\neg \varphi \to \chi) \to \big((\varphi \vee \neg \varphi) \to \chi \big) \Big) \\ \vdash & \varphi \to \chi \\ \mathsf{MP} & (\neg \varphi \to \chi) \to \Big((\varphi \vee \neg \varphi) \to \chi \Big) \end{array}$$

$$\begin{array}{ll} \vdash & \neg \varphi \rightarrow \chi \\ \text{MP} & (\varphi \vee \neg \varphi) \rightarrow \chi \\ \text{L}_0 & \varphi \vee \neg \varphi \\ \text{MP} & \chi, \end{array}$$

was zu beweisen war.