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Chapter 0

A Natural Approach to Natural Numbers

In the late 19th and early 20th century, several unsuccessful attempts were made
to develop the natural numbers from logic. The most promising approaches were
the ones due to Frege and Russell, but also their approaches failed at the end. Even
though it seems impossible to develop the natural numbers just from logic, this does
not justify Kronecker’s ridiculous claim that the natural numbers are given by God.

In fact, the problem with the natural numbers is, that we need the notion of finite-
ness in order to define them, which presuppose the existence of a kind of infinite list
of objects, and it is not clear whether these objects are—in some sense—not already
the natural numbers which we would like to define.

However, in our opinion there is subtle distinction between the infinite set of
natural numbers and an infinite list of objects, since the set of natural numbers is an
actually infinite set, whereas an infinite list (in contrast for example to an infinite
array) is just potentially infinite. The difference between these two types of infinity
is, that the actual infinity is something which is completed and definite and consists
of infinitely many elements. On the other hand, the potential infinity—introduced by
Aristotle—is something that is always finite, even though more and more elements
can be added to make it arbitrarily large. For example the set of prime numbers
can be considered as an actually infinite set (as Cantor did), or just as a potentially
infinite list of numbers without last element which is never completed (as Euclid
did).

As mentioned above, it seems that there is no way to define the natural numbers
just from logic. Hence, if we would like to define them, we have to make some
assumptions which cannot be formalised within logic or mathematics in general. In
other words, in order to define the natural numbers we have to presuppose some
metamathematical notions like for example the notion of F I N I T E N E S S. To
emphasise this fact, we shall use a wider letter spacing for the metamathematical
notions we suppose.

So, let us assume that we all have a notion of F I N I T E N E S S. Let us further
assume that we have two characters, say “0” and “ ”. With these characters, we build
now the following finite strings:
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2 0 A Natural Approach to Natural Numbers

0 . . .

The three dots “. . .” mean that we always build the next string by appending the
character “ ” to the string we just built. Proceeding this way, we get in fact a poten-
tially infinite list N of different strings which is never completed. Thus, the list N is
of the form

N “ r0, , , , , , . . .s

where each strings in the list N is a so-called natural number.
It is convenient to use arabic numbers for explicitly given natural numbers (e.g.,

we write “1” for “ ”) and Latin letters like n,m, . . . for non-specified natural num-
bers. If n and m denote natural numbers, where n appears earlier than m in the list
N, then n, . . . ,mmeans the natural numbers which belong to the sublist rn, . . . ,ms
of N; if n appears later than m in N, then n, . . . ,m is the empty set.

We shall use natural numbers frequently as subscripts for finite lists of objects
like t1, . . . , tn. In this context we mean that for each natural number k in the list
r1, . . . , ns, there is an object tk, where in the case when n “ 0, the set of objects is
empty.

If n is a natural number, then n ` 1 denotes the natural number which appears
immediately after n in the list N; and if n ‰ 0, then n ´ 1 denotes the natural
number which appears immediately before n in the list N.



Part I

Introduction to First-Order Logic
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First-Order Logic is the system of Symbolic Logic concerned not only to repre-
sent the logical relations between sentences or propositions as wholes (like Propo-
sitional Logic), but also to consider their internal structure in terms of subject and
predicate. First-Order Logic can be considered as a kind of language which is dis-
tinguished from higher-order languages in that it does not allow quantification over
subsets of the domain of discourse or other objects of higher type (like statements
of infinite length or statements about formulas). Nevertheless, First-Order Logic is
strong enough to formalise all of Set Theory and thereby virtually all of Mathemat-
ics.

The goal of this brief introduction to First-Order Logic is to introduce the ba-
sic concepts of formal proofs and models, which shall be investigated further in
Parts II & III.





Chapter 1

Syntax: The Grammar of Symbols

The goal of this chapter is to develop the formal language of First-Order Logic from
scratch. At the same time, we introduce some terminology of the so-called meta-
language, which is the language we use when we speak about the formal language
(e.g., when we like to express that two strings of symbols are equal).

Alphabet

Like any other written language, First-Order Logic is based on an alphabet, which
consists of the following symbols:

(a) Variables such as x, y, v0, v1, . . . , which are place holders for objects of the
domain under consideration (which can for example be the elements of a group,
natural numbers, or sets). We use mainly lower case Latin letters (with or without
subscripts) for variables.

(b) logical operators which are “ ” (not), “^” (and), “_” (or), and “Ñ” (implies).

(c) Logical quantifiers which are the existential quantifier “D” (there is or there
exists) and the universal quantifier “@” ( for all or for each), where quantification
is restricted to objects only and not to formulae or sets of objects (but the objects
themselves may be sets).

(d) Equality symbol ““”, which stands for the particular binary equality relation.

(e) Constant symbols like the number 0 in Peano Arithmetic, or the neutral element
e in Group Theory. Constant symbols stand for fixed individual objects in the
domain.

(f) Function symbols such as ˝ (the operation in Group Theory), or`, ¨ , s (the op-
erations in Peano Arithmetic). Function symbols stand for fixed functions taking
objects as arguments and returning objects as values. With each function symbol
we associate a positive natural number, its co-called “arity” (e.g., “˝” is a 2-ary
or binary function, and the successor operation “s” is a 1-ary or unary function).

7



8 1 Syntax: The Grammar of Symbols

More formally, to each function symbol F we adjoin a fixed F I N I T E string
of place holders x ¨ ¨ ¨ x and write F x ¨ ¨ ¨ x .

(g) Relation symbols or predicate constants (such as P in Set Theory) stand for
fixed relations between (or properties of) objects in the domain. Again we asso-
ciate an “arity” with each relation symbol (e.g., “P” is a binary relation). More
formally, to each relation symbol R we adjoin a fixed F I N I T E string of place
holders x ¨ ¨ ¨ x and write R x ¨ ¨ ¨ x .

The symbols in (a)–(d) form the core of the alphabet and are called logical symbols.
The symbols in (e)–(g) depend on the specific topic we are investigating and are
called non-logical symbols. The set of non-logical symbols which are used in order
to formalise a certain mathematical theory is called the language (or signature) of
this theory, denoted by L , and formulae which are formulated in a language L

are usually called L -formulae. For example if we investigate groups, then the only
non-logical symbols we use are “e” and “˝”, thus, L “ te, ˝u is the language of
Group Theory.

Terms & Formulae

With the symbols of our alphabet we can now start to compose words. In the lan-
guage of First-Order Logic, these words are called called terms.

Terms. A string of symbols is a term, if it results from applying F I N I T E L Y

many times the following rules:

(T1) Each variable is a term.
(T2) Each constant symbol is a term.
(T3) If τ1, . . . , τn are any terms which we have already built and F x ¨ ¨ ¨ x is an n-

ary function symbol, then Fτ1 ¨ ¨ ¨ τn is a term (each place holder x is replaced
with a term).

In order to define rule (T3) we had to use variables for terms, but since the variables
of our alphabet stand just for objects of the domain and not for terms or other objects
of the formal language, we had to introduce new symbols. For these new symbols,
which do not belong to the alphabet of the formal language, we have chosen Greek
letters. In fact, we shall mainly use Greek letters for variables which stand for ob-
jects of the formal language, also to emphasise the distinction between the formal
language and the metalanguage However, we shall use the Latin letters F &R as
variables for function and relation symbols respectively.

To make terms, relations, and other expressions in the formal language easier to
read, it is convenient to introduce some more symbols, like brackets and commas,
to our alphabet. For example we usually write F pτ1, . . . , τnq rather than Fτ1 ¨ ¨ ¨ τn.

To some extent, terms correspond to words, since they denote objects of the do-
main under consideration. Like real words, they are not statements and cannot ex-



Terms & Formulae 9

press or describe possible relations between objects. So, the next step is to build
sentences, or more precisely formulae, with these terms.

Formulae. A string of symbols is called a formula, if it results from applying
F I N I T E L Y many times the following rules:

(F1) If τ1 and τ2 are terms, then τ1 “ τ2 is a formula.
(F2) If τ1, . . . , τn are any terms and R x ¨ ¨ ¨ x is any non-logical n-ary relation

symbol, then Rτ1 ¨ ¨ ¨ τn is a formula.
(F3) If ϕ is any formula which we have already built, then  ϕ is a formula.
(F4) If ϕ and ψ are formulae which we have already built, then pϕ^ψq, pϕ_ψq,

and pϕ Ñ ψq are formulae. (To avoid the use of brackets one could write
these formulae for example in Polish notation, i.e., ^ϕψ, _ϕψ, et cetera.)

(F5) If ϕ is a formula which we have already built, and ν is an arbitrary variable,
then Dνϕ and @νϕ are formulae.

Formulae of the form (F1) or (F2) are the most basic expressions we have, and since
every formula is a logical connection or a quantification of these formulae, they are
called atomic formulae.

For binary relations R xx it is convenient to write xRy instead of Rpx, yq. For
example we write x P y instead of Ppx, yq, and we write x R y rather than px P yq.

If a formula ϕ is of the form Dxψ or of the form @xψ (for some formula ψ) and
x occurs in ψ, then we say that x is in the range of a logical quantifier. The variable
x occurring at a particular place in a formula ϕ is either in the range of a logical
quantifier or it is not in the range of any logical quantifier. In the former case this
particular instance of the variable x is bound in ϕ, and in the latter case it is free

in ϕ. Notice that it is possible that a certain variable occurs in a given formula bound
as well as free (e.g., in Dzpx “ zq ^ @xpx “ yq, the variable x is both bound and
free, whereas z is just bound and y is just free). However, one can always rename the
bound variables occurring in a given formula ϕ such that each variable in ϕ is either
bound or free (the rules for this procedure are given later). For a formula ϕ, the set
of variables occurring free in ϕ is denoted by freepϕq. A formula ϕ is a sentence (or
a closed formula) if it contains no free variables (i.e., freepϕq “ H). For example
@xpx “ xq is a sentence but px “ xq is not.

In analogy to this definition we say that a term is a closed term if it contains no
variables. Obviously, the only terms which are closed are the constant symbols and
the function symbols followed by closed terms.

Sometimes it is useful to indicate explicitly which variables occur free in a
given formula ϕ, and for this we usually write ϕpx1, . . . , xnq to indicate that
tx1, . . . , xnu Ď freepϕq.

If ϕ is a formula, and τ a term, then ϕpx{τq is the formula we get after replacing
all free instances of x by τ . A so-called substitution ϕpx{τq is admissible iff no
free occurrence of ν in ϕ is in the range of a quantifier that binds any variable con-
tained in τ (i.e., for each variable ν appearing in τ , no place where ν occurs free in
ϕ is in the range of “Dν” or “@ν”). For example, if x R freepϕq, then ϕpx{τq is ad-
missible for any term τ . In this case, the formulae ϕ and ϕpx{τq are identical which



10 1 Syntax: The Grammar of Symbols

we express by ϕ ” ϕpx{τq. In general, we use the symbol “”” in the metalanguage
to denote equality of strings of symbols of the formal language. Furthermore, if ϕ is
a formula and the substitution ϕpx{τq is admissible, then we write just ϕpτq instead
of ϕpx{τq. To express this we write ϕpτq :” ϕpx{τq, where we use “:”” in the
metalanguage to define symbols (or strings of symbols) of the formal language.

So far we have letters, and we can build words and sentences. However, these
sentences are just strings of symbols without any inherent meaning. Later we shall
interpret formulae in the intuitively natural way by giving the symbols the intended
meaning (e.g., “^” meaning “and”, “@x” meaning “for all x”, et cetera). But before
we shall do so, let us stay a little bit longer on the syntactical side—nevertheless,
one should consider the formulae also from a semantical point of view.

Axioms

Below we shall label certain formulae or types of formula as axioms, which are
used in connection with inference rules in order to derive further formulae. From a
semantical point of view we can think of axioms as “true” statements from which
we deduce or prove further results. We distinguish two types of axiom, namely logi-
cal axioms and non-logical axioms (which will be discussed later). A logical axiom

is a sentence or formula ϕ which is universally valid (i.e., ϕ is true in any possible
universe, no matter how the variables, constants, et cetera, occurring in ϕ are inter-
preted). Usually one takes as logical axioms some minimal set of formulae that is
sufficient for deriving all universally valid formulae (such a set is given below).

If a symbol is involved in an axiom which stands for an arbitrary relation, func-
tion, or even for a first-order formula, then we usually consider the statement as an
axiom schema rather than a single axiom, since each instance of the symbol rep-
resents a single axiom. The following list of axiom schemata is a system of logical
axioms.

Let ϕ, ϕ1, ϕ2, and ψ, be arbitrary first-order formulae:

L0: ϕ_ ϕ,
L1: ϕÑ pψ Ñ ϕq,
L2: pψ Ñ pϕ1 Ñ ϕ2qq Ñ ppψ Ñ ϕ1q Ñ pψ Ñ ϕ2qq,
L3: pϕ^ ψq Ñ ϕ,
L4: pϕ^ ψq Ñ ψ,
L5: ϕÑ pψ Ñ pψ ^ ϕqq,
L6: ϕÑ pϕ_ ψq,
L7: ψ Ñ pϕ_ ψq,
L8: pϕ1 Ñ ϕ3q Ñ ppϕ2 Ñ ϕ3q Ñ ppϕ1 _ ϕ2q Ñ ϕ3qq,
L9: pϕÑ ψq Ñ ppϕÑ  ψq Ñ  ϕq,
L10:  ϕÑ pϕÑ ψq.

If τ is a term, ν a variable, and the substitution ϕpν{τq is admissible, then:
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L11: @νϕpνq Ñ ϕpτq,
L12: ϕpτq Ñ Dνϕpνq.

If ψ is a formula and ν a variable such that ν R freepψq, then:

L13: @νpψ Ñ ϕpνqq Ñ pψ Ñ @νϕpνqq,
L14: @νpϕpνq Ñ ψq Ñ pDνϕpνq Ñ ψq.

What is not covered yet is the symbol ““”, so, let us have a closer look at the
binary equality relation. The defining properties of equality can already be found
in Book VII, Chapter 1 of Aristotle’s Topics [? ], where one of the rules to decide
whether two things are the same is as follows: . . . you should look at every possible
predicate of each of the two terms and at the things of which they are predicated and
see whether there is any discrepancy anywhere. For anything which is predicated of
the one ought also to be predicated of the other, and of anything of which the one is
a predicate the other also ought to be a predicate.

In our formal system, the binary equality relation is defined by the following
three axioms.

If τ, τ1, . . . , τn, τ 1
1
, . . . , τ 1

n are any terms, R an n-ary relation symbol (e.g., the
binary relation symbol ““”), and F an n-ary function symbol, then:

L15: τ “ τ ,
L16: pτ1 “ τ 1

1 ^ ¨ ¨ ¨ ^ τn “ τ 1
nq Ñ pRpτ1, . . . , τnq Ñ Rpτ 1

1, . . . , τ
1
nqq,

L17: pτ1 “ τ 1
1
^ ¨ ¨ ¨ ^ τn “ τ 1

nq Ñ pF pτ1, . . . , τnq “ F pτ 1
1
, . . . , τ 1

nqq.

Finally, we define the logical operator “Ø” and the binary relation symbol “‰” by
stipulating

ϕØ ψ :ðñ pϕÑ ψq ^ pψ Ñ ϕq

τ ‰ τ 1
:ðñ  pτ “ τ 1q

where we use “:ðñ” in the metalanguage to define relations between symbols (or
strings of symbols) of the formal language (i.e., “Ø” & “‰” are just abbreviations).

This completes the list of our logical axioms. In addition to these axioms, we
are allowed to state arbitrarily many formulae. In logic, such a (possibly empty) set
of formulae is also called a theory, or, when the signature L is specified, an L -

theory. Usually, a theory consists of arbitrarily many so-called non-logical axioms

which are sentences (i.e., closed formulae). Examples of theories (i.e., of sets of
non-logical axioms) which will be discussed in this book are the axioms of Set
Theory (see Part ??), the axioms of Peano Arithmetic PA (also known as Number
Theory), and the axioms of Group Theory GT, which we discuss first.

GT: The language of Group Theory is LGT “ te, ˝u, where “e” is a constant
symbol and “˝” is a binary function symbol.

GT0: @x@y@zpx˝py˝zq “ px˝yq˝zq (i.e., “˝” is associative)
GT1: @xpe˝x “ xq (i.e., “e” is a left-neutral element)
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GT2: @xDypy˝x “ eq (i.e., every element has a left-inverse)

PA: The language of Peano Arithmetic is LPA “ t0, s,`, ¨ u, where “0” is a con-
stant symbol, “s” is a unary function symbol, and “`” & “ ¨ ” are binary function
symbols.

PA0:  Dxpsx “ 0q
PA1: @x@ypsx “ sy Ñ x “ yq,
PA2: @xpx ` 0 “ xq
PA3: @x@ypx` sy “ spx` yqq
PA4: @xpx ¨ 0 “ 0q
PA5: @x@ypx ¨ sy “ px ¨ yq ` xq

If ϕ is any LPA-formula with x P freepϕq, then:

PA6:
`
ϕp0q ^ @xpϕpxq Ñ ϕpspxqqq

˘
Ñ @xϕpxq

Notice that PA6 is an axiom schema, known as the induction schema, and not just
a single axiom like PA0–PA5.

It is often convenient to add certain defined symbols to a given language so that
the expressions get shorter or at least are easier to read. For example in Peano
Arithmetic—which is an axiomatic system for the natural numbers—we usually
replace for example the expression s0 with 1 and ss0 with 2. More formally, we
define

1 :” s0 and 2 :” ss0 .

Obviously, all that can be expressed in the language LPA Y t1, 2u can also be ex-
pressed in LPA.

Formal Proofs and Tautologies

So far we have a set of logical and non-logical axioms in a certain language and
can define, if we wish, as many new constants, functions, and relations as we like.
However, we are still not able to deduce anything from the given axioms, since until
now, we do not have inference rules which allow us for example to infer a certain
sentence from a given set of axioms.

Surprisingly, just two inference rules are sufficient, namely:

MODUS PONENS (MP):
ϕÑ ψ, ϕ

ψ
and GENERALISATION p@q:

ϕ

@νϕ
.

In the former case we say thatψ is obtained fromϕÑ ψ andϕ by MODUS PONENS,
abbreviated (MP), and in the latter case we say that @νϕ (where ν can be any vari-
able) is obtained from ϕ by GENERALISATION, abbreviated p@q.
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Using these two inference rules, we are now able to define the notion of formal

proof: Let L be a signature (i.e., a possibly empty set of non-logical symbols) and
let T be an L -theory (i.e., a possibly empty set of L -formulae). An L -formula
ψ is provable from T (or provable in T), denoted T $ ψ, if there is a F I N I T E

sequence ϕ1, . . . , ϕn of L -formulae such that ϕn ” ψ (i.e., the formulae ϕn and
ψ are identical), and for all i with 1 ď i ď n we have:

• ϕi is a logical axiom, or
• ϕi P T, or
• there are j, k ă i such that ϕj ” ϕk Ñ ϕi, or
• there is a j ă i such that ϕi ” @ν ϕj for some variable ν.

If a formula ψ is not provable from T, i.e., if there is no formal proof for ψ which
uses just formulae from T, then we write T & ψ.

Formal proofs, even of very simple statements, can get quite long and tricky.
Nevertheless, we shall give two examples:

Example 1.1. For every formula ϕ we have:

$ ϕÑ ϕ

Example 1.2. PA $ s0` s0 “ ss0

We say that two formulae ϕ and ψ are logically equivalent (or just equivalent),
denoted ϕô ψ, if $ ϕØ ψ. More formally:

ϕô ψ :ÎùùùÏ $ ϕØ ψ

In other words, if ϕô ψ, then—from a logical point of view—ϕ and ψ state exactly
the same, and therefore we could call ϕ Ø ψ a tautology, which means saying the
same thing twice. However, in logic, a formula ϕ is a tautology if $ ϕ. Thus, the
formulae ϕ & ψ are equivalent if and only if ϕØ ψ is a tautology.

Example 1.3. For every formula ϕ we have:

ϕô ϕ

In the following list we summarise some tautologies and basic facts which we
shall need later.

(A.1) $ ϕÑ ϕ

(A.0) $ ϕØ ϕ

(B) tψ, ϕu $ ϕ^ ψ
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(C) $ pψ Ñ ϕq Ñ pψ Ñ @xϕq [for x R freepψq]

(D.1) tϕ0 Ñ ϕ1, ϕ1 Ñ ϕ2u $ ϕ0 Ñ ϕ2

(D.2) tϕ0 Ñ ψ, ϕ1 Ñ ψu $ pϕ0 _ ϕ1q Ñ ψ

(D.3) tψ Ñ ϕ0, ψ Ñ ϕ1u $ ψ Ñ pϕ0 ^ ϕ1q

(E) $ ϕÑ
`
ψ Ñ pϕ^ ψq

˘

(F.1) $ ϕÑ   ϕ
(F.2) $   ϕÑ ϕ

(F.0) $ ϕØ   ϕ

(G.1) $ pϕÑ ψq Ñ p ψ Ñ  ϕq
(G.2) $ p ψ Ñ  ϕq Ñ pϕÑ ψq
(G.0) $ pϕÑ ψq Ø p ψ Ñ  ϕq

(H.0) tϕØ ψu $  ϕØ  ψ
(H.1) tϕØ ϕ1, ψ Ø ψ1u $ pϕÑ ψq Ø pϕ1 Ñ ψ1q
(H.2) tϕØ ϕ1, ψ Ø ψ1u $ pϕ_ ψq Ø pϕ1 _ ψ1q
(H.3) tϕØ ϕ1, ψ Ø ψ1u $ pϕ^ ψq Ø pϕ1 ^ ψ1q

(I.1) $ pϕ1 ^ ϕ2q Ø pϕ2 ^ ϕ1q
(I.2) $ pϕ1 ^ ϕ2q ^ ϕ3 Ø ϕ1 ^ pϕ2 ^ ϕ3q

(J.1) $ pϕ1 _ ϕ2q Ø pϕ2 _ ϕ1q
(J.2) $ pϕ1 _ ϕ2q _ ϕ3 Ø ϕ1 _ pϕ2 _ ϕ3q

(K.1) $ p ϕ_ ψq Ñ pϕÑ ψq
(K.2) $ pϕÑ ψq Ñ p ϕ_ ψq
(K.0) $ pϕÑ ψq Ø p ϕ_ ψq

(L.1) $ p ϕ_ ψq Ñ  pϕ^ ψq
(L.2) $  pϕ^ ψq Ñ p ϕ_ ψq
(L.0) $  pϕ^ ψq Ø p ϕ_ ψq

(M.1) $
`
ϕ1 Ñ pϕ2 Ñ ϕ3q

˘
Ø

`
pϕ1 ^ ϕ2q Ñ ϕ3

˘

(M.2) $  pϕ_ ψq Ø p ϕ^ ψq

(N.1) $ pϕ1 ^ ϕ2q _ ϕ3 Ñ pϕ1 _ ϕ3q ^ pϕ2 _ ϕ3q
(N.2) $ pϕ1 _ ϕ3q ^ pϕ2 _ ϕ3q Ñ pϕ1 ^ ϕ2q _ ϕ3
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(N.0) $ pϕ1 ^ ϕ2q _ ϕ3 Ø pϕ1 _ ϕ3q ^ pϕ2 _ ϕ3q

(O) $ pϕ1 _ ϕ2q ^ ϕ3 Ø pϕ1 ^ ϕ3q _ pϕ2 ^ ϕ3q

(P.1) $ x “ y Ø y “ x

(P.2) $ px “ y ^ y “ zq Ñ x “ z

(Q.1) $ ϕpxq Ø ϕpyq [if y does not appear in ϕpxq]
(Q.2) $ Dxϕpxq Ø Dyϕpyq [if y does not appear in ϕpxq]
(Q.3) $ @xϕpxq Ø @yϕpyq [if y does not appear in ϕpxq]

(R.1) tϕØ ψu $ @xϕØ @xψ
(R.2) tϕØ ψu $ DxϕØ Dxψ

(S.1) $  DxϕÑ @x ϕ
(S.2) $  @x ϕÑ Dxϕ
(S.3) $ DxϕÑ  @x ϕ
(S.0) $ DxϕØ  @x ϕ

(T) $ @xϕØ  Dx ϕ

(U.1) $ DxDyϕØ DyDxϕ
(U.2) $ DxDxϕØ Dxϕ
(U.3) $ @xDxϕØ Dxϕ
(U.4) $ Dx@xϕØ @xϕ

(V.1) $
`
Dxϕ^ Dyψ

˘
Ø

`
DxDypϕ^ ψq

˘
[for x R freepψq, y R freepϕq]

(V.2) $
`
@xϕ^ @yψ

˘
Ø

`
@x@ypϕ ^ ψq

˘
[for x R freepψq, y R freepϕq]

(V.3) $
`
Dxϕ^ @yψ

˘
Ø

`
Dx@ypϕ^ ψq

˘
[for x R freepψq, y R freepϕq]

(V.4) $
`
Dxϕ^ ψ

˘
Ø

`
Dxpϕ^ ψq

˘
[for x R freepψq]

(V.5) $
`
@xϕ^ ψ

˘
Ø

`
@xpϕ^ ψq

˘
[for x R freepψq]

(W.1) $
`
Dxϕ_ Dyψ

˘
Ø

`
DxDypϕ_ ψq

˘
[for x R freepψq, y R freepϕq]

(W.2) $
`
@xϕ_ @yψ

˘
Ø

`
@x@ypϕ _ ψq

˘
[for x R freepψq, y R freepϕq]

(W.3) $
`
Dxϕ_ @yψ

˘
Ø

`
Dx@ypϕ_ ψq

˘
[for x R freepψq, y R freepϕq]

(W.4) $
`
Dxϕ_ ψ

˘
Ø

`
Dxpϕ_ ψq

˘
[for x R freepψq]

(W.5) $
`
@xϕ_ ψ

˘
Ø

`
@xpϕ_ ψq

˘
[for x R freepψq]

Before we prove some of these tautologies and basic facts, let us first introduce
a few methods and techniques which allow us to simplify formal proofs.
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The Art of Proof

One of the most useful method is the so-called DEDUCTION THEOREM:

THEOREM 1.1 (DEDUCTION THEOREM). If T is a theory and TYtψu $ ϕ, where
in the proof of ϕ from TY tψu the rule of GENERALISATION is not applied to the
free variables of ψ, then T $ ψ Ñ ϕ; and vice versa, if T $ ψ Ñ ϕ, then
TY tψu $ ϕ:

TY tψu $ ϕ ÎùùùÏ T $ ψ Ñ ϕ (DT)

Proof. Beweis. %

Notice that the DEDUCTION THEOREM allows us under certain conditions to
transform a formal proof into another. So, the DEDUCTION THEOREM is a theo-
rem about formal proofs (i.e., about sequences of formulae) and not a theorem of a
theory.

As an application of the DEDUCTION THEOREM, we show that the equality re-
lation is symmetric, which is (P.1). We first work with the empty theory and show
that tx “ yu $ y “ x:

ϕ1: px “ y ^ x “ xq Ñ px “ xÑ y “ xq instance of L17

ϕ2: px “ y ^ x “ xq Ñ x “ x instance of L4

ϕ3: ϕ1 Ñ pϕ2 Ñ ppx “ y ^ x “ xq Ñ y “ xqq instance of L2

ϕ4: ϕ2 Ñ ppx “ y ^ x “ xq Ñ y “ xq from ϕ3 and ϕ1 by MODUS PONENS

ϕ5: px “ y ^ x “ xq Ñ y “ x from ϕ4 and ϕ2 by MODUS PONENS

ϕ6: x “ x instance of L16

ϕ7: x “ y x “ y belongs to tx “ yu
ϕ8: x “ xÑ px “ yÑ px “ y ^ x “ xqq instance of L5

ϕ9: x “ y Ñ px “ y ^ x “ xq from ϕ8 and ϕ6 by MODUS PONENS

ϕ10: x “ y ^ x “ x from ϕ9 and ϕ7 by MODUS PONENS

ϕ11: y “ x from ϕ5 and ϕ10 by MODUS PONENS

Thus, we have tx “ yu $ y “ x, and by the Deduction Theorem 1.1 we see that
$ x “ y Ñ y “ x, and finally, by GENERALISATION we get

$ @x@ypx “ y Ñ y “ xq.

We leave it as an exercise to the reader to show that the equality relation is also
transitive (see EXERCISE 1).

PROPOSITION 1.2. Let T be an L -theory, and ϕ&ψ any two L -formulae. Then
we have:

T $ ϕ and T $ ψ ÎùùùÏ T $ ϕ^ ψ p^q

Proof. First we assume T $ ϕ and T $ ψ, and show T $ ϕ^ ψ:



The Art of Proof 17

ϕ1: ψ Ñ
`
ϕÑ pϕ^ ψq

˘
instance of L5

ϕ2: ψ provable from T by assumption
ϕ3: ϕÑ pϕ^ ψq from ϕ1 and ϕ2 by MODUS PONENS

ϕ4: ϕ provable from T by assumption
ϕ5: ϕ^ ψ from ϕ3 and ϕ4 by MODUS PONENS

Now we assume T $ ϕ^ ψ, and show T $ ϕ (T $ ϕ is similar):

ϕ1: pϕ^ ψq Ñ ϕ instance of L3

ϕ2: ϕ^ ψ provable from T by assumption
ϕ3: ϕ from ϕ1 and ϕ2 by MODUS PONENS

%

As an immediate consequence of the definition of “Ø” and PROPOSITION 1.2
we get:

T $ ϕÑ ψ and T $ ψ Ñ ϕ ÎùùùÏ T $ ϕØ ψ pØq

PROPOSITION 1.3. Let T be an L -theory and ϕ an arbitrary L -formula. Then for
every L -formula ψ we have:

T $ ϕ^ ϕ ùùùÏ T $ ψ p�q

Proof. Let ψ be any L -formula and assume that T $ pϕ ^  ϕq for some L -
formula ϕ. We show that T $ ψ:

ϕ1: ϕ^ ϕ provable from T by assumption
ϕ2: pϕ^ ϕq Ñ ϕ instance of L3

ϕ3: ϕ from ϕ2 and ϕ1 by MODUS PONENS

ϕ4: pϕ^ ϕq Ñ  ϕ instance of L4

ϕ5:  ϕ from ϕ4 and ϕ1 by MODUS PONENS

ϕ6:  ϕÑ pϕÑ ψq instance of L10

ϕ7: ϕÑ ψ from ϕ6 and ϕ5 by MODUS PONENS

ϕ8: ψ from ϕ7 and ϕ3 by MODUS PONENS
%

Notice that PROPOSITION 1.3 implies that if we can derive a contradiction from
T, we can derive every formula we like, even the impossible, which shall be denoted
by

T $ � .

PROPOSITION 1.4 (Proof by Cases). Let T be an L -theory and ϕ, ψ, and α some
L -formulae. Then the following four statements hold:

T $ ϕ_ ψ and TY tϕu $ α and TY tψu $ α ùùùÏ T $ α (_1)

where p@q is not applied to any of the free variables of ϕ or ψ in the proof of α
from TY tϕu or TY tψu respectively.
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TY tϕu $ ψ and TY t ϕu $ ψ ùùùÏ T $ ψ (_2)

where p@q is not applied to any of the free variables of ϕ in the proof of ψ from
TY tϕu or TY t ϕu respectively.

T $ ϕ_ ψ ùùùÏ TY t ϕu $ ψ (_3)

T $ ϕ_ ψ and TY tϕu $ � ùùùÏ T $ ψ (_4)

Proof. Notation muss angepasst werden.

p_1q We assume T $ ϕ_ ψ.

T $ ϕÑ α (DT)

$ ψ Ñ α (DT)

$ pϕÑ αq Ñ ppψ Ñ αq Ñ ppϕ_ ψq Ñ αqq (L8)

$ pψ Ñ αq Ñ ppϕ_ ψq Ñ αq (MP)

$ pϕ_ ψq Ñ α (MP)

$ ϕ_ ψ (Assumption)

$ α. (MP)

p_2q Is a special case of p_1q, since T $ ϕ_ ϕ holds by (L4).
p_3q We assume T $ ϕ_ ψ.

TY t ϕu $ ϕ_ ψ

$  ϕ

$ pϕÑ ψq Ñ ppψ Ñ ψq Ñ ppϕ_ ψq Ñ ψqq (L8)

$  ϕÑ pϕÑ ψq (L10)

$ ϕÑ ψ (MP)

$ pψ Ñ ψq Ñ ppϕ _ ψq Ñ ψq (MP)

$ pϕ_ ψq Ñ ψ (MP)

$ ψ. (MP)

p_4q By (_2) it is enough to verify T Y tϕu $ ψ and T Y t ϕu $ ψ. The first
statement follows directly from p�q and the second one from p_3q.

%

COROLLARY 1.5 (Generalised Proof by Cases). Let T be an L -theory and ψ1, . . . , ψn, ϕ

some L -formulae. Then we have:

T $ ψ1 _ ¨ ¨ ¨ _ ψn and TY tψiu $ ϕ for all 1 ď i ď n ùùùÏ T $ ϕ,

where p@q is not applied to any of the free variables of ψi in the proof of ϕ from
TY tψiu.
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Since Corollary 1.5 is just a generalization of p_1q, we will also denote all in-
stance of this form by p_1q. Note that the formula ψ1 _ ¨ ¨ ¨ _ ψn is well-defined
due to (J.2).

Proof of Corollary 1.5. Let n ě 2 and assume

T $ pψ1 _ ¨ ¨ ¨ _ ψn´1q _ ψn and TY tψiu $ ϕ for all 1 ď i ď n .

Then
TY tψ1 _ ¨ ¨ ¨ _ ψn´1u $ ϕ and TY tψnu $ ϕ

and by (_1) we get T $ ϕ. %

PROPOSITION 1.6 (Contrapositon). Let T be an L -theory and ϕ&ψ two arbitrary
L -formulae. Then we have:

TY t ψu $  ϕ ùùùÏ TY tϕu $ ψ (CP)

Proof. By (_2) it suffices to show TYtϕ, ψu $ ψ and TYtϕ, ψu $ ψ. The first
statement is obvious and the second one is a consequence of

TY tϕ, ψu $  ϕ

$ ϕ

$ � (^)

$ ψ. (�)

%

PROPOSITION 1.7 (Proof by Contradiction). Let T be a set of formulas, and ϕ be
an arbitrary formula. Then the statements

p q TY t ϕu $ � ñ T $ ϕ, respectively

TY tϕu $ � ñ T $  ϕ

hold, where � :” α^ α for any formula α.

Proof. We consider only the first statement, since both proofs are similar. By (_2)
it is enough to verify TYtϕu $ ϕ and TYt ϕu $ ϕ. The first condition is clearly
satisfied and the second one follows directly from (^) and p�). %

PROPOSITION 1.8 (D´Introduction). Let T be a set of formulas, ϕpxq a formula
with x P freepϕqq and ψ an arbitary formula. Then:

pDq TY tϕpxqu $ ψ ñ TY tDxϕpxqu $ ψ.
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Proof. We will use (DT) twice:

T $ ϕpxq Ñ ψ (DT)

$ @xpϕpxq Ñ ψq (@)

$ @xpϕpxq Ñ ψq Ñ pDxϕpxq Ñ ψq (L15)

$ Dxϕpxq Ñ ψ. (MP)

%

THEOREM 1.9 (DEMORGAN’S LAWS). If ϕ0, . . . , ϕn are formulae, then:

(a)  pϕ0 ^ ¨ ¨ ¨ ^ ϕnq ô p ϕ1 _ ¨ ¨ ¨ _  ϕnq

(b)  pϕ0 _ ¨ ¨ ¨ _ ϕnq ô p ϕ1 ^ ¨ ¨ ¨ ^  ϕnq

(c) ϕ0 Ñ
`
ϕ1 Ñ p¨ ¨ ¨ Ñ ϕnq ¨ ¨ ¨

˘
ô  pϕ0 ^ ¨ ¨ ¨ ^ ϕnq

Proof. %

THEOREM 1.10 (GENERALISED DEDUCTION THEOREM). If T is any theory and
T Y tψ1, . . . , ψnu $ ϕ, where in the proof of ϕ from T Y tψ1, . . . , ψnu the rule
of GENERALISATION is not applied to any of the free variables of ψ1, . . . , ψn, then
T $ pψ1 ^ ¨ ¨ ¨ ^ ψnq Ñ ϕ; and vice versa:

TY tψ1, . . . , ψnu $ ϕ ðñ T $ pψ1 ^ ¨ ¨ ¨ ^ ψnq Ñ ϕ (GDT)

Proof. Follows immediately from the DEDUCTION THEOREM and from part (c) of
DEMORGAN’S LAWS. %

THEOREM 1.11 (3-SYMBOLS). For every each ϕ there is an equivalent formula ψ
which contains only “ ” and “^” as logical operators and “D” as quantifier.

Proof. %

Definition of Prenex Normal Form, abbreviated PNF.

THEOREM 1.12 (PRENEX NORMAL FORM THEOREM). For every formula ϕ there
is an equivalent formula ψ which is in PNF.

Proof. %

THEOREM 1.13 (VARIABLE SUBSTITUTION THEOREM). For every formula ϕ

there is an equivalent formula ψ which contains just variables among v0, v1, . . .

Proof. %
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Consistency & Compactness

Let T be a set of L -formulae. We say that T is consistent, denoted ConpTq, if there
is no L -formula ϕ such that T $ pϕ ^  ϕq, otherwise T is called inconsistent,
denoted  ConpTq.

PROPOSITION 1.14. Let T be a set of L -formulae.

(a) If  ConpTq, then for all L -formulae ψ we have T $ ψ.

(b) If ConpTq and T $ ϕ for some L -formula ϕ, then T &  ϕ.

(c) If  ConpT` ϕq, for some L -formula ϕ, then T $  ϕ.

(d) If T $  ϕ, for some L -formula ϕ, then  ConpT` ϕq.

Proof. (a) This is just PROPOSITION 1.3.

(b) Assume that T $ ϕ and T $  ϕ. Then T $ pϕ^ ϕq, i.e.,  ConpTq:

ϕ1: ϕ provable from T by assumption
ϕ2:  ϕ provable from T by assumption
ϕ3: ϕÑ p ϕÑ pϕ^ ϕqq instance of L5

ϕ4:  ϕÑ pϕ^ ϕq from ϕ3 and ϕ1 by MODUS PONENS

ϕ5: ϕ^ ϕ from ϕ4 and ϕ2 by MODUS PONENS

(c) Assume that for some L -formula ϕ we have  ConpT ` ϕq. By (b) we get
T ` ϕ $ ψ for every L -formula ψ. In particular we get T ` ϕ $  ϕ and by the
DEDUCTION THEOREM we get T $ ϕÑ  ϕ:

T $ ϕÑ  ϕ consequence of assumption
T $ ϕÑ ϕ TAUTOLOGY (A.1)
T $ pϕÑ ϕq Ñ ppϕÑ  ϕq Ñ  ϕq L9

T $ pϕÑ  ϕq Ñ  ϕ by MODUS PONENS

T $  ϕ by MODUS PONENS

(d) Assume that for some L -formula ϕ we have T $  ϕ. By extending T, we also
have T` ϕ $  ϕ:

T` ϕ $  ϕ consequence of assumption
T` ϕ $ ϕ ϕ belongs to T` ϕ
T` ϕ $ ϕ^ ϕ TAUTOLOGY (B)

Hence, T` ϕ is inconsistent, i.e.,  ConpT ` ϕq. %

If we design a theory T (e.g., a set of axioms), we have to make sure that T is
consistent. However, as we shall see later, in many cases this task is impossible.

We conclude this chapter with the COMPACTNESS THEOREM, which is a pow-
erful tool in order to construct non-standard models of Peano Arithmetic or of Set
Theory. On the one hand, it is just a consequence of the fact that formal proofs are
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F I N I T E sequences of formulae. On the other hand, the COMPACTNESS THEO-
REM is the main tool to prove that a given set of sentences is consistent with some
given theory.

THEOREM 1.15 (COMPACTNESS THEOREM). Let T be an arbitrary set of for-
mulae. Then T is consistent if and only if every finite subset T1 of T is consistent.

Proof. Obviously, if T is consistent, then every finite subset T1 of T must be con-
sistent. On the other hand, if T is inconsistent, then there is a formula ϕ such that
T $ ϕ^ ϕ. In other words, there is a proof of ϕ^ ϕ from T. Now, since every
proof is finite, there are only finitely many formulae of T involved in this proof, and
if T1 is this finite set of formulae, then T

1 $ ϕ ^  ϕ, which shows that T1, a finite
subset of T, is inconsistent. %

EXERCISES

0. Something with terms.

1. The equality relation is transitive.



Chapter 2

Semantics: Making Sense of the Symbols

There are two different views to a given set of formulae T, namely the syntactical
view and the semantical view.

From the syntactical point of view (presented in the previous chapter), we con-
sider the set T just as a set of well-formed formulae—regardless of their intended
sense or meaning—from which we can prove some formulae. The only thing that
matters is the relationship between the objects, which is given by the axioms (i.e.,
by the formulae of T), and not the objects themselves. So, from a formal point of
view there is no need to assign real objects (what ever this means) to our strings of
symbols.

In contrast to this very formal syntactical view, there is also the semantical point
of view from which we consider the intended meaning of the formulae in T and
then seeking for a model in which all formulae of T become true. For this, we have
to explain some basic notions of Model Theory like structure and interpretation,
which we will do in an natural, informal language. In this language, we will use
words like “or”, “and”, or phrases like “if. . .then”. These words and phrases have
the usual meaning. Furthermore, we assume that in our normal world, which we
describe with our informal language, the basic rules of common logic apply. For
example, a statement ϕ is true or false, and if ϕ is true, then  ϕ is false; and vice
versa. Hence, the statement “ϕ or  ϕ” is always true, which means that we tacitly
assume the L A W O F E X C L U D E D M I D D L E, also known as T E R T I U M

N O N D A T U R, which corresponds to the logical axiom L0. Furthermore, we as-
sume D E M O R G A N ’ S L A W S and we apply M O D U S P O N E N S as
inference rule.

Structures & Interpretations

In order to define structures and interpretations, we have to assume some notions
of N A I V E S E T T H E O R Y like subset, cartesian product, or relation, which

23
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shall be defined properly in Part ??. On this occasion we also make use of the set
theoretical symbol “P”, which stands for the binary membership relation.

Let L be an arbitrary but fixed language. An L -structure M consists of a non-
empty set A, called the domain of M, together with a mapping which assigns to
each constant symbol c P L an element cM P A, to each n-ary relation symbol
R P L a set of n-tuples RM of elements of A, and to each n-ary function symbol
F P L a functionFM from n-tuples ofA toA. In other word, the constant symbols
become elements of A, n-ary relation symbols become subsets of An (i.e., subsets
of the n-fold cartesian product of A), and n-ary functions symbols become n-ary
functions from An to A.

The interpretation of variables is given by a so-called assignment: An assign-

ment in an L -structure M is a mapping j which assigns to each variable an element
of the domain A.

Finally, an L -interpretation I is a pair pM, jq consisting of an L -structure M
and an assignment j in M. For a variable ν, an element a P A, and an assignment j
in M we define the assignment j a

ν
by stipulating

j a
ν
pν1q “

#
a if ν1 ” ν,

jpν1q otherwise.

For an interpretation I “ pM, jq and an element a P A, let

I
a
ν
:“ pM, j a

ν
q .

We associate with every interpretation I “ pM, jq and every L -term τ an ele-
ment Iptq P A as follows:

• For a variable ν let Ipνq :“ jpνq.
• For a constant symbol c P L let Ipcq :“ cM.
• For an n-ary function symbol F P L and terms τ1, . . . , τn let

I
`
F pτ1, . . . , τnq

˘
:“ FM

`
Ipτ1q, . . . , Ipτnq

˘
.

Now, we are able to define precisely when a formula ϕ becomes true under an
interpretation I “ pM, jq; in which case we write I ( ϕ and say that ϕ is true

in I (or that ϕ holds in I). The definition is by induction on the complexity of the
formula ϕ. By the rules (F1)–(F5), ϕ must be of the form τ1 “ τ2, Rpτ1, . . . , τnq,
 ψ, ψ1 ^ ψ2, ψ1 _ ψ2, ψ1 Ñ ψ2, Dνψ, or @νψ:

I ( τ1 “ τ2 :ÎùùùÏ Ipτ1q IS THE SAME OBJECT AS Ipτ2q

I ( Rpτ1, . . . , τnq :ÎùùùÏ
@
Ipτ1q, . . . , Ipτnq

D
BELONGS TO RM

I (  ψ :ÎùùùÏ NOT I ( ψ

I ( ψ1 ^ ψ2 :ÎùùùÏ I ( ψ1 AND I ( ψ2
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I ( ψ1 _ ψ2 :ÎùùùÏ I ( ψ1 OR I ( ψ2

I ( ψ1 Ñ ψ2 :ÎùùùÏ IF I ( ψ1 THEN I ( ψ2

I ( Dνψ :ÎùùùÏ IT EXISTS a IN A : I
a
ν
( ψ

I ( @νψ :ÎùùùÏ FOR ALL a IN A : I
a
ν
( ψ

Notice that by the logical rules in our informal language, for every L -formulaϕ we
have either I ( ϕ or I (  ϕ. So, every L -formula is either true or false in I.

The following fact summarises a few immediate consequences of the definitions
above:

FACT 2.1. (a) If ϕ is a formula and ν R freepϕq, then:

I
a
ν
( ϕ if and only if I ( ϕ

(b) If ϕpνq is a formula and the substitution ϕpν{τq is admissible, then:

I
Ipτq
ν
( ϕpνq if and only if I ( ϕpτq

Models

Let T be an arbitrary set of L -formulae. Then an L -structure M is a model of T

if for every assignment j and for each formula ϕ P T we have pM, jq ( ϕ, i.e., ϕ
is true in the L -interpretation I “ pM, jq. Instead of saying “M is a model of T ”
we just write M ( T. If ϕ fails in M, then we write M * ϕ, which is equivalent to
M (  ϕ, because for any L -formula ϕ we have either M ( ϕ or M (  ϕ.

Example 2.1. Beispiel

As an immediate consequence of the definition of models we get:

FACT 2.2. If ϕ is an L -formula, ν a variable, and M a model of some L -theory,
then M ( ϕ if and only if M ( @νϕ.

This leads to the following definition: Let xν0, . . . , νny be the sequence of vari-
ables which appear free in the L -formula ϕ, where the variables appear in the
sequence as they appear in ϕ if one reads ϕ from left to right. Then the universal

closure of ϕ, denoted ϕ, is defined by stipulating

ϕ :” @ν0 ¨ ¨ ¨ @νn ϕ .

As a generalisation of FACT 2.2 we get:
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FACT 2.3. If ϕ is an L -formula and M a model of some L -theory, then:

M ( ϕ ÎùùùÏ M ( ϕ

Basic Notions of Model Theory

Let L be a signature, i.e., a possibly empty set of constant symbols c, n-ary function
symbols F , and n-ary relation symbolsR. Two L -structures M&N with domains
A&B are isomorphic, denoted M – N, if there is a bijection f : A Ñ B such
that

f
`
cM

˘
“ cN (for all c P L )

and for all a1, . . . , an P A:

f
`
FMpa1, . . . , anq

˘
“ FN

`
fpa1q, . . . , fpanq

˘
(for all F P L )

xa1, . . . , any P R
M ô

@
fpa1q, . . . , fpanq

D
P RN (for all R P L )

FACT 2.4. (a) If M&N are isomorphic L -structures and σ is an L -sentence,
then:

M ( σ ÎùùùÏ N ( σ

(b) If M&N are isomorphic models of some L -theory and ϕ is an L -formula,
then:

M ( ϕ ÎùùùÏ N ( ϕ

It may happen that although two L -structures M&N are not isomorphic there
is no L -sentence that can distinguish between them. In this case we say that M&N

are elementarily equivalent. More formally, we say that M is elementarily equiva-

lent to N, denoted M ” N, if each L -sentence σ true in M is also true in N. The
following lemma shows that “”” is symmetric:

LEMMA 2.5. If M&N are L -structures and M ” N, then for each L -sentence
σ:

M ( σ ÎùùùÏ N ( σ

Proof. One direction is immediate from the definition. For the other direction, as-
sume that σ is not true in M, i.e., M * σ. Then M (  σ, which implies N (  σ,
and hence, σ is not true in N. %

As a consequence of FACT 2.3 we get:

FACT 2.6. If M&N are elementarily equivalent models of some L -theory and ϕ
is an L -formula, then:
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M ( ϕ ÎùùùÏ N ( ϕ

EXERCISES

2. If two structures M&N are isomorphic, then they are elementarily equivalent.

3. The converse of EXERCISE 2 does not hold.





Chapter 3

Soundness & Completeness

In this chapter we investigate the relationship between syntax and semantic. In par-
ticular, we investigate the relationship between a formal proof of a formula from a
theory T and the truth-value of that formula in a model of T. In this context, two
questions arise naturally:

• Is each formula ϕ, which is provable from some theory T, valid in every model
M of T?

• Is every formula ϕ, which is valid in each model M of T, provable from T?

In the following section we give an answer to the former question; the answer to the
latter is postponed to Part II.

Soundness Theorem

A logical calculus is called sound, if all what we can prove is valid (i.e., true),
which implies that we cannot derive a contradiction. The following theorem shows
that First-Order Logic is sound.

THEOREM 3.1 (SOUNDNESS THEOREM). Let T be a set of L -formulae and M a
model of T. Then for every L -formula ϕ0 we have:

T $ ϕ0 ùùùÏ M ( ϕ0

Somewhat shorter we could say:

Aϕ0 : T $ ϕ0 ùùùÏ AM
`
M ( T ùùùÏ M ( ϕ0

˘

Proof. First we show that all logical axioms are valid in M. For this we have to
define truth-values of composite statements in the metalanguage.
In the previous chapter we defined for example:

29
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M ( ϕ^ ψlooooomooooon ÎùùùÏ M ( ϕloomoon AND M ( ψloomoon
Θ ÎùùùÏ Φ AND Ψ

Thus, in the metalanguage the statement “Θ” is true if and only if the statement
“Φ AND Ψ” is true. So, the truth-value of “Θ” depends on the truth-values of “Φ”
and “Ψ”. In order to determine truth-values of composite statement like “Φ AND Ψ”,
we introduce so called truth-tables, in which “1” stands for “true” and “0” stands
for ”false”:

Φ Ψ NOT Φ Φ AND Ψ Φ OR Ψ IF Φ THEN Ψ

0 0 1 0 0 1

0 1 1 0 1 1

1 0 0 0 1 0

1 1 0 1 1 1

With these truth-tables one can show that all logical axioms are valid in M. As
an example we that every instance of L1 is valid in M: For this, let ϕ1 be an instance
of L1, i.e., ϕ1 ” ϕ Ñ pψ Ñ ϕq for some L -formulae ϕ&ψ. Then M ( ϕ1 iff
M ( ϕÑ pψ Ñ ϕq:

M ( ϕÑ pψ Ñ ϕqlooooooooooomooooooooooon ÎùùùÏ IF M ( ϕloomoon THEN M ( ψ Ñ ϕloooooomoooooon
Θ ÎùùùÏ IF Φ THEN IF M ( ψloomoon

Ψ

THEN M ( ϕloomoon
Φ

This shows that

Θ ÎùùùÏ IF Φ THEN p IF Ψ THEN Φ q .

Writing the truth-table of “Θ”, we see that the statement “Θ” is always true in M:

Φ Ψ IF Ψ THEN Φ IF Φ THEN ( IF Ψ THEN Φ )

0 0 1 1

0 1 0 1

1 0 1 1

1 1 1 1
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Therefore, M ( ϕ1, and since ϕ1 was an arbitrary instance of L1, every instance
of L1 is valid in M.

In order to show that also the logical axioms L11–L17 are valid in M, we need
somewhat more than just truth-tables:

Let A be the domain of M, let j be an arbitrary assignment, and let I “ pM, jq
be the corresponding L -interpretation.

Now, we show that every instance of L11 is valid in M. For this, let ϕ11 be an
instance of L11, i.e., ϕ11 ” @νϕpνq Ñ ϕpτq for some L -formula ϕ, where ν is a
variable, τ a term, and the substitution ϕpν{τq is admissible. We work with I and
show that I ( ϕ11.
By definition we have:

I ( @νϕpνq Ñ ϕpτq ÎùùùÏ IF I ( @νϕpνq THEN I ( ϕpτq

Again by definition we have:

I ( @νϕpνq ÎùùùÏ FOR ALL a IN A : I
a
ν
( ϕ

In particular we get:
I ( @νϕpνq ùùùÏ I

Ipτq
ν
( ϕ

Furthermore, by FACT 2.1.(a) we get:

I ( ϕpτq ÎùùùÏ I
Ipτq
ν
( ϕpνq

Hence, we get
IF I ( @νϕpνq THEN I ( ϕpτq

which shows that
pM, jq ( @νϕpνq Ñ ϕpτq

and since the assignment j was arbitrary, we finally get:

M ( @νϕpνq Ñ ϕpτq

Therefore, M ( ϕ11, and since ϕ11 was an arbitrary instance of L11, every instance
of L11 is valid in M.

With similar arguments one can show that also every instance of L12, L13, or L14

is valid in M (see EXERCISES 4–6).

Zeigen, dass auch L15–L17 in M gelten.

Let now M be a model of T and assume that T $ ϕ0. We shall show that
M ( ϕ0. For this, we notice first the following facts:

• As we have seen above, each instance of a logical axiom is valid in M.
• Since M ( T, each formula of T is valid in M.
• By the truth-tables we get
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IF pM ( ϕÑ ψ AND M ( ϕ q THEN M ( ψ

and therefore, every application of MODUS PONENS in the proof of ϕ0 from T

yields a valid formula (if the premisses are valid).
• Since, by FACT 2.2,

M ( ϕ ÎùùùÏ M ( @νϕpνq

every application of the GENERALISATION in the proof of ϕ0 from T yields a
valid formula.

From these facts it follows immediately that each formula in the proof of ϕ0 from
T is valid in M. In particular we get

M ( ϕ0

which completes the proof. %

The following fact summarises a few consequences of the SOUNDNESS THEO-
REM.

FACT 3.2.

(a) Every tautology is valid in each model:

A ϕ : $ ϕ ùùùÏ AM : M ( ϕ

(b) If a theory T has a model, then T is consistent:

EM : M ( T ùùùÏ ConpTq

(c) The logical axioms are consistent:

ConpL0-L17q

(d) If a formula ϕ is not valid in M, where M is a model of T, then ϕ is not
provable from T:

IF pM * ϕ AND M ( T q THEN T & ϕ

Complete Theories

An L -theoryT is called complete, if for every L -sentence σ we have either T $ σ

or T $  σ.
For an L -theory T let ThpTq be the set of all L -sentences σ, such that T $ σ.
By these definitions we get that a consistent L -theory T is complete iff for every

L -sentence σ we have either σ P ThpTq or  σ P ThpTq.



Exercises 33

Let M be a model of some L -theory T and let TM be the set of L -sentences σ,
such that M ( σ. Then TM is a complete theory which contains T.

Weitere Fakten und ein paar Beispiele.

EXERCISES

4. L12 is valid in M.

5. L13 is valid in M.

6. L14 is valid in M.





Part II

Gödel’s Completeness Theorem
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In this part of the book we shall prove Gödel’s COMPLETENESS THEOREM and
show several consequences.

Gödel proved his famous theorem in his doctoral dissertation Über die Voll-
ständigkeit des Logikkalküls [? ] which was completed in 1929. In 1930, he pub-
lished the same material as in the doctoral dissertation in a rewritten and shortened
form in [? ]. However, instead of presenting Gödel’s original proof we decided to
follow Henkin’s construction, which can be found in [? ] (see also [? ]), since it
fits better in the logical framework developed in Part I. Even though Henkin’s con-
struction works also for uncountable signatures, we shall prove in Chapter 6 COM-
PLETENESS THEOREM with an ultraproduct construction, using ŁOŠ’S THEOREM.

We would like to mention that in our proof of the COMPLETENESS THEOREM

for countable signatures (carried out in Chapters 4 & 5), one only has to assume
the existence of potentially infinite sets but no instance of an actually infinite set is
required (see also Chapter 0).





Chapter 4

Maximally Consistent Extensions

Throughout this chapter we require that all formulae are written in Polish notation
and that the variables are among v0, v1, v2, . . . Recall that by the PRENEX NORMAL

FORM THEOREM 1.12 and by the VARIABLE SUBSTITUTION THEOREM 1.13, ev-
ery formula can be transformed into an equivalent formula of the required form.

Maximally Consistent Theories

Let L be an arbitrary signature and let T be an L -theory. We say that T is maxi-

mally consistent if T is consistent and for every L -sentenceσ we have either σ P T
or  ConpT ` σq. In other words, a consistent theory T is maximally consistent if
no proper extension of T is consistent.

The following fact is just a reformulation of the definition.

FACT 4.1. Let L be a signature and let T be a consistent L -theory. Then T is
maximally consistent iff for every L -sentence σ, either σ P T or T $  σ.

Proof. By THEOREM 1.14.(c)&(d) we have:

 ConpT` σq ÎùùùÏ T $  σ

Hence, an L -theory is maximally consistent iff for every L -sentence σ, either
σ P T or T $  σ. %

As a consequence of FACT 4.1 we get

LEMMA 4.2. Let L be a signature and let T be a consistent L -theory. Then T is
maximally consistent iff for every L -sentence σ, either σ P T or  σ P T.

Proof. We have to show that the following equivalence holds:

39
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A σ
`
σ P T or T $  σ

˘
ÎùùùÏ A σ

`
σ P T or  σ P T

˘

(ñ) Assume that for every L -sentence σ we have σ P T or T $  σ. If σ P
T, then the implication obviously holds. If σ R T, then T $  σ, and since T is
consistent, this implies T & σ. Now, by TAUTOLOGY (F.0), this implies T &   σ
and by our assumption we finally get  σ P T.

(ð) Assume that for every L -sentence σ we have σ P T or  σ P T. If σ P T,
then the implication obviously holds. Now, if σ R T, then by our assumption we
have  σ P T, which obviously implies T $  σ. %

Maximally consistent theories have similar features as complete theories: Recall
that an L -theory T is complete if for every L -sentence σ we have either T $ σ or
T $  σ.

As an immediate consequence of the definitions we get

FACT 4.3. Let L be a signature, let T be a consistent L -theory, and let ThpTq be
the set of all L -sentences which are provable from T.

(a) If T is complete, then ThpTq is maximally consistent.

(b) If T is maximally consistent, then ThpTq is equal to T.

The next lemma gives a condition under which a theory can be extended to max-
imally consistent theory.

LEMMA 4.4. If an L -theory T has a model, then T has a maximally consistent
extension.

Proof. Let M be a model of the L -theory T and let TM be the set of L -sentences
σ such that M ( σ. Then TM is obviously a maximally consistent theory which
contains T. %

Later we shall see that every consistent theory has a model. For this, we first
show how a consistent theory can be extended to a maximally consistent theory.

Universal List of Sentences

Let L be an arbitrary but fixed countable signature, where by “countable” we mean
that the symbols in L can be listed in a F I N I T E or P O T E N T I A L L Y I N -
F I N I T E list LL .

First, we encode the symbols of L corresponding to the order in which they
appear in the list LL : The first symbol is encoded with “2”, the second with “22”,
the third with “222”, and so on. For every symbol ζ P LL let #ζ denote the code
of ζ. So, the code of a symbol of L is just a sequence of 2’s.

Furthermore, we encode the logical symbols as follows:
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Symbol ζ Code #ζ

“ 11

 1111

^ 111111

_ 11111111

Ñ 1111111111

D 111111111111

@ 11111111111111

v0 1

v1 111
...

...

vn 1111 . . . 11111loooooooooomoooooooooon
p2n ` 1q 1’s

In the next step, we encode strings of symbols: Let ζ̄ ” ζ1ζ2ζ3 . . . ζn be a finite
string of symbols, then

#ζ̄ :“ #ζ10#ζ20#ζ3 . . . 0#ζn

For a string #ζ (i.e., a string of 0’s, 1’s, and 2’s) let |#ζ| be the length of #ζ

(i.e., the number of 0’s, 1’s, and 2’s which appear in #ζ).
Now, we order the codes of strings of symbols by their length and lexicographi-

cally, where 0 ă 1 ă 2. If, with respect to this ordering, #ζ1 is less than #ζ2, we
write ζ1 ă ζ2.

Finally, let ΛL “ rσ1, σ2, . . .s be the potentially infinite list of all L -sentences,
ordered by “ă” (i.e., σi ă σj iff i ă j). We call ΛL the universal list of L -

sentences.

Lindenbaum’s Lemma

In this section we show that every consistent set of L -sentences T can be extended
to a maximally consistent set of L -sentences T. Since the universal list of L -
sentences contains all possible L -sentences, every set of L -sentences can be can
be listed in a (finite or potentially infinite) list. So, we do not have to assume that
the (possibly infinite) set of L -sentences T is completed and definite.

LINDENBAUM’S LEMMA 4.5. Let L be a countable signature and let T be a con-
sistent set of L -sentences. Furthermore, let σ0 be an L -sentences which cannot
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be proved from T, i.e., T & σ0. Then there exists a maximally consistent set T of
L -sentences which contains  σ0 as well as all the sentences of T.

Proof. Let ΛL “ rσ1, σ2, . . .s be the universal list of L -sentences. First we extend
ΛL with the L -sentence σ0; let Λ0

L
“ r σ0, σ1, σ2, . . .s.

Now, we go through the list Λ0

L
and define step by step a list T of L -sentences:

For this, we define T0 as the empty list, i.e., T0 :“ r s. If Tn is already defined, then

Tn`1 :“

#
Tn ` rσns if ConpT ` Tn ` σnq,

Tn otherwise.

Let T “ rσi0 , σi1 , . . .s be the resulting list, i.e., T is the union of all the Tn’s.
Notice that the construction only works if we assume the L A W O F E X -

C L U D E D M I D D L E: Even in the case when we cannot decide whether T `
Tn ` σn is consistent or not, we assume, from a metamathematical point of view,
that either T ` Tn ` σn is consistent or T ` Tn ` σn is inconsistent (and neither
both nor none).

CLAIM. T is a maximally consistent set of L -sentences which contains  σ0 as
well as all the sentences of T.

Proof of Claim. First we show that  σ0 belongs to T, then we show that T ` T

is consistent (which implies that T is consistent), in a third step we show that T
contains T, and finally we show that for every L -sentence σ we have either σ P T
or  ConpT` σq.

 σ0 belongs to T: Since T & σ0, by PROPOSITION 1.14.(c) we have ConpT `
 σ0q, and since T0 “ r s, we also have ConpT ` T0 `  σ0q. Thus,  σ0 P T1 (in
fact T1 “ r σ0s) which shows that  σ0 P T.

T`T is consistent: By the COMPACTNESS THEOREM 1.15 it is enough to show
that every finite subset of T `T is consistent. So, let T1 ` Tk be a finite subset of
T`T, where T1 is a finite subset of T and Tk is some finite initial segment of the list
T. Notice that since T` σ0 is consistent, also T

1` σ0 is consistent. If Tk “ r s or
Tk “ r σ0s, this implies that also T

1 ` Tk is consistent. Otherwise, Tk “ r. . . , σns
for some σn in Λ0

L
, which implies that Tk “ Tn ` rσns. Now, by construction we

get ConpT` Tn ` σnq, which implies the consistency of T1 ` Tk.
T contains all sentences of T: For every σ P T there is a σn P Λ0

L
such that

σ ” σn. By ConpT ` Tn ` σnq we get σn P Tn`1, hence, σn P T and therefore
σ P T.

For every σ, either σ P T or  ConpT ` σq: For every L -sentence σ there is
a σn P Λ0

L
such that σ ” σn. By the law of excluded middle, we have either

ConpT` Tn ` σnq, which implies σn P Tn`1 and therefore σ P T, or  ConpT`
Tn ` σnq, which implies  ConpT` σnq, i.e.,  ConpT` σq. % Claim

Thus, the list T has all the required properties, which completes the proof. %

The following fact summarises the main properties of T.
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FACT 4.6. Let T,T, and σ0 be as above, and let σ and σ1 be any L -sentences.

(a)  σ0 P T.

(b) Either σ P T or  σ P T.

(c) If T $ σ, then σ P T.

(d) T $ σ iff σ P T.

(e) If σ ô σ1, then σ P T iff σ1 P T.

Proof. (a) follows by construction of T.
Since T is maximally consistent, (b) follows by LEMMA 4.2.
For (c), notice that T $ σ implies ConpT` σq, hence σ R T and by (b) we

get σ P T.
For (d), let us first assumeT $ σ. This implies ConpT` σq, hence ConpT` σq,

and by construction of T we get σ P T. On the other hand, if σ P T, then we
obviously have T $ σ.

For (e), recall that σ ô σ1 is just an abbreviation for$ σ Ø σ1. Thus, (e) follows
immediately from (d). %

Of course, this can work out only when the L -sentences inT “behave” like valid
sentences in a model, which is indeed the case—as the following proposition shows.

PROPOSITION 4.7. Let T be as above, and let σ, σ1, σ2 be any L -sentences.

(a)  σ P T ÎùùùÏ NOT σ P T

(b) ^σ1σ2 P T ÎùùùÏ σ1 P T AND σ2 P T

(c) _σ1σ2 P T ÎùùùÏ σ1 P T OR σ2 P T

(d) Ñ σ1σ2 P T ÎùùùÏ IF σ1 P T THEN σ2 P T

Proof. (a) Follows immediately from FACT 4.6.(b).
(b) First notice that by FACT 4.6.(d), ^σ1σ2 P T iff T $ ^σ1σ2. Thus,

by L3 & L4 and (MP) we get T $ σ1 and T $ σ2. Thus, by FACT 4.6.(d), we
get σ1 P T AND σ2 P T. On the other hand, if σ1 P T AND σ2 P T, then, by
FACT 4.6.(d), we get T $ σ1 and T $ σ2. Now, by TAUTOLOGY (B), this implies
T $ ^σ1σ2, and by by FACT 4.6.(d) we finally get ^σ1σ2 P T.

(c) & (d) follow from FACT 4.6.(e) and the fact that for each formula σ there is an
equivalent formula σ1 which contains neither “_” nor “Ñ” (see THEOREM ??). %

EXERCISES

7. Show that all the logical axioms of propositional logic (i.e., L0–L10) were used in the proofs of
FACT 4.1, LEMMA 4.2, FACT 4.6, and PROPOSITION 4.7. Notice that in the proof of FACT 4.1,
we used THEOREM 1.14.(c)&(d)





Chapter 5

Models of Countable Theories

As in the previous chapter, we require that all formulae are written in Polish notation
and that the variables are among v0, v1, v2, . . . Furthermore, let L be a countable
signature, let T be a consistent L -theory, and let σ0 be an L -sentence which is not
provable from T. Finally, let T be the maximally consistent extension of T `  σ0
as above.

We shall now construct a model of T. For this, we first extend the signature L

by adding some new constant symbols, then we extend the theoryT, and finally we
construct the model.

Extending the Language

A string of symbols is a term-constant, if it results from applying F I N I T E L Y

many times the following rules:

(C0) Each closed (i.e., variable-free) L -term is a term-constant.
(C1) If τ0, . . . , τn´1 are any term-constants which we have already built and F is

an n-ary function symbol, then Fτ0 ¨ ¨ ¨ τn´1 is a term-constant.
(C2) For any natural numbers i, n, if τ0, . . . , τn´1 are any term-constants which

we have already built, then pi, τ0, . . . , τn´1, nq is a term-constant.

The strings pi, τ0, . . . , τn´1, nq which are built with rule (C2) are called special

constants. Notice that for n “ 0, pi, τ0, . . . , τn´1, nq becomes pi, 0q.
Let Lc be the signature L extended with the countably many special constants.

In order to write the special constants in a list, we first encode them and then define
an ordering on the codes.

First we encode closed L -terms as above with strings of 0’s and 2’s. Now, let
cτ̄i,n ” pi, τ0, . . . , τn´1, nq be a special constant, where the codes of τ0, . . . , τn´1

are already defined. Then we encode cτ̄i,n as follows:
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cτ̄i,n ” p i , τ0 , . . . , τn´1 , n q

Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó

#cτ̄i,n ” 6 1 . . . 1loomoon
i-times 1

8 #τ0 8 . . . 8 #τn´1 8 1 . . . 1loomoon
n-times 1

9

The codes of special constants are ordered by their length and lexicographically,
where 0 ă 1 ă . . . ă 8 ă 9.

Finally, let Λc “ rc0, c1, . . .s be the potentially infinite list of all special con-
stants, ordered with respect to the ordering of their codes.

Extending the Theory

In this section we shall add witnesses for certain existential Lc-sentences σi in the
list T “ rσ0, σ1, . . . , σi, . . .s, where an Lc-sentence is existential if it is of the form
Dνϕ. The witnesses we choose from the list Λc of special constants. In order to
make sure that we have a witness for each existential Lc-sentence (and not just for
L -sentences), and also to make sure that the choice of witnesses do not lead to
a contradiction, we have to choose the witnesses carefully. For this we introducte
the following notion: An L -sentence σi P T is in special prenex normal form,
denoted sPNF, if σi is in PNF and

σi ” E0v0 E1v1 . . . Envnσi,n

where each Em (for 0 ď m ď n) stands for either “D” or “@”, σi,n is quantifier free,
and each variable v0, . . . , vn appears free in σi,n. Notice that by the PRENEX NOR-
MAL FORM THEOREM 1.12 and the VARIABLE SUBSTITUTION THEOREM 1.13,
for every L -sentence σ there is an equivalent L -sentence σ1 which is in sPNF.

Let σi P T and let ct̄i,n ” pi, t0, . . . , tn´1, nq be a special constant. Then we say

that ct̄
i,n

witnesses σi if:

• σi is in sPNF,
• “Dvn” appears in σi, and
• for all m ă n: if “Dvm” appears in σi, then tm ” pi, t0, . . . , tm´1,mq.

If an L -sentence σi P T is in sPNF and “Dvn” or “@vn” appear in σi, then

σi ” E0v0 E1v1 ¨ ¨ ¨ Envnσi,npv0, . . . , vnq

where σi,npv0, . . . , vnq is an L -formula in which each variable v0, . . . , vn appears
free.

Now, we go through the list Λc “ rc0, c1, . . .s of special constants and extend
step by step the list T “ rσ0, σ1, . . .s: For this, we first stipulate T0 :“ T. If Tj is
already defined and that cj ” pi, t0, . . . , tn´1, nq. We have the following two cases:
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Case 1. The special constant cj does not witness the L -sentence σi P T. In this
case we set Tj`1 :“ Tj .

Case 2. The special constant cj witnesses σi P T. In this case we insert the Lc-
sentence

σi,nrcjs ” σi,npv0{t0, . . . , vn´1{tn´1, vn{cjq

into the list Tj on the place which corresponds to the code #σi,nrcjs. The extended
list is then Tj`1.

Finally, let Tc be the resulting list, i.e., Tc is the union of all the Tj’s.

LEMMA 5.0. Tc is consistent.

Proof. By construction ofT we have ConpTq. Now, assume towards a contradiction
that ConpTcq is inconsistent. Then, by the COMPACTNESS THEOREM 1.15, we find
finitely many Lc-sentences σi,nrcjs in Tc such that

 Con
`
T`

 
σi1,n1

rcj1 s, . . . , σik,nk
rcjks

(˘
.

Without loss of generality we may assume that σi1,n1
rcj1 s, . . . , σik,nk

rcjk s are such
that the sum n1 ` . . .` nk ` k is minimal.

Now, for term-constants τ we define the height hpτq as follows: If τ is a closed
L -term, then hpτq :“ 0. If τ0, . . . , τn´1 are term-constants und F P L is an n-ary
function symbol, then

hpFτ0 ¨ ¨ ¨ τn´1q :“ max
 
hpτ0q, . . . , hpτn´1q

(
.

Finally, if τ ” pi, τ0, . . . , τn´1, nq is a special constant, then

hpτq :“ 1`max
 
hpτ0q, . . . , hpτn´1q

(
.

Without loss of generality we may assume that hpcjkq “ max
 
hpcj1 , . . . , hpcjkq

(
.

To simplify the notation, let Σ :“
 
σi1,n1

rcj1 s, . . . , σik,nk´1
rcjk´1

s
(

; furthermore
we write i, n, j instead of ik, nk, jk respectively.

Now, we consider the Lc-sentence σi,nrcjs. For this, let cj ” pi, t0, . . . , tn´1, nq,
i.e.,

σi,nrcjs ” σi,npv0{t0, . . . , vn´1{tn´1, vn{cjq .

Since cj witnesses σi, “Dvn” appears in σi, i.e.,

σi,n´1pv0, . . . , vn´1q ” Dvnσi,npv0, . . . , vn´1, vnq .

To simplify the notation again we set

σ̃pvnq :” σi,npv0{t0, . . . , vn´1{tn´1, vnq .

CLAIM.  Con
`
T`Σ ` σi,nrcjs

˘
ùùùÏ  Con

`
T`Σ ` Dvnσ̃pvnq

˘
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Proof of Claim. If T ` Σ ` σi,nrcjs is inconsistent, then T ` Σ ` σi,nrcjs $ �

and with the DEDUCTION THEOREM we get

T`Σ $ σi,nrcjs Ñ � .

In the latter proof we replace the special constant cj throughout the proof with a
variable ν which does not occur, neither in the proof nor in σi,n. Notice that ev-
ery logical axiom becomes a logical axiom of the same type and that L -sentences
of T are not affected (which do not contain any of the special constants). Further-
more, also Lc-sentences of Σ are not affected since they do not contain the special
constant cj (otherwise, the height hpcjq would not be maximal). Finally, each ap-
plication of MODUS PONENS or GENERALISATION becomes a new application of
the same inference rule (notice that we do not apply GENERALISATION to ν, since
otherwise, we would have applied GENERALISATION to cj , but cj is a constant). It
follows that we obtain a proof of σ̃pνq Ñ � fromT`Σ:

T`Σ $ σ̃pνq Ñ � by construction

T`Σ $ @ν
`
σ̃pνq Ñ �

˘
by GENERALISATION

T`Σ $ @ν
`
σ̃pνq Ñ �

˘
Ñ

`
Dνσ̃pνq Ñ �

˘
L14

T`Σ $ Dνσ̃pνq Ñ � by MODUS PONENS

T`Σ $ Dvnσ̃pvnq Ñ � TAUTOLOGY (Q.2)

Therefore, we finally have  Con
`
T`Σ ` Dvnσ̃pvnq

˘
. % Claim

We now write again ik, nk, jk instead of i, n, j respectively and consider the follow-
ing three cases:

Case 1. If nk “ 0, then σik ” Dv0σ̃, i.e.,  Con
`
T`Σ

˘
. So,

 Con
`
T`

 
σi1,n1

rcj1 s, . . . , σik´1,nk´1
rcjk´1

s
(˘

which is a contradiction to the minimality of n1 ` . . .` nk ` k (i.e., the choice of
σi1,n1

rcj1s, . . . , σik ,nk
rcjks), since

n1 ` . . .` nk´1 ` pk ´ 1q ă n1 ` . . .` nk ` k .

Case 2. If nk ą 0 and “Dvm” appears in σik for some m ă nk, then

Con
`
T`Σ ` σik ,mpv0{t0, . . . vm{tmq

˘
.

Otherwise, we would have

n1 ` . . .` nk´1 `m` k ă n1 ` . . .` nk ` k

which is again a contradiction to the minimality of n1 ` . . .` nk ` k.

Case 3. If, for some m` 1 ă nk, we have
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Con
`
T`Σ ` σik,mpv0{t0, . . . vm{tmq

˘

and “@vm`1” appears in σik , then, by L11, we get

Con
`
T`Σ ` σik,mpv0{t0, . . . vm{tm, vm`1{tm`1q

˘
.

Combining the Cases 1–3 we get thatT`Σ` σik rcjks is consistent, which contra-
dicts our primary assumption. Hence, the Lc-theoryTc is consistent. %

Completeness Theorem for Countable Signatures

In this section we shall construct a model of the Lc-theory Tc, which is of course
also a model of the L -theory T `  σ0. However, since we extended the signature
L , we first have to extend the binary relation ““” as well as relation symbols in L

to the new closed Lc-terms.

LEMMA 5.1. The list Tc can be extended to a consistent list rT of Lc-sentence, such
that the new Lc-sentences are variable-free and for each variable-free Lc-senctence
σ we have

either σ P rT or  σ P rT .

Proof. Like in the proof of LINDENBAUM’S LEMMA 4.5, we go through the list of
all variable-free Lc-sentences and successively extend the list Tc to a maximally
consistent list rT. %

Now we are ready to construct the domain of a model of rT, which shall be a list
of lists: For this, let

Λτ “ rt0, t1, . . . , tn, . . .s

be the list of all term-constants (ordered with respect to the encoding above). We go
through the list Λτ and construct step by step a list of lists: First, we set A0 :“

“
r s
‰
.

Now, assume that An is already defined. Then consider the Lc-sentences

tn “ t0, tn “ t1, . . . , tn “ tn´1 .

If tn “ tm is one of these sentences and tn “ tm belongs to rT, then we append tn to
the list in An which contains tm; the resulting list is An`1. If none of the sentences
tn “ tm belongs to rT, then An`1 :“ An `

“
rtns

‰
.

Let A “
“
rtn0

, . . .s, rtn1
, . . .s . . .

‰
be the resulting list, i.e., A is the union of all

the An’s.
The lists in the list A is the domain of our model M of rT. In order to simplify

the notation, for term-constants τ let rτ be the unique list of A which contains τ .
In order to get an Lc-structure M with domain A, we have to define a mapping

which assigns to each constant symbol c P Lc an element cM P A, to each n-ary
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function symbol F P L a function FM : An Ñ A, and to each n-ary relation
symbol R P L a set RM Ď An:

• If c P Lc is a constant symbol of L or a special constant, then let

cM :“ rc .

• If F P L is an n-ary function symbol and rt1, . . . ,rtn are elements of A, then let

FMrt1 ¨ ¨ ¨rtn :“ ČFt1 ¨ ¨ ¨ tn .

• If R P L is an n-ary relation symbol and rt1, . . . ,rtn are elements of A, then we
define

xrt1, . . . ,rtny P RM
:ÎùùùÏ Rt1 ¨ ¨ ¨ tn P rT .

FACT 5.2. The definitions above, which rely on representatives of the lists in A, are
well-defined.

Proof. This follows easily by L15–L17 and the construction of rT; the details are left
as an exercise to the reader. %

THEOREM 5.3. The Lc-structure M is a model of rT, and consequently also of
T` σ0.

Proof. We have to show that for each Lc-sentence σ P rT, M ( σ, i.e.,

A σ
`
σ P rT ùùùÏ M ( σ

˘
.

First notice that for Lc-sentences σ& σ1 with σ ô σ1 (i.e., $ σ Ø σ1), by the
SOUNDNESS THEOREM ?? we get

M ( σ ÎùùùÏ M ( σ1 .

So, by the 3-SYMBOLS THEOREM 1.11 it is enough to prove the theorem only for
Lc-sentences σ which are either atomic or of the form  σ1, ^σ1σ2, or Dνσ1.

We first consider the case when σ is variable-free. By LEMMA 5.1 we know that
for each variable-free Lc-sentences σ we have either σ P rT or  σ P rT. Thus, we
must show that for these sentences we have

σ P rT ÎùùùÏ M ( σ .

If σ is atomic, then either σ ” t1 “ t2 (for some term-constants t1 & t1) or
σ ” Rt1 ¨ ¨ ¨ tn (for term-constants t1, . . . , tn and an n-ary relation symbolR P L ),
and by construction of M we get σ P rT ÎùùùÏ M ( σ.

Now, assume towards a contradiction that there exists a variable-free Lc-sentence
σ0 such that either σ0 P rT and M * σ0, or σ0 R rT and M ( σ0. Without loss of
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generality we may assume that σ0 has as few logical symbols as possible. Notice
that we already know that σ0 is not atomic. We consider the following cases:

σ0 ”  σ: Since σ has less logical symbols than σ0, we have σ P rT if and only if
M ( σ. This shows that

 σ R rT ÎùùùÏ M *  σ

which is a contradiction to the choice of σ0.

σ0 ” ^σ1σ2: Since σ1 as well as σ2 has less logical symbols than σ0, we have
σ1 P rT if and only if M ( σ1, as well as σ2 P rT if and only if M ( σ2. This shows
that

^σ1σ2 P rT ÎùùùÏ M ( ^σ1σ2

which is a contradiction to the choice of σ0.

Now, we consider the case when σ contains variables and show that for every
σ P rT we have M ( σ; If σ is an Lc-sentence which belongs to rT, then there exists
a σ1 P Tc in sPNF such that σ ô σ1. In particular we get M ( σ if and only if
M ( σ1.

Assume towards a contradiction that there is an Lc-sentence σ1 P Tc in sPNF for
which we have M * σ1. Notice that since σ1 P Tc, we have σ1 P rT, in particular we
get rT $ σ1. For σ1 there are natural numbers i,m, nwithm ă n and term-constants
t0, . . . , tm´1, such that

σ1 ” Emvm ¨ ¨ ¨ Envnσi,mpv0{t0, . . . , vm´1{tm´1, vm, . . . , vnq ,

where each Ek (for m ď k ď n) stands for either “D” or “@” and σi,n is quantifier
free.

Because M * σ1, we get M (  σ1, and for  σ1 we have:

 σ1 ” s
Emvm ¨ ¨ ¨sEnvn σi,npv0{t0, . . . , vm´1{tm´1, vm, . . . , vnq

where for m ď k ď n, the quantifier sEk is “D” if Ek is “@”, and vice versa.
For each k with m ď k ď n, we replace in σi,n step by step the variable vk with

a term-constant tk as follows:

• If Ek is the quantifier “@”, then

M ( Dvk ¨ ¨ ¨ σi,npv0{t0, . . . , vk, . . .q .

Hence, there exists a rtk P A such that

M ( s
Ek ` 1vk`1 ¨ ¨ ¨  σi,npv0{t0, . . . , vk{tk, . . .q .

On the other hand, if Ek is the quantifier “@”, then

rT $ @vk ¨ ¨ ¨σi,npv0{t0, . . . , vk, . . .q ,
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which implies, by L11,

rT $ Ek ` 1vk`1 ¨ ¨ ¨σi,npv0{t0, . . . , vk{tk, . . .q .

• If Ek is the quantifier “D”, then, for tk ” pi, t0, . . . , tk´1, kq,

Ek ` 1vk`1 ¨ ¨ ¨σi,npv0{t0, . . . , vk{tk, . . .q P Tc ,

which implies

rT $ Ek ` 1vk`1 ¨ ¨ ¨σi,npv0{t0, . . . , vk{tk, . . .q .

On the other hand, if Ek is the quantifier “D”, then

M ( @vk ¨ ¨ ¨  σi,npv0{t0, . . . , vk, . . .q ,

which implies, by L11,

M ( s
Ek ` 1vk`1 ¨ ¨ ¨  σi,npv0{t0, . . . , vk{tk, . . .q .

Proceeding this way, we finally get

M (  σi,npv0{t0, . . . , vn{tnq and rT $ σi,npv0{t0, . . . , vn{tnq .

Since the latter implies σi,npv0{t0, . . . , vn{tnq R rT and since σi,n is variable-free,
this is a contradiction to what we have proved above. %

The following theorem just summarises what we have achieved so far:

COUNTABLE GÖDEL-HENKIN COMPLETENESS THEOREM 5.4. If L is a count-
able signature and T is a consistent set of L -sentences, then T has a model. More-
over, if T & σ0 (for some L -sentence σ0), then T` σ0 has a model.

In the next chapter, we shall prove the COMPLETENESS THEOREM for arbitrarily
large signatures, but before, we would like to present a few consequences which fol-
low directly from the COUNTABLE GÖDEL-HENKIN COMPLETENESS THEOREM

(or its proof), or in combination with the COMPACTNESS THEOREM.

Some Consequences

Let L be a countable signature, T a set of L -sentences, and σ0 an L -sentence.

• If T & σ0, then there is an L -structure M such that M ( T` σ0:

T & σ0 ùùùÏ EM
`
M ( T` σ0

˘
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• If T is consistent, then T has a model:

ConpTq ùùùÏ E M
`
M ( T

˘

• If each model of T is also a model of σ0, then T $ σ0:

AM
`
M ( T ùùùÏ M ( σ0

˘
ùùùÏ T $ σ0

• In combination with the COMPACTNESS THEOREM 1.15 we get

ConpTq ÎùùùÏ E M
`
M ( T

˘

and finally:

AM
`
M ( T ùùùÏ M ( σ0

˘
looooooooooooooooooomooooooooooooooooooon

T ( σ0

ÎùùùÏ T $ σ0

The last consequence allows us to replace formal proofs with mathematical proofs:
For example, instead of proving formally the uniqueness of the neutral element in
groups from the axioms of Group Theory GT, we just show that in every model of
GT (i.e., in every group), the neutral element is unique. So, instead of GT $ σ0, we
just show GT ( σ0.

As a last consequence we would like to mention the DOWNWARD LÖWENHEIM–
SKOLEM THEOREM, which is also known as SKOLEM’S PARADOX.

DOWNWARD LÖWENHEIM-SKOLEM THEOREM 5.5. If L is a countable signature
and T is a consistent set of L -sentences, then T has a countable model.

Proof. In the previous chapter, we began with a countable signature L and a con-
sistent set of L -sentences T; and at the end, the domain A of the model M of T
was a finite or potentially infinite list of lists. So, the model M we constructed is
countable. %

EXERCISES

8. Zeige mit Aufgabe 23.(b), dass die Theorie der dichten linearen Ordnungen vollständig ist; d.h.
für alle LDLO-Sätze σ gilt:

entweder DLO $ σ oder DLO $  σ

9. Prove FACT 5.2.





Chapter 6

The Completeness Theorem

Filters & Ultrafilters

Ultraproducts

Łoš’s Theorem

The Gödel-Henkin Completeness Theorem

The Upward Löwenheim-Skolem Theorem

EXERCISES

10. eine Aufgabe
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Chapter 7

Language Extensions by Definitions

Sometimes it is convenient to extend a given signature L by adding new non-logical
symbols which have to be defined properly within the language L or with respect
to a given L -theory T. Let the extended signature be L

˚ and let the corresponding
extended L ˚-theory be T˚. Since T is an L -theory, we can just prove L -sentences
from T but no L ˚-sentences which contain symbols from L ˚zL . However, this
does not imply that we can prove substantially more from T

˚ than from T: It might
be that for each L ˚-sentence σ˚ which is provable from T

˚ there is an L -sentence
rσ, such that T˚ $ σ˚ Ø rσ and T $ rσ; which is indeed the case as we shall see
below.

Defining new Relation Symbols

Let us first consider an example from Peano Arithmetic: Extend the signature LPA

of Peano Arithmetic by adding the binary relation symbol “ă” and denote the
extended signature by L ˚

PA
:“ LPA Y tău. In order to define the binary rela-

tion “ă”, we give an LPA-formula ψă with two free variables (e.g., x and y)
and say that the relation x ă y holds if and only if ψăpx, yq holds. In our case,
ψăpx, yq ” Dzpx` sz “ yq. So, we would define “ă” by stipulating:

x ă y :ðñ Dzpx` sz “ yq

The problem is now to find for each L
˚
PA

-sentence σ˚ an LPA-sentence rσ and an
extension PA

˚ of PA, such that PA˚ $ σ˚ Ø rσ and whenever PA˚ $ σ˚, then
PA $ rσ.

The following result provides an algorithm which transforms sentences σ˚ in the
extended language into equivalent sentences rσ in the original language:

THEOREM 7.1. Let L be a signature, let R be an n-ary relation symbol which
does not belong to L , and let L ˚ :“ L Y tRu. Furthermore, let ψRpv1, . . . , vnq
be an L -formula with freepψRq “ tv1, . . . , vnu and let

57
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ϑR ” @v1 ¨ ¨ ¨ @vn
`
Rv1 ¨ ¨ ¨ vn Ø ψRpv1, . . . , vnq

˘
.

Finally, let T be a consistent L -theory and let T˚ :“ T` ϑR.

Then there exists an effective algorithm which transforms each L ˚-formula ϕ˚

into an L -formula rϕ, such that:

(a) If R does not appear in ϕ˚, then rϕ ” ϕ˚.

(b) Ă ϕ ”  rϕ (for ϕ˚ ”  ϕ)

(c) Č̂ϕ1ϕ2 ” ^rϕ1 rϕ2 (for ϕ˚ ” ^ϕ1ϕ2)

(d) ĄDνϕ ” Dν rϕ (for ϕ˚ ” Dνϕ)

(e) T
˚ $ ϕ˚ Ø rϕ

(f) If T˚ $ ϕ˚, then T $ rϕ.

Proof. Let ϕ˚ be an arbitrary L ˚-formula. In ϕ˚ we replace each occurrence of
Rν1 ¨ ¨ ¨ νn with a formula ψ1

Rpν1, . . . , νnq such that

ψ1
Rpν1, . . . , νnq ô ψRpν1, . . . , νnq

and no variable ν1, . . . , νn is bounded in ψ1
R. For the resulting L -formula rϕ, (a)–(d)

are obviously satisfied and it remains to prove (e) & (f).
To prove (e), by the GÖDEL-HENKIN COMPLETENESS THEOREM it is enough

to show that ϕ˚ Ø rϕ holds in every model M˚ of T˚. So, let M˚ be an arbitrary
model of T˚. In particular, M˚ ( ϑR. If ϕ˚ does not contain R, then we are done.
Otherwise, if ϕ˚ is atomic, then ϕ˚ ” Rt1 ¨ ¨ ¨ tn for some L -terms t1, . . . , tn.
Since M˚ ( ϑR, we get

M
˚ ( Rt1 ¨ ¨ ¨ tn Ø ψ1

Rpt1, . . . , tnq .

This shows M˚ ( ϕ˚ Ø rϕ for atomic formulas and by (b)–(d) we get the result for
arbitrary formulas.

For (f), we first notice that every model M of T can be extended to an L ˚-
structure M˚ such that M˚ ( T

˚. Let M be an abitrary model of T and let M˚ be
such an extension to a model of T˚. By (e), for each L ˚-formula ϕ˚ we have

M
˚ ( ϕ˚

ÎùùùÏ M
˚ ( rϕ .

Now, if T˚ $ ϕ˚, then M
˚ ( ϕ˚, which implies that M˚ ( rϕ. Since rϕ is an

L -formula, we get M ( rϕ, and since the model M of T was arbitrary, by the
GÖDEL-HENKIN COMPLETENESS THEOREM we get T $ rϕ. %
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Defining new Function Symbols

The situation is slightly more subtle if we define new functions. However, there
is also an algorithm which transforms sentences σ˚ in the extended language into
equivalent sentences rσ in the original language:

THEOREM 7.2. Let L be a signature, let f be an n-ary relation symbol which does
not belong to L , let L ˚ :“ L Y tfu and let T be a consistent L -theory. Fur-
thermore, let ψf pv1, . . . , vn, yq be an L -formula with freepψf q “ tv1, . . . , vn, yu
such that

T $ @v1 ¨ ¨ ¨ @vnD!y ψf pv1, . . . , vn, yq .

Finally, let

ϑf ” @v1 ¨ ¨ ¨ @vn@y
`
fv1 ¨ ¨ ¨ vn “ y Ø ψf pv1, . . . , vn, yq

˘

and let T˚ :“ T` ϑf .

Then there exists an effective algorithm which transforms each L ˚-formula ϕ˚

into an L -formula rϕ, such that:

(a) If f does not appear in ϕ˚, then rϕ ” ϕ˚.

(b) Ă ϕ ”  rϕ (for ϕ˚ ”  ϕ)

(c) Č̂ϕ1ϕ2 ” ^rϕ1 rϕ2 (for ϕ˚ ” ^ϕ1ϕ2)

(d) ĄDνϕ ” Dν rϕ (for ϕ˚ ” Dνϕ)

(e) T
˚ $ ϕ˚ Ø rϕ

(f) If T˚ $ ϕ˚, then T $ rϕ.

Proof. By an elementary f -term we mean an L ˚-term of the form ft1 ¨ ¨ ¨ tn, where
t1, . . . , tn are L ˚-terms which do not contain the symbol f . We first prove the theo-
rem for atomic L

˚-formulaeϕ˚ (i.e., for formulae which are free of quantifiers and
logical operators). Let ϕ˚pf wq be the result of replacing the leftmost occurence of
an elementary f -term in ϕ˚ with a new symbol w, which stands for a new variable.
Then, the formula

Dw
`
ψf pt1, . . . , tn, wq ^ ϕ

˚pf wq
˘

is called the f -transform of ϕ˚. If ϕ˚ does not contain f , then let ϕ˚ be its own
f -tranform. Before we procceed, let us prove the following

CLAIM. T
˚ $ Dw

`
ψf pt1, . . . , tn, wq ^ ϕ

˚pf wq
˘
Ø ϕ˚

Proof of Claim. Let M˚ be a model of T˚ with domain A, let j be an arbitrary
assignment which assigns to w an element of A, and let M˚

j :“ pM˚, jq be the
corresponding L ˚-interpretation.
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Assume that
M

˚
j ( Dw

`
ψf pt1, . . . , tn, wq ^ ϕ

˚pf wq
˘
.

Then, since T
˚ $ @v1 ¨ ¨ ¨ @vnD!y ψf pv1, . . . , vn, yq, there exists a unique b P A

such that
M

˚
j b
w

( ψf pt1, . . . , tn, wq ^ ϕ
˚pf wq ,

which is the same as saying that

M
˚
j ( ψf pt1, . . . , tn, bq ^ ϕ

˚pf bq .

Now, since M
˚
j ( ϑf , b is the same object as f

M
˚

j t
M

˚

j

1
¨ ¨ ¨ t

M
˚

j
n . This implies

M
˚
j ( ft1 ¨ ¨ ¨ tn “ b ,

and shows that
M

˚
j ( ϕ˚ .

For the reverse implication assume that M˚
j ( ϕ˚ and let b be the same object as

f
M

˚

j t
M

˚

j

1
¨ ¨ ¨ t

M
˚

j

n . Then M
˚
j ( ϕ˚pf bq and, since M

˚
j ( ϑf ,

M
˚
j ( ψf pt1, . . . , tn, wq Ø ft1 ¨ ¨ ¨ tn “ w .

In particular we get

M
˚
j b
w

( ψf pt1, . . . , tn, bq Ø ft1 ¨ ¨ ¨ tn “ b ,

and because f
M

˚

j t
M

˚

j

1
¨ ¨ ¨ t

M
˚

j
n is the same object as b, we getM˚

j ( ψf pt1, . . . , tn, bq,
and since we already know M

˚
j ( ϕ˚pf bq, we have

M
˚
j ( ψf pt1, . . . , tn, bq ^ ϕ

˚pf bq .

So, there exists a b in A, such that

M
˚
j b
w

( ψf pt1, . . . , tn, wq ^ ϕ
˚pf wq ,

which is the same as saying that

M
˚
j ( Dw

`
ψf pt1, . . . , tn, wq ^ ϕ

˚pf wq
˘
.

Since the model M˚ of T˚ was arbitrary, by the GÖDEL-HENKIN COMPLETENESS

THEOREM we get T˚ $ Dw
`
ψf pt1, . . . , tn, wq ^ ϕ

˚pf wq
˘
Ø ϕ˚. % Claim

Since the f -transform Dw
`
ψf pt1, . . . , tn, wq^ϕ

˚pf wq
˘

of ϕ˚ contains one less
f than ϕ˚, if we take successive f -transforms (introducing always new variables),
eventually we obtain an an atomic L -formula rϕ (i.e., a formula which does not
contain f ) such that T˚ $ ϕ˚ Ø rϕ. We call rϕ the f -less transform of ϕ˚.
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In order to get f -less transforms of non-atomic L ˚-formulae ϕ˚, we just extend
the definition by letting Ă ϕ be  rϕ, Č̂ϕ1ϕ2 be ^rϕ1 rϕ2, and ĄDνϕ be Dν rϕ; proper-
ties (a)–(e) are then obvious.

It remains to prove property (f). Let M0 be an abitrary model of T with domain
A. Then, since T $ @v1 ¨ ¨ ¨ @vnD!y ψf pv1, . . . , vn, yq, for all a1, . . . , an in A there
exists a unique b in A such that

M0 ( ψf pa1, . . . , an, bq

and we define the n-ary function f˚ on A by stipulating:

f˚pa1, . . . , anq :“ b

With this definition, we can extend the L -structure M0 to an L ˚-structure M
˚
0

,
where we still haveM˚ ( T. With the definition of f˚ we get in additionM˚

0
( ϑf ,

which implies M
˚
0
( T

˚. If we have T
˚ $ ϕ˚, for some L ˚-formula ϕ˚, then

there exists an L -formula rϕ, such that T˚ $ ϕ˚ Ø rϕ, i.e., T˚ $ rϕ. Since T˚ $ rϕ
implies M˚

0
( rϕ, and because rϕ is an L -formula, we haveM0 ( rϕ. Now, since the

model M0 of T was arbitrary, by the GÖDEL-HENKIN COMPLETENESS THEOREM

we get T $ rϕ. %

Defining new Constant Symbols

Constant symbols can be handled like 0-are function symbols:

FACT 7.3. Let L be a signature, let c be constant symbol which does not belong to
L , let L ˚ :“ L Ytcu and let T be a consistent L -theory. Furthermore, let ψcpyq
be an L -formula with freepψcq “ tyu such that

T $ D!y ψcpyq .

Finally, let
ϑc ” @y

`
c “ y Ø ψcpyq

˘

and let T˚ :“ T` ϑc.
Then there exists an effective algorithm which transforms each L ˚-formula ϕ˚

into an L -formula rϕ, such that:

(a) If f does not appear in ϕ˚, then rϕ ” ϕ˚.

(b) Ă ϕ ”  rϕ (for ϕ˚ ”  ϕ)

(c) Č̂ϕ1ϕ2 ” ^rϕ1 rϕ2 (for ϕ˚ ” ^ϕ1ϕ2)

(d) ĄDνϕ ” Dν rϕ (for ϕ˚ ” Dνϕ)

(e) T
˚ $ ϕ˚ Ø rϕ
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(f) If T˚ $ ϕ˚, then T $ rϕ.

Proof. The algorithm is constructed in exactly the same way as in the proof of
THEOREM 7.2. %

EXERCISES

11. Something else



Part III

Gödel’s Incompleteness Theorems
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On the syntactical level, an L -theory T is complete if for every L -sentence σ,
either T $ σ or T $  σ. On the semantical level, a consistent L -theory is T

complete if any two models of T are elementary equivalent.
In this part of the book we shall first provide a few models of Peano Arithmetic

PA, where we assume that PA is consistent. Then, we shall prove GÖDELS FIRST

INCOMPLETENESS THEOREM, which states that Peano Arithmetic PA is not com-
plete, i.e., there is a LPA-sentence σ, such that neither PA $ σ nor PA $  σ. In a
second step we shall prove GÖDELS SECOND INCOMPLETENESS THEOREM which
shows that the statement ConpPAq can be formalised in PA, but it cannot be proved
in PA (unless PA is inconsistent).





Chapter 8

Models of Peano Arithmetic

By the COMPLETENESS THEOREM we know that every consistent theory T has
a model, and if T has an infinite model, then it has also arbitrarily large models.
So, if we assume that Peano Arithmetic PA is consistent—what seems sensible—
then there exists a model of PA, and because this model is infinite, PA must have
arbitrarily large models as well.

In this chapter we provide a few models of PA. We shall begin by constructing
the so-called standard model, then we shall extend this model to a countable non-
standard model, and finally we shall construct uncountable models of PA.

The Standard Model of Peano Arithmetic

For the sake of completeness, let us first recall the language and the seven axioms
of Peano Arithmetic PA:

PA: The language PA is LPA “ t0, s,`, ¨ u, where “0” is a constant symbol,
“s” is a unary function symbol, and “`” & “ ¨ ” are binary function symbols.

PA0:  Dxpsx “ 0q
PA1: @x@ypsx “ sy Ñ x “ yq,
PA2: @xpx ` 0 “ xq
PA3: @x@ypx` sy “ spx` yqq
PA4: @xpx ¨ 0 “ 0q
PA5: @x@ypx ¨ sy “ px ¨ yq ` xq

If ϕ is any LPA-formula with x P freepϕq, then:

PA6:
`
ϕp0q ^ @xpϕpxq Ñ ϕpspxqqq

˘
Ñ @xϕpxq

The domain N of our standard model is essentially the same as the list N intro-
duced in Chapter 0, just the elements are named differently. The objects in N are
defined as strings of symbols resulting from applying F I N I T E L Y many times
the following rules:

67
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(N0) 0 is a string.
(N1) If we have already built the string ξ, then sξ is also a string.

For each string ξ P N we have:

either ξ ” 0 or ξ ” s ¨ ¨ ¨ sloomoon
non-empty
finite string

0

To each non-empty finite string which consists just of the symbol s we assign a kind
of “length” m and write s

m
instead of s ¨ ¨ ¨ s. So, s

m
is just an abbreviation of a finite

string of the form s ¨ ¨ ¨ s.

REMARK. With this notation we get that each string in N is either 0 or of the form
s
m
0. Further we get that for any strings s

m
and s

n
we have for example

s
m
s
n
0 ” s

n
s
m
0 , s s

m
s
n
0 ” s s

n
s
m
0 , s s

m
s
n
0 ” s

m
s s

n
0 ,

and further we get:

s
m
0 ” s

n
0 ÎùùùÏ s s

m
0 ” s s

n
0

s
m
0 ” s

n
0 ÎùùùÏ s

n
s
m
0 ” s

m
s
n
0

This we can deduce from Euclid: EUKLID erwähnen, Buch I, Axiom 2

Now, we are going to define the standard model of PA with domain N. For this,
we have to define first an LPA-structure N, which means, that we have to interpret
the non-logical symbols in LPA:

0
N
:“ 0

s
N
: N Ñ N

0 ÞÑ s0

s
m
0 ÞÑ s s

m
0

`N : NˆN Ñ N

x0, 0y ÞÑ 0

x s
m
0, 0y ÞÑ s

m
0

x0, s
n
0y ÞÑ s

n
0

x s
m
0, s

n
0y ÞÑ s

m
s
n
0
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¨N : NˆN Ñ N

x0, 0y ÞÑ 0

x s
m
0, 0y ÞÑ 0

x0, s
n
0y ÞÑ 0

x s
m
0, s

n
0y ÞÑ s

n
s
n
¨ ¨ ¨ s

n
0

ÒÒ ¨ ¨ ¨ Ò
s s ¨ ¨ ¨ sloooomoooon

s
m

The main feature of the LPA-structure N is that every element of N corresponds
to a certain LPA-term. In order to prove this, we introduce the following notion:
Like for elements of N, to each non-empty finite string s ¨ ¨ ¨ s, which consists just
of the unary function symbol s P LPA, we assign again a kind of “length” m and
write s

m
instead of s ¨ ¨ ¨ s. So, s

m
is just an abbreviation of a finite string of the form

s ¨ ¨ ¨ s. As a consequence of this definition we get the following

FACT 8.1. For all finite strings s
m

and s
n

we have:

(a) PA $ s
m
0 ‰ 0

(b) PA $ s
m
0 “ s

n
0 ÎùùùÏ s

m
0 ” s

n
0

Proof. (a) follows from PA0, and (b) follows from PA1 and L15. %

LEMMA 8.2. Every element of N corresponds to a unique finite application of the
function s to 0. More formally, for every element s

m
0 of N there is a unique LPA-

term s
m
0 such that

s
m
0
N IS THE SAME OBJECT AS s

m
0 .

Proof. By definition of sN we get that sNp s
m
0q is the same element of N as ss

m
0, and

after applying this fact finitely many times we get:

s
m
0
N

hkkkkkkkkkikkkkkkkkkj
s
N
s
N ¨ ¨ ¨ sN 0

N

Ù Ù ¨ ¨ ¨ Ù Ù
s s ¨ ¨ ¨ s 0looooooooomooooooooon

s
m
0

The uniqueness of s
m
0 follows from FACT 8.1. %

Now, we are ready to prove that the LPA-structure N, which is called the stan-

dard model of Peano Arithmetic, is indeed a model of PA.

THEOREM 8.3. N ( PA
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Proof. By definition of sN we get N ( PA0 and by the REMARK above we also
have N ( PA1. Further, by definition of `N and ¨N we get N ( PA2 and N ( PA4

respectively. For PA3 notice first that by definition of `N we get 0 `N
s s

n
0 ” s s

n
0,

where s s
n
0 ” s

Np0 `N
s
n
0q. Let us now compute s

m
0 `N

s s
n
0: By definition of `N

and the REMARK above we get

s
m
0`N

s s
n
0 ” s

m
s s

n
0 and s

m
s s

n
0 ” s s

m
s
n
0 ,

where
s s
m
s
n
0 ” s

Np s
m
0` s

n
0q .

Similarly, we can prove N ( PA5 (see EXERCISE 12). In order to show that N (
PA6, let ϕpxq be an LPA-formula and let us assume that

N ( ϕp0q ^ @x
`
ϕpxq Ñ ϕpsxq

˘
.

We have to show that N ( @xϕpxq. By definition of models we get that ϕp0q holds
in N and for all ξ P N: if ϕpξq holds in N, then also ϕpsNξq holds in N. Now, let s

m
0

be an arbitrary element of N. Then, by LEMMA 8.2, we know that s
m
0 is the same

object as s
m
0
N, which implies that ϕp s

m
0q holds in N. Finally, since s

m
0 was arbitrary,

we get that for all ξ P N, ϕpξq holds in N; hence, N ( @xϕpxq. %

As a matter of fact we would like to mention that every model of PA must contain
an isomorphic copy of the standard model N. So, it would also make sense to call N
the minimal model of of Peano Arithmetic. However, it is not clear so far, whether
N is, up to isomorphisms, the only model of PA. This is not the case, as we shall see
now.

Countable Non-Standard Models of Peano Arithmetic

Non-standard models which are elementarily equivalent to the standard model.

Uncountable Models of Peano Arithmetic

EXERCISES

12. Prove that N ( PA5.
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