
Chapter 11

Happy Families and Their Relatives

A cadence is a certain simultaneous progression of all the voices in a composition accom-
panying a repose in the harmony or the completion of a meaningful segment of the text.

GIOSEFFO ZARLINO

Le Istitutioni Harmoniche, 1558

In this chapter we shall investigate combinatorial properties of certain families of
infinite subsets of ω. In order to do so, we shall use many of the combinatorial tools
developed in the preceding chapters. The families we investigate—particularly P -
families and Ramsey families—will play a key role in understanding the combina-
torial properties of Silver and Mathias forcing notions (see Chapter 24 and Chap-
ter 26, respectively).

Happy Families

The P -families and Ramsey families mentioned above are relatives to the so-called
happy families. The name “happy families” comes from a children’s card game,
where the idea of the game is to collect the members of fictional families. The con-
nection to families in Set Theory is that a family E ⊆ [ω]ω is happy if for every
countable decreasing sequence y0 ⊇ y1 ⊇ · · · of elements of E there is a member
of E which selects certain elements from the sets yi (cf. PROPOSITION 11.6 (b)).
This explains why happy families are also called selective co-ideals—which is more
sober but less amusing.

Firstly recall that a family F ⊆ [ω]ω is a filter if it is closed under supersets and
finite intersections, and that the Fréchet filter is the filter consisting of all co-finite
subsets of ω (i.e., all x ∈ [ω]ω such that ω \ x is finite). To keep the notation short,
for x ⊆ ω define xc := ω \ x. For a filter F ⊆ [ω]ω, F+ denotes the collection of
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276 11 Happy Families and Their Relatives

all sets x ⊆ ω such that xc does not belong to F , i.e.,

F
+ =

{
x ⊆ ω : xc /∈ F

}
.

Notice that since F is a filter, we have F ⊆ F+. Another definition of F+ is
given by the following

FACT 11.1. For any filter F ⊆ [ω]ω, x ∈ F+ if and only if x ∩ z is non-empty
whenever z ∈ F .

Proof. On the one hand, if, for some z ∈ F , x∩ z = ∅, then xc ⊇ z, which implies
that xc ∈ F and therefore x /∈ F+. On the other hand, if x ⊆ ω is such that
x /∈ F+, then xc ∈ F . So, for z := xc we have z ∈ F and x ∩ z = ∅. ⊣

By FACT 11.1 and the Ultrafilter Theorem we obtain the following alternative defini-
tion of F+:

F
+ =

⋃{
U ⊆ P(ω) : U is an ultrafilter containing F

}
.

In particular, for every ultrafilter U ⊆ P(ω) we have U + = U .

If U is an ultrafilter and x ∪ y ∈ U , then at least one of x and y belongs to U . In
general, this is not the case for filters F , but it holds for F+.

LEMMA 11.2. Let F ⊆ [ω]ω be a filter. If F+ contains x ∪ y, then it contains at
least one of x and y.

Proof. If neither x nor y belongs to F+, then xc, yc ∈ F . Hence, (x ∪ y)c =
xc ∩ yc ∈ F , and therefore x ∪ y /∈ F+. ⊣

Now, a filter F ⊆ [ω]ω is called a free filter if it contains the Fréchet filter. In
particular, every ultrafilter on [ω]ω is free. Notice that for a free filter F , F+ =
{x ⊆ ω : ∀z ∈ F (|x ∩ z| = ω)}, and that a filter U ⊆ [ω]ω is an ultrafilter iff
U = U +. Finally, a family E of subsets of ω is called a free family if there is a
free filter F ⊆ [ω]ω such that E = F+. In particular, [ω]ω and all ultrafilters on
[ω]ω are free families. Notice that a free family does not contain any finite sets and is
closed under supersets. Moreover, a free family E is closed under finite intersections
iff E is an ultrafilter on [ω]ω.

Recall that fin(ω) denotes the set of all finite subsets of ω. To keep the notation
short, for s ∈ fin(ω) let s̄ :=

⋃
s, and for n ∈ ω let n+ := n + 1 (in other words,

n+ is the successor cardinal of n). In particular, for non-empty sets s ∈ fin(ω) we
have s̄ = max(s) and s̄+ = max(s) + 1.

A set x ⊆ ω is said to diagonalise the set {xs : s ∈ fin(ω)} ⊆ [ω]ω if the following
conditions are satisfied:
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• x ⊆ x∅;

• for all s ∈ fin(ω), if s̄ ∈ x then x \ s̄+ ⊆ xs.

For A ⊆ [ω]ω we write fil(A ) for the filter generated by the members of A , i.e.,
fil(A ) consists of all subsets of ω which are supersets of intersections of finitely
many members of A .

Now, a set E ⊆ [ω]ω is a happy family if E is a free family and whenever fil({xs :
s ∈ fin(ω)}) ⊆ E , there is an x ∈ E which diagonalises the set {xs : s ∈ fin(ω)}.

Below, we give two examples of happy families; in the first the family is as large
as possible, and in the second the family is of medium size—in the next section we
shall see examples of happy families which are as small as possible.

FACT 11.3. The family [ω]ω is happy.

Proof. Let {xs : s ∈ fin(ω)} ⊆ [ω]ω be a subfamily of [ω]ω and assume that
fil({xs : s ∈ fin(ω)}) ⊆ [ω]ω, i.e., the intersection of finitely many elements of
{xs : s ∈ fin(ω)} is infinite. Let n0 :=

⋂
x∅ and for k ∈ ω choose nk+1 > nk such

that
nk+1 ∈

⋂{
xs : s̄

+ ≤ nk + 1
}
.

By our assumption, those choices are possible. Let x = {nk : k ∈ ω}; then x ⊆ x∅,
and whenever s̄ = nk (i.e., s̄+ ≤ nk + 1), we get

x \ s̄+ ⊆
⋂{

xs : s̄
+ ≤ nk + 1

}
.

In particular, x \ s̄+ ⊆ xs, as required. ⊣

In order to construct non-trivial examples of happy families, we first have to intro-
duce the following notion: For a mad family A ⊆ [ω]ω, let FA be the collection of
all subsets of ω which almost contain the complement of a finite union of members
of A .

The goal is to show that F
+
A

is a happy family whenever A ⊆ [ω]ω is a mad family,
but for this we first have to prove that FA is a free filter.

PROPOSITION 11.4. If A ⊆ [ω]ω is a mad family, then FA is a free filter but not
an ultrafilter.

Proof. Let A ⊆ [ω]ω be a mad family and let

FA =
{
y ∈ [ω]ω : ∃x0 . . . xn ∈ A

(
(x0 ∪ . . . ∪ xn)c ⊆∗ y

)}
.

Firstly, FA is a free filter: By definition, FA is closed under supersets and contains
all co-finite sets, and since A is mad, no co-finite set is the union of finitely many
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members of A , hence, FA does not contain any finite set. Further, for any y, y′ ∈
FA there are x0, . . . , xn and x′0, . . . , x

′
m in A such that

(⋃

i∈n

xi

)c

⊆∗ y and

(⋃

j∈m

x′j

)c

⊆∗ y′,

which shows that
(⋃

i∈n

xi ∪
⋃

j∈m

x′j

)c

⊆∗ y ∩ y′ ∈ FA .

Secondly, FA is not an ultrafilter: We have to find a set z ∈ [ω]ω such that neither z
nor zc belongs to FA . Let {xi : i ∈ ω} be distinct elements of A . Notice that it is
enough to construct a set z ∈ [ω]ω such that both z and zc have infinite intersection
with each xi. To construct such a set z, take a strictly increasing sequence n0 <
. . . < nk < . . . of natural numbers such that for each k ∈ ω, if k = 2l(2m + 1),
then both n2k and n2k+1 are in xm and put z = {n2k : k ∈ ω}. ⊣

Now we are ready to give non-trivial examples of happy families. Even though the
proof of the following proposition becomes considerably easier if we use the char-
acterisation of happy families given by PROPOSITION 11.6 (b), we think it makes
sense to have some non-trivial examples of happy families—and to work with the
original definition—before giving an equivalent definition of happy families.

PROPOSITION 11.5. Let A ⊆ [ω]ω be a mad family. Then F
+
A

is a happy family.

Proof. Given any family {yt : t ∈ fin(ω)} with fil({yt : t ∈ fin(ω)}) ⊆ F
+
A

. For
s ∈ fin(ω), let xs =

⋂{yt : t̄ ≤ s̄}. Then for any n ∈ ω, x{n} = xs whenever
n = s̄. We shall construct an x ∈ F

+
A

which diagonalises {yt : t ∈ fin(ω)} by
showing that for all n ∈ ω, x \ n+ ⊆ x{n}. For this, let x0—constructed as in the
proof of FACT 11.3—diagonalise {xs : s ∈ fin(ω)}. We may not assume that x0

belongs to F
+
A

, i.e., there might be a z ∈ F such that x0∩z is finite. However, since
A is mad, there is a y0 ∈ A such that x0∩y0 is infinite. For each s ∈ fin(ω) define
x1s := xs \ y0. Notice that all x1s are infinite and that fil({x1s : s ∈ fin(ω)}) ⊆ F

+
A

,
as y0 ∈ A . Let x1 diagonalise {x1s : s ∈ fin(ω)} and let y1 ∈ A be such that
x1 ∩ y1 is infinite. Since x1 ⊆ x1∅ ⊆ ω \ y0 we get y1 6= y0. Further, notice
that x1 also diagonalises {xs : s ∈ fin(ω)}. Now, for each s ∈ fin(ω) define
x2s := xs \ (y0 ∪ y1) and proceed as before. After countably many steps we have
constructed two sequences of infinite sets, 〈xi : i ∈ ω〉 and 〈yi : i ∈ ω〉, such that
each yi belongs to A , yi 6= yj whenever i 6= j, xi ∩ yi is infinite (for all i ∈ ω),
and xi diagonalises {xs : s ∈ fin(ω)}. Construct a strictly increasing sequence
n0 < . . . < nk < . . . of natural numbers such that n0 ∈ x∅ and for each k ∈ ω, if
k = 2i(2m+ 1), then

nk ∈ yi ∩ xi ∩ x{nk−1}.



Happy Families 279

Such a sequence of natural numbers exists because all sufficiently large numbers in
xi belong to x{nk−1} and since yi ∩ xi is infinite. Finally, let x = {nk : k ∈ ω}.
Then x diagonalises {xs : s ∈ fin(ω)} and it remains to show that x ∈ F

+
A

,
i.e., x has infinite intersection with each member of FA . By construction, for each
i ∈ ω, x ∩ yi is infinite, and since A is mad, x \ yi is infinite as well. Thus, x
has infinite intersection with the complement of any finite union of elements in A ,
hence, x ∈ F

+
A

. ⊣

After having seen that there are non-trivial happy families, let us now give another
characterisation of happy families, which will be used later in this chapter.

PROPOSITION 11.6. For a free family E , the following statements are equiva-
lent:

(a) E is happy.

(b) If y0 ⊇ y1 ⊇ · · · ⊇ yi ⊇ · · · is a countable decreasing sequence of elements
of E , then there is a function f ∈ ωω such that f [ω] ∈ E , f(0) ∈ y0, and for
all n ∈ ω we have f(n+ 1) ∈ yf(n).

Proof. (a) ⇒ (b) Assume that E is happy and let {yi : i ∈ ω} ⊆ E be such that for
all i ∈ ω, yi+1 ⊆ yi. For each s ∈ fin(ω) define

xs =
⋂

{yi : i ≤ s̄}.

Notice that fil({xs : s ∈ fin(ω)}) ⊆ E . Since E is assumed to be happy, there is an x
which diagonalises the family {xs : s ∈ fin(ω)}. Let f = fx—recall that fx ∈ ωω
is defined as the unique strictly increasing bijection between ω and x (defined in
Chapter 9). For an arbitrary n ∈ ω let s := x∩ (f(n)+1). Then s̄+ = f(n)+1 and
s̄ ∈ x. As f(n+ 1) ∈ x \ s̄+ and x \ s̄+ ⊆ xs ⊆ yf(n), we have f(n+ 1) ∈ yf(n),
and since n was arbitrary, f has the required properties.

(b) ⇒ (a) Assume now that E has property (b) and let {xs : s ∈ fin(ω)} ⊆ E be
such that fil({xs : s ∈ fin(ω)}) ⊆ E . We have to find an x ∈ E which diagonalises
{xs : s ∈ fin(ω)}. For each i ∈ ω define

yi =
⋂

{xs : s̄ ≤ i}.

Obviously, for each i ∈ ω we have yi ∈ E and yi+1 ⊆ yi. By (b) there is a function
f ∈ ωω such that f [ω] ∈ E and for all n ∈ ω we have f(n + 1) ∈ yf(n). Let
x := f [ω] and let s ∈ fin(ω) be such that s̄ ∈ x. Then there exists an n ∈ ω such
that f(n) = s̄, and for every k ∈ x\ s̄+ we have k = f(m) for somem > n, hence,
k ∈ yf(n). Now, s̄+ = f(n) + 1, and since yf(n) ⊆ xs we get k ∈ xs. Hence, for
all s ∈ fin(ω) with s̄ ∈ x we have x \ s̄+ ⊆ xs, which shows that x diagonalises
{xs : s ∈ fin(ω)}. ⊣
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We leave it as an exercise to the reader to find an easier proof of PROPOSITION 11.5
by using the characterisation of happy families given by PROPOSITION 11.6 (b).

Ramsey Ultrafilters

So far we have seen two examples of happy families. In the first example (FACT 11.3),
the happy family was as large as possible, and in the second example
(PROPOSITION 11.5), the happy families were of medium size. Below, we consider
happy families which are as small as possible, i.e., happy families which are ultra-
filters.

A free ultrafilter U ⊆ [ω]ω is a Ramsey ultrafilter if for every colouring π :
[ω]2 → 2 there exists an x ∈ U which is homogeneous for π, i.e., π|[x]2 is constant.

The following result gives two alternative characterisations of Ramsey ultrafilter.
The first characterisation of Ramsey ultrafilters is related to P -points and Q-points
(introduced below), and the second characterisation shows that a Ramsey ultrafilter
is an ultrafilter that is also a happy family.

PROPOSITION 11.7. For every free ultrafilter U , the following conditions are
equivalent:

(a) U is a Ramsey ultrafilter.

(b) Let {ui ⊆ ω : i ∈ ω} be a infinite partition of ω, i.e.,
⋃{ui : i ∈ ω} = ω

and for any distinct i, j ∈ ω we have ui ∩ uj = ∅. Then either ui ∈ U for a
(unique) i ∈ ω, or there exists an x ∈ U such that for each i ∈ ω, |x∩ui| ≤ 1.

(c) U is happy.

Proof. (a) ⇒ (b) Let {ui : i ∈ ω} be an infinite partition of ω. With respect to
{ui : i ∈ ω} define the colouring π : [ω]2 → 2 by

π({n,m}) =
{
0 if there is an i ∈ ω such that {n,m} ⊆ ui,

1 otherwise.

By (a) there is an x ∈ U such that π|[x]2 is constant. Now, if π|[x]2 is constantly
zero, then there exists an i ∈ ω such that x ⊆ ui, hence, ui ∈ U . On the other hand,
if π|[x]2 is constantly one, then for any distinct n,m ∈ x and any i ∈ ω we find that
{n,m} ∩ ui has at most one element, hence, for each i ∈ ω, x ∩ ui has at most one
element.

(b) ⇒ (c) By PROPOSITION 11.6 it is enough to show that for every countable
decreasing sequence y0 ⊇ y1 ⊇ . . . ⊇ yn ⊇ . . . of elements of U there is a
function f ∈ ωω such that f [ω] ∈ U , f(0) ∈ y0, and for all k ∈ ω we have
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f(k+1) ∈ yf(k). If y =
⋂
n∈ω yn ∈ U , then the function fy ∈ ωω has the required

properties. So, let us assume that
⋂
n∈ω yn /∈ U and without loss of generality

let us further assume that for all n ∈ ω, yn \ yn+1 6= ∅. Consider the partition
{yc0 ∪

⋂
n∈ω yn} ∪ {yn \ yn+1 : n ∈ ω} and notice that none of the pieces are in

U . By (b), there exists a set x = {an : n ∈ ω} ∈ U such that for all n ∈ ω,
x ∩ (yn \ yn+1) = {an}, in particular, x ∩⋂n∈ω yn = ∅. Let g ∈ ωω be a strictly
increasing function such that g(0) > 0, g[ω] ⊆ x, and for all n ∈ ω, x \ g(n) ⊆
yn. For k ∈ ω let gk+1(0) := g(gk(0)), where g0(0) := 0. Now, since U is an
ultrafilter, either

u0 =
⋃

k∈ω

[
g2k(0), g2k+1(0)

)
or u1 = ω \ u0

belongs to U —recall that [a, b) = {i ∈ ω : a ≤ i < b}. Without loss of generality
we may assume that u0 ∈ U , and consequently x ∩ u0 ∈ U . By (b) and since U

is an ultrafilter, there exists a set z = {ck : k ∈ ω} ⊆ x such that z ∈ U and for all
k ∈ ω,

z ∩
[
g2k(0), g2k+1(0)

)
= {ck} .

By construction, for each k ∈ ω we have ck+1 > g(ck). To see this, notice that

ck+1 ∈
[
g2k+2(0), g2k+3(0)

)
,

which implies ck+1 ≥ g2k+2(0). On the other hand,

ck ∈
[
g2k(0), g2k+1(0)

)
,

which implies g2k+1(0) > ck, and because the function g is strictly increasing, we
get g2k+2(0) > g(ck); hence, ck+1 > g(ck). Finally, by the definition of g we have
x \ g(ck) ⊆ yck , and since ck+1 > g(ck) and ck+1 ∈ x, for all k ∈ ω we have

ck+1 ∈ yck .

Thus, if we define the function f ∈ ωω by stipulating f(k) := ck, then f has the
required properties.

(c) ⇒ (a) Let U be an ultrafilter that is also a happy family, and further let π :
[ω]2 → 2 be an arbitrary but fixed colouring. We have to find a y ∈ U such that
π|[y]2 is constant. The proof is similar to the proof of PROPOSITION 4.2. First we
construct a family {xs : s ∈ fin(ω)} ⊆ U . Let x∅ = ω, and let x{0} ∈ U be such
that x{0} ⊆ ω\{0} and for all k, k′ ∈ x{0} we have π({0, k}) = π({0, k′}). Notice
that since U is an ultrafilter, x{0} exists. In general, if xs is defined and n > s̄, then
let xs∪{n} ∈ U be such that xs∪{n} ⊆ xs \ n+ and for all k, k′ ∈ xs∪{n} we have
π({n, k}) = π({n, k′}). Since U is happy, there is a y ∈ U which diagonalises the
family {xs : s ∈ fin(ω)}. By construction, for each n ∈ y and for all k, k′ ∈ y \n+

we have π({n, k}) = π({n, k′}) and we can define the colouring τ : x → 2 by
stipulating



282 11 Happy Families and Their Relatives

τ(n) =

{
0 if there is a k ∈ x \ n+ such that π({n, k}) = 0,

1 otherwise.

Since U is an ultrafilter, there exists a x ∈ U such that x ⊆ y and τ |x is constant,
hence, π|[x]2 is constant. ⊣

At first glance, condition (a) is just related to PROPOSITION 4.2 and not to RAM-
SEY’S THEOREM. However, the following fact shows that this is not the case. More-
over, even PROPOSITION 4.8 is related to Ramsey ultrafilters (the proofs are left to
the reader).

FACT 11.8. For every free ultrafilter U , the following conditions are equivalent:

(a) U is a Ramsey ultrafilter, i.e., for every colouring π : [ω]2 → 2 there exists an
x ∈ U which is homogeneous for π.

(b) For any n ∈ ω, for any positive integer r ∈ ω, and for every colouring
π : [ω]n → r, there exists an x ∈ U which is homogeneous for π.

(c) Let {rk : k ∈ ω} and {nk : k ∈ ω} be two (possibly finite) sets of positive
integers, and for each k ∈ ω let πk : [ω]nk → rk be a colouring. Then there
exists an x ∈ U which is almost homogeneous for each πk.

It is time now to address the problem of the existence of Ramsey ultrafilters. On the
one hand, it can be shown that there are models of ZFC in which no Ramsey ul-
trafilters exist (see PROPOSITION 26.23). Thus, the existence of Ramsey ultrafilters
is not provable in ZFC. On the other hand, if we assume, for example, CH (or just
p = c), then we can easily construct a Ramsey ultrafilter.

PROPOSITION 11.9. If p = c, then there exists a Ramsey ultrafilter.

Proof. Let {πα : α ∈ c} be an enumeration of the set of all 2-colourings of [ω]2,
i.e., for every colouring π : [ω]2 → 2 there exists an α ∈ c such that π = πα. By
transfinite induction we first construct a sequence 〈xα : α ∈ c〉 ⊆ [ω]ω such that
{xα : α ∈ c} has the finite intersection property and for all α ∈ c, πα|[xα+1]2 is
constant. Let x0 := ω and assume that for some α ∈ c we have already constructed
xβ (β ∈ α) such that {xβ : β ∈ α} has the finite intersection property and for
all γ + 1 ∈ α we have πγ |[xγ+1]2 is constant. If α is a successor ordinal, say α =
β0 + 1, then let xα ∈ [xβ0 ]

ω be such that πβ0 |[xα]2 is constant (notice that by
RAMSEY’S THEOREM 4.1, xα+1 exists). If α is a limit ordinal, then let xα be a
pseudo-intersection of {xβ : β ∈ α} (notice that since |α| < p, xα+1 exists). In
either case, the family {xβ : β ∈ α} has the required properties. In particular, the
family E = {xα : α ∈ c} has the finite intersection property and for each colouring
π : [ω]2 → 2 there is an x ∈ E such that π|[x]2 is constant. Finally, extend the
family E to an ultrafilter U . Then U is a Ramsey ultrafilter. ⊣
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P -points and Q-points

Below, we consider ultrafilters which are weaker than Ramsey ultrafilters, but which
share with them some combinatorial properties.

A free ultrafilter U is a P -point if for each partition {un ⊆ ω : n ∈ ω} of ω, either
un ∈ U for a (unique) n ∈ ω, or there exists an x ∈ U such that for each n ∈ ω,
x ∩ un is finite.

Furthermore, a free ultrafilter U is a Q-point if for each partition of ω into finite
pieces {un ⊆ ω : n ∈ ω} (i.e., for each n ∈ ω, un is finite), there exists an x ∈ U

such that for each n ∈ ω, x ∩ un has at most one element.

An alternative definition of Q-points is in terms of so-called interval partitions: A
partition P = {un ⊆ ω : n ∈ ω} of ω is an interval partition if each un ∈ P is of
the form [a, b] (for some a, b ∈ ω), where [a, b] := {n ∈ ω : a ≤ n ≤ b}.

FACT 11.10. An ultrafilter U ⊆ [ω]ω is a Q-point if and only if for each interval
partition {In ⊆ ω : n ∈ ω} there is an x ∈ U , such that for each n ∈ ω,
|x ∩ In| ≤ 1.

Proof. (⇒) Because every interval partition is a partition of ω into finite pieces, this
direction follows immediately from the definition of Q-points.

(⇐) Let P = {un ⊆ ω : n ∈ ω} be a partition of ω into finite pieces. Let a0 :=
max(u0) and for m ∈ ω, let

am+1 := max
{
max(un) : un ∈ P ∧ un ∩ [0, am + 1] 6= ∅

}
.

Furthermore, let I0 := [0, a0] and, for m ∈ ω, let Im+1 := (am, am+1], where
(am, am+1] := {n ∈ ω : am < n ≤ am+1}. Since {In : n ∈ ω} is an interval par-
tition, by our assumption there is an x ∈ U such that for each n ∈ ω, |x ∩ In| ≤ 1.
Notice that by construction, if, for some n,m ∈ ω, un ∩ Im 6= ∅, then for all
k ∈ ω \ {m− 1,m,m+ 1} we have un ∩ Ik = ∅. This shows that for each n ∈ ω,
|x ∩ un| ≤ 2, and if |x ∩ un| = 2 for some n ∈ ω, then there is an m ∈ ω such that
|x ∩ un ∩ Im| = 1 and |x ∩ un ∩ Im+1| = 1. Now, let

x0 := {x ∩ I2m : m ∈ ω} and x1 := {x ∩ I2m+1 : m ∈ ω} .

Then for each n ∈ ω we have that x0 ∩ un as well as x1 ∩ un contains at most
one element, and since one of x0 or x1 belongs to U , there is a set in U with the
required properties. ⊣

Comparing the definitions of P -points andQ-points with PROPOSITION 11.7 (b), it
is evident that a Ramsey ultrafilter is both a P -point as well as a Q-point; but the
converse is also true:

FACT 11.11. U is a Ramsey ultrafilter if and only if U is a P -point and a Q-point.
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Proof. (⇒) This follows immediately from PROPOSITION 11.7 (b) and the defini-
tions of P -points and Q-points.

(⇐) Let U be a P -point and a Q-point and let {un ⊆ ω : n ∈ ω} be a partition
of ω. We have to show that either un ∈ U for a (unique) n ∈ ω, or there exists
an x ∈ U such that for each n ∈ ω, x ∩ un has at most one element. If there is a
un ∈ U , then we are done (notice that since U is an ultrafilter, un is unique). So,
assume that for all n ∈ ω, un /∈ U . Since U is a P -point, there exists a y0 ∈ U

such that for each n ∈ ω, y0 ∩ un is finite. For n ∈ ω let I2n := y0 ∩ un. Further,
let {ai : i ∈ ω} = ω \⋃n∈ω{I2n : n ∈ ω} and for n ∈ ω let I2n+1 := {an}. Then
{Im : m ∈ ω} is a partition of ω into finite pieces. Since U is a Q-point, there
exists a y1 ∈ U such that for each m ∈ ω, y1 ∩ Im has at most one element. Now,
let x = y0 ∩ y1. Then x ∈ U and for each n ∈ ω, x ∩ un has at most one element,
hence, by PROPOSITION 11.7 (b), U is a Ramsey ultrafilter. ⊣

Below, we give two other characterisations of P -points. The proofs are straightfor-
ward and are left to the reader.

FACT 11.12. For every free ultrafilter U , the following conditions are equiva-
lent:

(a) U is a P -point.

(b) For every family {xn : n ∈ ω} ⊆ U there is an x ∈ U such that for all
n ∈ ω, x ⊆∗ xn (i.e., x \ xn is finite).

(c) For every family {xn : n ∈ ω} ⊆ U there is a function f ∈ ωω and a set
x ∈ U such that for all n ∈ ω, x \ f(n) ⊆ xn.

There are also characterisations of P -points which are not so obvious. As an ex-
ample we give a characterisation of P -points which is seemingly stronger than the
characterisation given in FACT 11.12.(b).

PROPOSITION 11.13. For a free ultrafilter U , the following conditions are equiva-
lent:

(a) U is a P -point.

(b) For every family {xn : n ∈ ω} ⊆ U there is an x ∈ U such that for infinitely
many n ∈ ω, x \ n ⊆ xn.

Proof. (b) ⇒ (a) Let {xn : n ∈ ω} ⊆ U be an arbitrary countable subset of some
ultrafilter U ⊆ [ω]ω. For each n ∈ ω, define

x′n :=
⋂

k≤n

xk .
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Then {x′n : n ∈ ω} ⊆ U and for allm,n ∈ ω withm < nwe have x′m ⊇ x′n. Now,
by assumption there is an x ∈ U such that for infinitely many n ∈ ω, x \ n ⊆ x′n,
then for all n ∈ ω, x ⊆∗ xn. Hence, by FACT 11.12 (b) and since {xn : n ∈ ω} ⊆
U was arbitrary, we get that U is a P -point.

(a) ⇒ (b) Since U is a P -point, by FACT 11.12 (c) there exists a function f ∈ ωω
and a set y ∈ U such that for all n ∈ ω, y \ f(n) ∈ xn. Hence, there also exists
a function g ∈ ωω such that g(0) = 0 and for all k ∈ ω we have y \ g(k + 1) ⊆
xg(k). Since U is an ultrafilter, either y0 =

⋃
k∈ω [g(2k + 1), g(2k + 2)) or y1 =⋃

k∈ω [g(2k), g(2k+1)) belongs to U . Let x = y∩yε, where ε ∈ {0, 1} is such that
yε ∈ U . Then for every k ∈ ω we have x\g(2k+ε) = x\g(2k+ε+1) ⊆ x2k+ε. ⊣

P -points and Q-points, and consequently Ramsey ultrafilters, can also be charac-
terised in terms of functions, but first we have to introduce the notion of finite-
to-one functions: A function f ∈ ωω is finite-to-one if for every k ∈ ω, the set
{n ∈ ω : f(n) = k} is finite.

PROPOSITION 11.14. Let U be a free ultrafilter.

(a) U is a P -point if and only if for every function f ∈ ωω there exists an x ∈ U

such that f |x is constant or finite-to-one.

(b) U is a Q-point if and only if for every finite-to-one function f ∈ ωω there
exists an x ∈ U such that f |x is one-to-one.

(c) U is a Ramsey ultrafilter if and only if for every function f ∈ ωω there exists
an x ∈ U such that f |x is constant or one-to-one.

Proof. Let f ∈ ωω be an arbitrary but fixed function. For each k ∈ ω let uk :=
{n ∈ ω : f(n) = k}. Then {uk : k ∈ ω} \ {∅} is a partition of ω. The proof now
follows from FACT 11.11 and the following observations (the details are left to the
reader):

• For any x ∈ [ω]ω, f |x is constant iff there is a k ∈ ω such that x ⊆ uk.

• For any x ∈ [ω]ω, f |x is finite-to-one iff for all k ∈ ω we have x ∩ uk is finite.

• The function f is finite-to-one iff each uk is finite.

• For any x ∈ [ω]ω, f |x is one-to-one iff for all k ∈ ω, x ∩ uk has at most one
element. ⊣

The next result shows that ultrafilters, and especially Q-points, must contain quite
“sparse” sets.

PROPOSITION 11.15. For free families U ⊆ [ω]ω we have

(a) If U is a free ultrafilter, then the family {fx ∈ ωω : x ∈ U } is unbounded.
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(b) If U is a Q-point, then the family {fx ∈ ωω : x ∈ U } is dominating.

Proof. (a) Let f ∈ ωω be arbitrary. Define g(0) = max{f(0), 1} and for k ∈ ω
define g(k + 1) := g(k) + f(g(k)). Further, let x0 = [0, g(0)), and in general, for
n ∈ ω, let xn = [g(2n), g(2n+ 1)) and yn = [g(2n+ 1), g(2n+ 2)). Finally, let
x =

⋃
n∈ω xn and y =

⋃
n∈ω yn. We leave it as an exercise to the reader to verify

that fx �∗ f and fy �∗ f . Hence, f dominates neither fx nor fy . Now, since U

is an ultrafilter, either x or y belongs to U . Hence, f does not dominate the family
B = {fx ∈ ωω : x ∈ U }, and since f was arbitrary, B is unbounded.

(b) Let g ∈ ωω be arbitrary. Without loss of generality we may assume that g is
strictly increasing. For n ∈ ω, let In = [g(2n), g(2n+ 2)). Then {In : n ∈ ω} is a
partition of ω into finite pieces. Since U is a Q-point, there exists an x ∈ U such
that for each n ∈ ω, x ∩ In has at most one element which implies that g <∗ fx.
Hence, fx dominates g, and since g was arbitrary, the family {fx ∈ ωω : x ∈ U }
is dominating. ⊣

As we have seen above (PROPOSITION 11.9), p = c implies the existence of a
Ramsey ultrafilter. On the other hand, one can show that d = c is not sufficient to
prove the existence of Ramsey ultrafilters (see PROPOSITION 26.23). However, as a
consequence of the next result, we see that d = c is sufficient to prove the existence
of P -points—which shows that P -points are easier to get than Ramsey ultrafilters
(cf. RELATED RESULTS 66 & 67).

THEOREM 11.16. d = c if and only if every free filter over a countable set which
is generated by less than c sets can be extended to a P -point. In particular, d = c

implies the existence of P -points.

Proof. (⇐) Suppose that E ⊆ ωω is a family of cardinality less than c. For f ∈ E

and n ∈ ω define

xf =
{
〈n, k〉 ∈ ω × ω : f(n) < k

}
and xn =

{
〈m, k〉 ∈ ω × ω : n ≤ m

}
,

and let

C = {xf : f ∈ E } ∪ {xn : n ∈ ω} ∪
{
z ⊆ ω × ω : (ω × ω) \ z is finite

}
.

Notice that |C | < c and that each set in C is an infinite subset of the countable
set ω × ω. Moreover, for any finitely many members y0, . . . , yn ∈ C we have
y0∩ . . .∩yn is infinite. Now, the family C generates a free filter over ω×ω, which,
by assumption, can be extended to a P -point U ⊆ [ω × ω]ω. Consider the partition
{un : n ∈ ω} of ω × ω, where for n ∈ ω, un := {n} × ω. Notice that no un
(for n ∈ ω) belongs to U . Since U is a P -point, there exists a y ∈ U such that
for all n ∈ ω, y ∩ un is finite. Let us define the function g ∈ ωω by stipulating
g(n) =

⋃{k ∈ ω : 〈n, k〉 ∈ y ∩ un
}

. Since y ∈ U , for all f ∈ E we have
y ∩ xf is infinite. Hence, for every f ∈ E there are infinitely many n ∈ ω such that
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g(n) > f(n). In other words, g is not dominated by any function f ∈ E , which
shows that no family of cardinality less than c is dominating.

(⇒) The proof is by induction using the following

CLAIM. Suppose that the free filter F ⊆ [ω]ω is generated by less than d sets and
let {xn : n ∈ ω} ⊆ F . Then there exists an x ∈ [ω]ω such that for all n ∈ ω,
x ⊆∗ xn, and for all y ∈ F , x ∩ y is infinite.

Proof of Claim. Without loss of generality we may assume that for all n ∈ ω,
xn+1 ⊆ xn. For y ∈ F define gy ∈ ωω by stipulating gy(n) =

⋂
(y ∩ xn).

Notice that the set y ∩ xn is non-empty, and that if y ⊆ y′, then for all n ∈ ω,
gy′(n) ≤ gy(n). Now, since F is generated by less than d sets, and since every free
ultrafilter generated by less than d sets has a basis of less than d sets, there exists a
function f ∈ ωω such that for all y ∈ F we have f �∗ gy. Finally, let

x =
⋃

n∈ω

(
xn ∩ f(n)

)
.

We leave it to the reader to verify that x has the required properties. ⊣Claim

By the claim and the assumption that d = c we inductively construct a P -point as
follows: Let {Xα ⊆ [ω]ω : |Xα| ≤ ω ∧ α ∈ c} be an enumeration of all countable
subsets of [ω]ω. Let F0 be any free filter which is generated by less than d sets and
assume that we have already constructed Fα for some α ∈ c. If Xα ∪ Fα has the
finite intersection property, then we use the claim to obtain a set xα+1 such that
{xα+1} ∪Fα has the finite intersection property and xα+1 is a pseudo-intersection
of Xα; and let Fα+1 be the filter generated by Fα and xα+1. If Xα ∪Fα does not
have the finite intersection property, then let Fα+1 = Fα. Further, if α ∈ c is a limit
ordinal and for all β ∈ αwe have already constructed Fβ , then let Fα =

⋃
β∈αFβ .

Finally, let F =
⋃
α∈c Fα. Then F is a P -point: Firstly, by construction, F is a

filter, and since the free filter F0 is contained in F , F is even a free filter. Secondly,
for any x ∈ [ω]ω there exists a β ∈ c such that Xβ = {x}. Thus, either x ∈ Fβ+1

or there is a y ∈ Fβ such that x ∩ y is finite, which implies that xc ∈ Fβ . Hence,
F is a free ultrafilter. Finally, for every set {xn : n ∈ ω} ⊆ F there exists a γ ∈ c

such that Xγ = {xn : n ∈ ω}. Since Xγ ∪ Fγ has the finite intersection property,
there is an xγ+1 ∈ Fγ+1 such that for all n ∈ ω, xγ+1 ⊆∗ xn. ⊣

Ramsey Families and P -families

Below, we give characterisations of Ramsey ultrafilters and P -points in terms of
games, which lead to so-called Ramsey families and P -families respectively.

The two games we shall consider are played between two players, which we shall
call DEATH and the MAIDEN. We have chosen these two players, because DEATH
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and the MAIDEN is a well-known motif of Danse Macabre or Dance of Death,
which has received numerous treatments, especially in the second movement of
Schubert’s string quartet no. 14, called Der Tod und das Mädchen. Moreover, since
the crucial point in the games we consider is that one of the players does not have
a winning strategy, the player without a winning strategy is—for obvious reasons—
always the MAIDEN.

Now, a run of an infinite two-player game consists of an infinite sequence 〈x0, y0,
x1, y1, . . .〉 which is constructed alternately by the two players. More precisely, the
first player starts the game with x0 and the second player responds with y0, then the
first player plays x1 and the second player responds with y1, and so on. Of course,
in order to get a proper game we also have to introduce some rules defining legal
moves and telling which player wins a particular run of the game.

Before we introduce some further game-theoretical notions, let us illustrate the no-
tion of rules by the following infinite two-player game, played between DEATH and
the MAIDEN.

Let E be an arbitrary free family. Associated with E we define two quite similar
games, denoted GE and G∗

E
, between two players, say DEATH and the MAIDEN.

In the game GE , the MAIDEN always plays members of E and then DEATH responds
with an element of the MAIDEN’s move. More precisely, the rules for GE are as
follows: For each i ∈ ω, xi ∈ E and ai ∈ xi. Furthermore, we require that for
each i ∈ ω, xi+1 ⊆ xi and ai < ai+1. A run of GE is illustrated by the following
diagram:

MAIDEN x0
∋

⊇ x1
∋

⊇ x2
∋

⊇

GE : . . .

DEATH a0 < a1 < a2 <

Finally, DEATH wins the game GE if and only if the set {ai : i ∈ ω} belongs to the
family E .

In the game G∗
E

, DEATH has slightly more freedom, since he can now play finite sets
instead of singletons. A run of G∗

E
is illustrated by the following diagram.

MAIDEN x0

)

⊇ x1

)

⊇ x2

)

⊇

G∗
E
: . . .

DEATH s0 s1 s2

Again, the sets xi played by the MAIDEN must belong to the free family E and each
finite set si played by DEATH must be a subset of the corresponding xi. Further-
more, for each i ∈ ω we require that xi+1 ⊆ (xi \

⋃
j≤i sj). Notice that the finite

sets si may be empty. Finally, DEATH wins the game G∗
E

if and only if
⋃{si : i ∈ ω}

belongs to the family E .
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Now we define the notion of a strategy for the MAIDEN. Roughly speaking, a
strategy for the MAIDEN is a “rule” that tells her how to play, for each n ∈ ω,
her nth move xn, given DEATH’ previous moves m0, . . . ,mn. In fact, a strategy
for the MAIDEN in the game GE is a mapping σ from seq(E ∪ ω) to E . Intu-
itively, with respect to GE , a strategy σ for the MAIDEN works as follows: The
MAIDEN starts playing x0 ∈ E , where x0 = σ(∅) and then DEATH responds by
playing an element a0 ∈ x0. Then the MAIDEN plays x1 = σ(x0, a0), which—
by the rules of the game—is a set in E and a subset of x0, and DEATH responds
with an element a1 ∈ x1 where a1 > a0. In general, for positive integers n,
xn = σ(x0, a0, . . . , xn−1, an−1), where xn ∈ E , xn ⊆ xn−1, a0, . . . , an−1 are
the moves of DEATH, and x0, . . . , xn−1 are the previous moves of the MAIDEN.

A strategy σ for the MAIDEN is a winning strategy if, whenever the MAIDEN

follows the strategy σ, she wins the game—no matter how sophisticated DEATH

plays. For example, σ is a winning strategy for the MAIDEN in the game GE , if
whenever {an : n ∈ ω} ⊆ ω is such that a0 ∈ σ(∅) and for all n ∈ ω, an < an+1

and an+1 ∈ σ(x0, a0, . . . , xn+1), then {an : n ∈ ω} /∈ E .

Now, a free family E is called a Ramsey family if the MAIDEN has no winning
strategy in the game GE . In other words, no matter how sophisticated her strategy is,
if E is a Ramsey family, then DEATH can win the game. Ramsey families will play
an important role in the investigation of Mathias forcing notions (see Chapter 26).

Furthermore, a free family E is called a P -family if the MAIDEN has no winning
strategy in the game G∗

E
. P -families will play an important role in the investigation

of restricted Silver forcing. In fact, in Chapter 24 it will be shown that Silver forc-
ing restricted to a P -family (called Silver-like forcing) has the same combinatorial
properties as unrestricted Silver forcing and as Grigorieff forcing, which is Silver
forcing restricted to a P -point.

Obviously, the family [ω]ω is a Ramsey family and every Ramsey family is also a
P -family. Now, the reader might guess that [ω]ω is not the only example and that
there must be some relation between Ramsey families and Ramsey ultrafilters, as
well as between P -families and P -points; this is indeed the case:

THEOREM 11.17. Let U ⊆ [ω]ω be a free ultrafilter. Then

(a) U is a P -point if and only if U is a P -family, and

(b) U is a Ramsey ultrafilter if and only if U is a Ramsey family.

Proof. (a) We have to show that the MAIDEN has a winning strategy in the game
G∗

U
if and only if U is not a P -point.

(⇐) Suppose that U is not a P -point. Then, by FACT 11.12 (b), there exists a set
{yn : n ∈ ω} ⊆ U such that whenever y ∈ [ω]ω has the property that for all
n ∈ ω, y \ yn is finite, then y /∈ U . Let σ(∅) := y0 (i.e., x0 = y0), and for any
k ∈ ω and {s0, . . . , sk} ⊆ fin(ω) let σ(x0, s0, . . . , xk, sk) :=

⋂
i≤k yi \

⋃
i≤k si.

If the MAIDEN follows that strategy σ and the sequence 〈sk : k ∈ ω〉 represents
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the moves of DEATH, then for all n ∈ ω we have (
⋃
k∈ω sk) \ xn is finite. Hence,⋃

k∈ω sk /∈ U , which shows that DEATH loses the game, or in other words, σ is a
winning strategy for the MAIDEN.

(⇒) Under the assumption that U is a P -point we show that no strategy for the
MAIDEN is a winning strategy. Let us assume that the MAIDEN is playing according
to some strategy σ. We have to show that DEATH can win. For n ∈ ω, let Xn be the
family of sets played by the MAIDEN in her first n+ 1 moves, assuming that she is
following the strategy σ and DEATH plays in his first n moves only sets sk ⊆ n (for
k < n). More formally, x0 = σ(∅),X0 = {x0}, and for positive integers n, x ∈ Xn

iff there are s0, . . . , sk ⊆ n for some k < n, such that x = σ(x0, s0, . . . , xk, sk)
where for all i ≤ k, si ⊆ xi and xi = σ(x0, s0, . . . , xi, si). Recall that by the
rules of the game, DEATH can play ∅ in any move. Clearly, for every n ∈ ω, Xn

is a finite set of elements of U , and since U is an ultrafilter, yn :=
⋂
Xn belongs

to U . Moreover, since U is a P -point, by FACT 11.12 (c) there is a set y∗ ∈ U

and a strictly increasing function f ∈ ωω with f(0) > 0 such that for all n ∈ ω,
y∗ \f(n) ⊆ yn. Let k0 := f(0), and in general, for n ∈ ω let kn+1 := f(kn). Since
U is an ultrafilter, either

z0 =
⋃

j∈ω

[k2j , k2j+1) or z1 = ω \ z0

belongs to U . Without loss of generality we may assume that z1 ∈ U , which
implies z1 ∩ y∗ ∈ U , i.e.,

⋃

j∈ω

(
[k2j+1, k2j+2) ∩ y∗

)
∈ U .

Consider the run
〈x0, s∗0, x1, s∗1, . . .〉

of the game G∗
U

, where the MAIDEN plays according to the strategy σ and DEATH

plays

s∗n =

{
[k2j+1, k2j+2) ∩ y∗ if n = k2j for some j ∈ ω,

∅ otherwise.

It is clear that
⋃
n∈ω s

∗
n ∈ U . In other words, the MAIDEN loses the game if the

moves of DEATH satisfy the rules of the game G∗
U

. To see that this is indeed the
case, notice first that for all positive integers j, s∗k2j−2

⊆ [k2j−1, k2j) ⊆ k2j . Thus,
if n = k2j , then for all k < n we have s∗k ⊆ n. Now, if n = k2j for some j ∈ ω,
then s∗n = s∗k2j = [k2j+1, k2j+2) ∩ y∗. Further, we have

y∗ \ k2j+1 = y∗ \ f(k2j) ⊆ yk2j =
⋂
Xk2j ⊆

⋂
{x0, . . . , xk2j} ⊆ xk2j ,

where x0, . . . , xk2j are the moves played by the MAIDEN when DEATH plays
s∗0, . . . , s

∗
k2j−2

. Now, by the definition of s∗k2j we get s∗k2j ⊆ y∗ \ k2j+1, and since
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y∗ \ k2j+1 ⊆ xk2j , we finally have

s∗k2j ⊆ xk2j .

So, for n = k2j we get s∗n ⊆ xn, which shows that for all n ∈ ω, s∗n ⊆ xn, as
required.

(b) We show that the MAIDEN has a winning strategy in the game GU if and only if
the free ultrafilter U is not a Ramsey ultrafilter.

(⇐) Under the assumption that the free ultrafilter U is not Ramsey we construct a
winning strategy for the MAIDEN in the game GU . If U is not a Ramsey ultrafilter,
then, by PROPOSITION 11.6, there exists a set {xn : n ∈ ω} ⊆ U such that for
each function f ∈ ωω with f(0) ∈ x and f(n + 1) ∈ xf(n) we have f [ω] /∈ U .
Let σ(∅) := x0, and for n ∈ ω let σ(x0, a0, . . . , xn, an) := xan . By the rules of
GU , an+1 ∈ xan . Define f ∈ ωω by stipulating f(n) = an. Then f(0) ∈ x0 and
for all n ∈ ω we have f(n+1) ∈ xf(n), and therefore {f(n) : n ∈ ω} /∈ U . Thus,
{an : n ∈ ω} /∈ U , which shows that DEATH loses the game (i.e., σ is a winning
strategy for the MAIDEN), and consequently, U is not a Ramsey family.

(⇒) Under the assumption that the free ultrafilter U is Ramsey we show that no
strategy for the MAIDEN is a winning strategy. We will do this by following the
corresponding proof of (a) after we have modified the game GU : If the MAIDEN

plays xn at some stage, then we allow DEATH to respond either with a singleton
{an} ⊆ xn or with the empty set. In other words, DEATH may respond to the move
xn of the MAIDEN by playing tn, where tn = {an} (for some an ∈ xn) or tn = ∅.
DEATH wins the game if and only if

⋃
n∈ω tn ∈ U . It is obvious that every winning

strategy σ of the MAIDEN in the game GU corresponds to a winning strategy of
the modified game: If tn = ∅ (for some n ∈ ω), then the MAIDEN responds with
xn+1 := xn, and if tn = {an}, then she responds according to the strategy σ,
where she assumes that DEATH has played an. Notice that if DEATH plays tn = ∅,
the MAIDEN could also respond by playing some xn+1 ∈ U with xn+1  xn,
which shows that it makes it harder to win for DEATH if he plays ∅ at some point.

Let now σ be any strategy for the MAIDEN in the modified game, which can be
identified with the game GU . We have to show that DEATH can win. As above,
for n ∈ ω, let Xn be the family of sets played by the MAIDEN in her first n +
1 moves, assuming that she is following the strategy σ and DEATH plays in his
first n moves only sets tk ⊆ n (for k < n). More formally, x0 = σ(∅), X0 =
{x0}, and for positive integers n, x ∈ Xn iff there are t0, . . . , tk ⊆ n for some
k < n, such that x = σ(x0, t0, . . . , xk, tk) where for all i ≤ k, ti ⊆ xi and
xi = σ(x0, t0, . . . , xi, ti). Recall that by the modified rules of the game, DEATH can
always play ∅. Clearly, for every n ∈ ω, Xn is finite, and since U is an ultrafilter,
yn :=

⋂
Xn belongs to U . Moreover, since U is a Ramsey ultrafilter, and since

every Ramsey ultrafilter is a P -point, by FACT 11.12 (c) there is a set y∗ ∈ U

and a strictly increasing function f ∈ ωω with f(0) > 0 such that for all n ∈ ω,
y∗ \ f(n) ⊆ yn. Let k0 := f(0), and in general, for n ∈ ω, let kn+1 := f(kn).
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Since U is an ultrafilter, either

z0 =
⋃

j∈ω

[k2j , k2j+1) or z1 = ω \ z0

belongs to U . Without loss of generality we may assume that z1 ∈ U , which
implies z1 ∩ y∗ ∈ U , i.e.,

⋃

j∈ω

(
[k2j+1, k2j+2) ∩ y∗

)
∈ U .

Now, since U is a Ramsey ultrafilter, by PROPOSITION 11.7 (b) there exists a set
{ak2j : j ∈ ω} ⊆ ω such that

∀j ∈ ω
(
ak2j ∈ [k2j+1, k2j+2)

)
and {ak2j : j ∈ ω} ∈ U .

Consider the run 〈x0, t∗0, x1, t∗1, . . .〉 of the game GU , where the MAIDEN plays
according to her strategy σ and DEATH plays

t∗n =

{
{ak2j} if n = k2j and ak2j ∈ y∗,

∅ otherwise.

Because {ak2j : j ∈ ω} ∈ U , we get {ak2j : j ∈ ω} ∩ y∗ ∈ U which shows
that

⋃
n∈ω t

∗
n ∈ U . In other words, the MAIDEN loses the game if the moves of

DEATH satisfy the rules of the game GU . For this, notice first that for all positive
integers j, ak2j−2 ∈ [k2j−1, k2j) ⊆ k2j , in particular we get ak2j−2 < k2j . Thus,
if n = k2j , then for all k < n we have t∗k ⊆ n where t∗k is either {ak} or ∅.
Now, if n = k2j for some j ∈ ω, then an = ak2j ∈ [k2j+1, k2j+2), and hence
t∗k2j ⊆ [k2j+1, k2j+2) ∩ y∗. Further, we have

y∗ \ k2j+1 = y∗ \ f(k2j) ⊆ yk2j =
⋂
Xk2j ⊆

⋂
{x0, . . . , xk2j} ⊆ xk2j ,

where x0, . . . , xk2j are the moves played by the MAIDEN when DEATH plays
t0, . . . , tk2j−2 . Now, by the definition of t∗k2j we get t∗k2j ⊆ y∗ \ k2j+1, and since
y∗ \ k2j+1 ⊆ xk2j , we finally have

t∗k2j ⊆ xk2j .

So, for each n ∈ ω we have either t∗n = {an} and an ∈ xn or t∗n = ∅, and in
both cases we have t∗n ⊆ xn. This shows that if the MAIDEN plays according to the
strategy σ, DEATH can win. Hence, σ is not a winning strategy for the MAIDEN. ⊣

Roughly speaking, Ramsey families are a kind of generalised Ramsey ultrafilter and
P -families are a kind of generalised P -point.

Let us turn back to happy families and let us compare them with Ramsey families.
At first glance, happy families and Ramsey families look very similar. However, it
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turns out that the conditions for a Ramsey family are slightly stronger than for a
happy family. This is because in the definition of happy families we require that
they contain sets which diagonalise certain subfamilies having the finite intersec-
tion property. On the other hand, a strategy of the MAIDEN in the game GE can be
quite arbitrary: Even though the sets played by her in a run of GE form a decreas-
ing sequence, the family of possible moves of the MAIDEN does not necessarily
have the finite intersection property. Of course, by restricting the set of strategies
the MAIDEN can choose from, we could make sure that all happy families are Ram-
sey. In fact we just have to require that all the moves of the MAIDEN—no matter
what DEATH is playing—belong to some family which has the finite intersection
property. However, the definition of Ramsey families given above has the advantage
that the MAIDEN is able—by a winning strategy—to defeat DEATH in the game GE

even in some cases when E is happy (see PROPOSITION 11.19).

Below, we show first that every Ramsey family is happy, and then we show that
there are happy families which are not even P -families. Thus, Ramsey families are
smaller “clans” (i.e., families who originate from the same family and have the same
name) than happy families.

FACT 11.18. Every Ramsey family is happy.

Proof. Let E be a free family which is not happy. Thus, there is exists a set
C = {ys : s ∈ fin(ω)} ⊆ E such that fil(C ) ⊆ E but no y ∈ E diago-
nalises A . Let σ(∅) := x∅ and for n ∈ ω and s = {a0, . . . , an} ∈ fin(ω) let
σ(x0, a0, . . . , xn, an) :=

⋂
s′⊆s ys. It is not hard to verify that in the game GE , σ is

a winning strategy for the MAIDEN. ⊣

By PROPOSITION 11.5 we know that every mad family induces a happy family. This
type of happy family provides examples of happy families which are not Ramsey
families, in fact, which are not even P -families.

PROPOSITION 11.19. Not every happy family is Ramsey; moreover, not every
happy family is a P -family.

Proof. It is enough to construct a happy family which is not a P -family: Let {tk :
k ∈ ω} be an enumeration of

⋃
n∈ω

nω such that for all i, j ∈ ω, ti ⊆ tj implies
i ≤ j, in particular, t0 = ∅. For functions f ∈ ωω define the set xf ∈ [ω]ω by
stipulating

xf :=
{
k ∈ ω : ∃n, i, j ∈ ω (f |n = ti ∧ f |n+1 = tj ∧ i ≤ k < j ∧ ti ⊆ tk)

}
.

Obviously, for any distinct functions f, g ∈ ωω, xf ∩ xg is finite (compare with the
sets constructed in the proof of PROPOSITION 9.6). Now, let A0 := {xf : f ∈ ωω}.
Then A0 ⊆ [ω]ω is a set of pairwise almost disjoint sets which can be extended to a
mad family, say A . Recall that by PROPOSITION 11.5, F

+
A

is a happy family.
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We show that F
+
A

is not a P -family: Let k0 := 0 and let x0 := ω be the first move
of the MAIDEN, and let s0 be DEATH’s response. In general, if sn is DEATH’s nth

move, then the MAIDEN chooses kn+1 such that kn+1 ≥ max(sn), |tkn+1 | = n+1,
and tkn ⊆ tkn+1 , and then she plays

xn+1 = {i ∈ ω : tkn+1 ⊆ si}.

Obviously, for every n ∈ ω we have xn+1  xn. Moreover, all moves of the
MAIDEN are legal:

CLAIM. For every n ∈ ω, xn ∈ F
+
A

.

PoC Firstly, for every n ∈ ω, xn has infinite intersection with infinitely many mem-
bers of A0. Indeed, xn ∩ xf is infinite whenever f |n = tkn . Secondly, for every
z ∈ FA there are finitely many y0, . . . , yk ∈ A such that (y0 ∪ . . . ∪ yk)c ⊆∗ z.
Now, for xn let xf ∈ A0 \ {y0, . . . , yk} such that xf ∩ xn is infinite. Then, since
xf ∩ (y0 ∪ . . . ∪ yk) is finite, xf ⊆∗ z. Hence, xn ∩ z is infinite which shows that
xn ∈ F

+
A

. ⊣Claim

By the MAIDEN’s strategy,
⋃
n∈ω tkn = f for some particular function f ∈ ωω.

Moreover,
⋃
n∈ω sn ⊆ xf ∈ A0, and since subsets of members of A0 do not belong

to F
+
A

,
⋃
n∈ω sn /∈ F

+
A

. Hence, DEATH loses the game, no matter what he is
playing, which shows that the MAIDEN has a winning strategy in the game G∗

F
+

A

. In

other words, the happy family F
+

A
is not a P -family. ⊣

The Rudin–Keisler Ordering of Ultrafilters over ω

In this section, we introduce an ordering on the set of all ultrafilters over ω. For this,
we first define the image of an ultrafilter under a function f : ω → ω.

For f ∈ ωω and an ultrafilter V ⊆ P(ω), let

f(V ) :=
{
x ⊆ ω : ∃y ∈ V

(
f [y] ⊆ x

)}
.

We leave it as an exercise to the reader to show that

f(V ) =
{
x ⊆ ω : f−1[x] ∈ V

}
,

where f−1[x] := {n ∈ ω : f(n) ∈ x
}

.

FACT 11.20. If V ⊆ P(ω) is an ultrafilter over ω and U = f(V ), then U is also
an ultrafilter over ω.

Proof. Since f−1[ω] = ω, we get ω ∈ U , and since f−1[∅] = ∅, we get ∅ /∈ U .
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If x ⊆ x′ and x ∈ f(V ) (i.e., x ∈ U ), then f [y0] ⊆ x for some y0 ∈ V , and
therefore f [y0] ⊆ x′, which shows that x′ ∈ f(V ) (i.e., x′ ∈ U ).

If x, x′ ∈ f(V ) (i.e., x, x′ ∈ U ), then f−1[x], f−1[x′] ∈ V , and since V is an
ultrafilter,

(
f−1[x] ∩ f−1[x′]

)
∈ V . Now, since f−1[x] ∩ f−1[x′] = f−1[x ∩ x′],

we get x ∩ x′ ∈ f(V ) (i.e., x ∩ x′ ∈ U ). ⊣

The so-called Rudin–Keisler ordering “≤RK” on the set of ultrafilters over ω is now
defined as follows:

U ≤RK V : ⇐⇒ ∃f ∈ ωω
(
U = f(V )

)

Furthermore, for ultrafilters U ,V ⊆ P(ω) we define

U ≡RK V : ⇐⇒ U = f(V ) for some bijection f ∈ ωω.

FACT 11.21. (a) The relation “≤RK” is reflexive and transitive.

(b) The relation “≡RK” is an equivalence relation on the set of ultrafilters over ω.

Proof. (a) For the identity function ι : ω → ω we obviously have ι(U ) = U ,
hence, U ≤RK U . Furthermore, if f(W ) = V and g(V ) = U for some functions
f, g ∈ ωω, then g◦f(W ) = U , hence, U ≤RK V and V ≤RK W implies U ≤RK W .

(b) Notice that if f, g ∈ ωω are bijections, then f−1, g−1, and f◦g are also bi-
jections. From this observation it follows easily that the relation “≡RK” is reflex-
ive, symmetric, and transitive (e.g., if f(U ) = V , where f is a bijection, then
f−1(V ) = U ). ⊣

The following lemma will be crucial in the proof of THEOREM 11.23.

LEMMA 11.22. For any ultrafilter U ⊆ P(ω) and any function f ∈ ωω we have

f(U ) = U −→ {n ∈ ω : f(n) = n} ∈ U .

Proof. Let f ∈ ωω be an arbitrary but fixed function and let U ⊆ P(ω) be an
ultrafilter such that f(U ) = U . We consider the following three sets:

D := {n ∈ ω : f(n) < n} (decreasing)

E := {n ∈ ω : f(n) = n} (equal)

I := {n ∈ ω : f(n) > n} (increasing)

Since U is an ultrafilter, exactly one of the sets D,E, I belongs to U . If E ∈ U ,
then we are done. So, we have to show that neither D nor I belongs to U .



296 11 Happy Families and Their Relatives

Assume towards a contradiction that D ∈ U . Then for every n ∈ D we consider
the sequence 〈fk(n) : k ∈ ω〉 where f0(n) := n and fk+1(n) := f

(
fk(n)

)
. By the

definition ofD, for every n ∈ D there is a least kn ∈ ω such that fkn(n) /∈ D. Then
D is the disjoint union of the sets D′ := {n ∈ D : kn is odd} and D′′ := {n ∈ D :
kn is even}, and since U is an ultrafilter and by assumption D ∈ U , exactly one
of these two sets belongs to U . Now, since f(D′) = D′′ and f(D′′) = D′, this is a
contradiction to f(U ) = U , which shows that D /∈ U .

So, assume towards a contradiction that I ∈ U . Then for every n ∈ I we consider
again the sequence 〈fk(n) : k ∈ ω〉. If, for n ∈ I , there is a k ∈ ω such that
fk(n) /∈ I , then let kn be the least such number; otherwise, let kn := ω. Then I is
the disjoint union of the sets I0 := {n ∈ I : kn ∈ ω} and Iω := {n ∈ I : kn = ω}.
Since U is an ultrafilter and I ∈ U (by assumption), exactly one of the sets I0 and
Iω belongs to U . If I0 ∈ U , then exactly one of the sets I ′0 := {n ∈ I0 : kn is odd}
and I ′′0 := {n ∈ I0 : kn is even} belongs to U ; but since f(I ′0) = I ′′0 and f(I ′′0 ) =
I ′0, this is a contradiction to f(U ) = U . So, I0 /∈ U , which implies that Iω ∈ U .
Now, for each n ∈ Iω there exists a least number mn ∈ Iω such that there is a
k ∈ ω with fk(mn) = n. Let I ′ω :=

{
n ∈ Iω : ∃k ∈ ω

(
f2k+1(mn) = n

)}
and

I ′′ω :=
{
n ∈ Iω : ∃k ∈ ω

(
f2k(mn) = n

)}
. Since the two sets I ′ω and I ′′ω are disjoint

and their union is Iω , either I ′ω or I ′′ω belongs to U , but not both. Furthermore, we
get f(I ′ω) = I ′′ω and f(I ′′ω) = I ′ω, which is again a contradiction to f(U ) = U . So,
Iω also does not belong to U , which shows that I /∈ U .

Since U is an ultrafilter and D ∪ E ∪ I belongs to U , but neither D nor I belongs
to U , we get that E belongs to U , which completes the proof. ⊣

The following result shows that up to “≡RK-equivalence”, the Rudin–Keisler order-
ing “≤RK” is antisymmetric.

THEOREM 11.23. For all ultrafilters U ,V ⊆ P(ω) we have

(U ≤RK V ∧ V ≤RK U ) −→ U ≡RK V .

Proof. Assume that U ≤RK V and V ≤RK U and let f, g ∈ ωω be such that
f(V ) = U and g(U ) = V . Notice that f◦g(U ) = U . So, by LEMMA 11.22,
there is an x0 ∈ U such that for all n ∈ x0, f◦g(n) = n, i.e., f◦g|x0 is the identity
function. Hence, g|x0 as well as f |g[x0] is one-to-one, i.e., f and g are both bijections
between the sets x0 and g[x0]. Now, we show that there exists a set x′0 ⊆ x0 in U

such that g|x′
0

can be extended to a bijection g̃ ∈ ωω. If |ω \ x0| = |ω \ g[x0]|, take
any bijection h between ω \x0 and ω \g[x0]. Then, for x′0 := x0, g̃ := g∪h has the
required properties. Otherwise, the set x0 must be infinite and we can split x0 into
two disjoint infinite parts x′0 and x′′0 where x′0 belongs to U . In this case, take any
bijection h between the two infinite sets ω \ x′0 and ω \ g[x′0] and let g̃ := g ∪ h.

Since g̃ ∈ ωω is a bijection, x′0 ∈ U , g(U ) = V , and g|x′
0
= g̃|x′

0
, we get that

g̃[x′0] ∈ V . It remains to show that this implies g̃(U ) = V . Since g(U ) = V , we
get
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{
g[x] : x ∈ U

}
⊆ V and

{
g−1[y] : y ∈ V

}
⊆ U .

Furthermore, by construction of g̃ we have g|x′
0
= g̃|x′

0
. Now, for every y ∈ V let

y′ := y ∩ g̃[x′0] and let x′ := g̃−1[y′]. Then y′ ∈ V , x′ ∈ U , and g̃[x′] ⊆ y, which
shows that g̃(U ) = V . ⊣

For the sake of completeness we give the following

FACT 11.24. For any ultrafilter U ⊆ P(ω) and any function f ∈ ωω we have

f(U ) ≡RK U −→ ∃x ∈ U
(
f |x is one-to-one

)
.

Proof. Assume f(U ) ≡RK U , where f ∈ ωω and U ⊆ P(ω) is an ultrafilter. By
definition of “≡RK”, there exists a bijection g ∈ ωω such that g◦f(U ) = U . Hence,
by LEMMA 11.22, there is an x0 ∈ U such that g◦f |x0 is the identity function, and
since g|f [x0] is one-to-one, f |x0 is also one-to-one. ⊣

So far, we have not seen an example of an ultrafilter W ⊆ [ω]ω which is neither a
P -point nor a Q-point. The following result gives now such an example.

THEOREM 11.25. For any ultrafilters U ,V ⊆ [ω]ω there is an ultrafilter W ⊆
[ω]ω, which is neither a P -point nor a Q-point, such that

U ≤RK W and V ≤RK W .

Proof. In a first step we construct an ultrafilter W ⊆ [ω]ω which is above U and
V , and in a second step we show that W is neither a P -point nor a Q-point.

Firstly, let

W
∗ =

{
X ⊆ ω × ω :

{
a ∈ ω : {b ∈ ω : 〈a, b〉 ∈ X} ∈ V

}
∈ U

}
.

Then W ∗ is a non-principal ultrafilter over ω × ω. To see this, notice first that ∅ /∈
W ∗, that ω×ω ∈ W ∗, that W ∗ ⊆ [ω×ω]ω (this is because U ,V ⊆ [ω]ω), and that
X ∈ W ∗ and X ⊆ X ′ ⊆ ω × ω implies X ′ ∈ W ∗. Furthermore, let X0 ⊆ ω × ω
be such that X0 /∈ W ∗. Then

{
a ∈ ω : {b ∈ ω : 〈a, b〉 ∈ X0} ∈ V

}
/∈ U ,

which implies, since U is an ultrafilter, that

{
a′ ∈ ω : {b ∈ ω : 〈a, b〉 ∈ X0} /∈ V

}
∈ U ,

and consequently, since V is an ultrafilter, we get

{
a′ ∈ ω : {b′ ∈ ω : 〈a′, b′〉 /∈ X0} ∈ V

}
∈ U ,
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which shows that (ω × ω) \X0 ∈ W ∗. Finally, let j0 : ω × ω → ω be a bijection.
Then W :=

{
j0[X ] : X ∈ W ∗

}
is an ultrafilter over ω. In order to show that W is

above both ultrafilters U and V , we work with W ∗ and define the projections πU

and πV by stipulating

πU : P(ω × ω) −→ P(ω)

X 7−→
{
a ∈ ω : ∃b ∈ ω(〈a, b〉 ∈ X)

}

πV : P(ω × ω) −→ P(ω)

X 7−→
{
b ∈ ω : ∃a ∈ ω(〈a, b〉 ∈ X)

}

We leave it as an exercise to the reader to show that U = πU [W ∗] and that V =
πV [W ∗]. Now, we define f, g ∈ ωω by stipulating

f : ω → ω

n 7→ πU

(
{j0−1(n)}

)

g : ω → ω

m 7→ πV

(
{j0−1(m)}

)

where j0 is as above. Then, since
{
j0
−1[z] : z ∈ W

}
= W ∗ and U =

{
πU (X) :

X ∈ W ∗
}

, for every x0 ∈ U there are X0 ∈ W ∗ and z0 ∈ W , such that X0 =

j0
−1[z0] and πU (X0) = x0, i.e., πU

(
j0
−1[z0]

)
= x0. Hence, f [z0] = x0 where

z0 ∈ W , and since x0 ∈ U was arbitrary, we get f(W ) = U . This shows that
U ≤RK W —the relation V ≤RK W is shown similarly.

It remains to prove that W is neither a P -point nor a Q-point. We work again with
the ultrafilter W ∗ ⊆ [ω×ω]ω and show that W ∗ is neither a P -point nor a Q-point.

W ∗ is not a Q-point: Firstly, let

D :=
{
〈a, b〉 ∈ ω × ω : a ≤ b

}
.

Notice that D belongs to W ∗. Now, define π : ω × ω ։ D by stipulating

π(〈a, b〉) =
{
〈a, b〉 if a ≤ b,

〈a, a〉 otherwise,

and for each m ∈ ω, let

um :=
{
〈a, b ∈ ω × ω : π(〈a, b〉) = 〈a,m〉

}
.

Then {um : m ∈ ω} is a partition of ω × ω where each um is finite—in fact,
|um| = 2m+ 1. Assume towards a contradiction that W ∗ is a Q-point. Then there
is a YQ ∈ W ∗ such that for each m ∈ ω, |YQ ∩ um| ≤ 1. Since W ∗ is an ultrafilter,
(YQ∩D) ∈ W ∗. Above we have seen that V = πV [W ∗], so, for yQ := πV (YQ∩D)
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we get that yQ ∈ V . Furthermore, by definition of W ∗ and since (YQ ∩D) ∈ W ∗,
for each n0 ∈ yQ we get that the set

Vn0 :=
{
m ∈ ω : 〈n0,m〉 ∈ (YQ ∩D)

}

belongs to the ultrafilter V . Now, if n0 and n′0 are distinct members of yQ, then
Vn0 ∩ Vn′

0
∈ V , in particular, Vn0 ∩ Vn′

0
is non-empty. Let m0 be an element of

Vn0 ∩ Vn′
0
. Then 〈n0,m0〉 and 〈n′0,m0〉 are two distinct elements of YQ ∩D which

both belong to um0 . So, |YQ ∩ um0 | ≥ 2, which contradicts our assumption and
shows that W ∗ is not a Q-point.

W ∗ is not a P -point: For each n ∈ ω, let

un :=
{
〈n,m〉 : m ∈ ω

}
.

Then {un : n ∈ ω} is a partition of ω × ω. Assume towards a contradiction that
there is an XP ∈ W ∗ such that for each n ∈ ω, XP ∩ un is finite. Let xP :=
πU (XP ) be the projection of XP . Then, since XP ∈ W ∗, xP ∈ U . Now, since V

contains only infinite sets andXP ∩un is finite for each n ∈ ω, we get that for each
n0 ∈ xP , {m ∈ ω : 〈n0,m〉 ∈ XP } is finite and therefore does not belong to V .
Consequently, XP /∈ W ∗, which contradicts our assumption and shows that W ∗ is
not a P -point. ⊣

The next result shows that Ramsey ultrafilters are minimal with respect to the
Rudin–Keisler ordering.

FACT 11.26. If U ,U ′ ⊆ [ω]ω are ultrafilters, where U is a Ramsey ultrafilter,
then

U
′ ≤RK U −→ U ≡RK U

′ .

Proof. Assume that U ′ ≤RK U , where U is a Ramsey ultrafilter. By definition
of “≤RK”, there exists a function f ∈ ωω, such that f(U ) = U ′, and since U is
a Ramsey ultrafilter, by PROPOSITION 11.14 (c), there exists an x ∈ U such that
f |x is constant or one-to-one. If f |x is constant, then the ultrafilter f(U ) would
be principal, which contradicts the fact that f(U ) = U ′ and U ′ ⊆ [ω]ω. So, f |x
is one-to-one. With similar arguments as in the proof of THEOREM 11.23 we find
an x′ ⊆ x in U such that f |x′ can be extended to a bijection f̄ ∈ ωω, such that
f̄(U ) = U ′, which shows that U ≡RK U ′. ⊣

In order to state the following lemma—which will play a key role in the construction
of a model of ZFC in which there are up to Rudin–Keisler equivalence just finitely
many Ramsey ultrafilters (cf. PROPOSITION 27.6)—we first have to define a certain
game: Let U ,V ⊆ [ω]ω be two free families. Then the game GU

V
is the composition

of the games GU and G∗
V

, visualised by the following figure:
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MAIDEN x0 ∈ U y1 ∈ V x2 ∈ U y3 ∈ V

. . .

DEATH t0 ∈ [x0]
<2 s1 ∈ [y1]

<ω t2 ∈ [x2]
<2 s3 ∈ [y3]

<ω

The rules for GU
V

are as follows: For each i ∈ ω, x2i ∈ U , y2i+1 ∈ V , t2i is either
the empty set or a singleton {a2i} with a2i ∈ x2i, and s2i+1 is a finite subset of
y2i+1. Finally, DEATH wins the game GU

V
if and only if

⋃{t2i : i ∈ ω} ∈ U and⋃{s2i+1 : i ∈ ω} ∈ V .

LEMMA 11.27. Let U be a Ramsey ultrafilter and V be a P -point. Then U ≤RK V

if and only if the MAIDEN has a winning strategy in the game GU
V

.

Proof. (⇒) First we show that if U ≤RK V , then the MAIDEN has a winning strat-
egy σ in the game GU

V
. So, assume that U ≤RK V and let f ∈ ωω be such that

f(V ) = U . Since V is a P -point, there exists a set y0 ∈ V such that f is finite-to-
one on y0. Let x0 := f [y0]; then x0 ∈ U and define σ(∅) := x0. Assume now that
t0 ∈ [x0]

<2 is the first move of DEATH. Since f is finite-to-one on y0, f−1[t0] ∩ y0
is finite. Let

y1 := y0 \
(
max(f−1[t0] ∩ y0) + 1

)

and define σ(∅, x0, t0) := y1. Assume that s1 ∈ [y1]
<ω is the second move of

DEATH. Then let
x2 := f [y1] \

(
max(f [s1]) + 1

)

and define σ(∅, x0, t0, y1, s1) := x2. The next moves of the MAIDEN are

y3 := y1 \
(
max(f−1[t2] ∩ y1) + 1

)
and x4 := f [y3] \

(
max(f [s3]) + 1

)
,

respectively. Proceeding in this way we finally get

⋃

i∈ω

t2i ∈ U ⇐⇒
⋃

i∈ω

s2i+1 /∈ V ,

which shows that DEATH loses the game whenever the MAIDEN plays according
to the strategy σ—no matter what he plays. Hence, σ is a winning strategy for the
MAIDEN.

(⇐) By contraposition we show that if U �RK V , then no strategy σ for the
MAIDEN is a winning strategy. For this we first combine the proofs of THEO-
REM 11.17 (a) & (b) and then use the premise that U �RK V .

Let σ be any strategy for the MAIDEN in the game GU
V

. We have to show that
DEATH can win. Let x0 := σ(∅) (i.e., x0 ∈ U ), let X0 := {x0}, and for positive
integers n, x ∈ Xn if and only if for some k < n there are t0, t2, . . . , t2k ⊆ n and
s1, s3, . . . , s2k+1 ⊆ n such that x = σ(x0, t0, y1, . . . , s2k+1), where for all i ≤ k
we have:
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t2i ∈ [x2i]
<2 where x2i = σ(x0, t0, y1 . . . , s2i−1) ,

and
s2i+1 ∈ [y2i+1]

<ω where y2i+1 = σ(x0, t0, y1 . . . , t2i) .

Similarly, for n ∈ ω we define Yn by stipulating y ∈ Yn if and only if for some
k ≤ n there are t0, t2, . . . , t2k ⊆ n and s1, s3, . . . , s2k−1 ⊆ n such that y =
σ(x0, t0, y1, . . . , t2k), where for all i ≤ k we have:

t2i ∈ [x2i]
<2 where x2i = σ(x0, t0, y1 . . . , s2i−1) ,

and
s2i−1 ∈ [y2i−1]

<ω where y2i−1 = σ(x0, t0, y1 . . . , t2i−2) .

Recall that by the rules of the game, DEATH can always play ∅. Clearly, for every
n ∈ ω, both sets Xn and Yn are finite subsets of U and V , respectively. Hence, for
each n ∈ ω,

⋂
Xn ∈ U and

⋂
Yn ∈ V . Moreover, since both ultrafilters U and V

are P -points, there are sets x∗ ∈ U and y∗ ∈ V , and a strictly increasing function
f ∈ ωω with f(0) > 0 such that for all n ∈ ω,

x∗ \ f(n) ⊆
⋂
Xn and y∗ \ f(n) ⊆

⋂
Yn .

Let k0 := f(0), and in general, for m ∈ ω, let km+1 := f(km). Furthermore,
for m ∈ ω, let um := [km, km+1). Since U is a Ramsey ultrafilter, there is a set
x = {am : m ∈ ω} in U such that for each m ∈ ω, um ∩ x = {am}. Define the
two sets S ,T ⊆ [ω]ω by stipulating

S ∈ S : ⇐⇒ {am : m ∈ S} ∈ U ,

T ∈ T : ⇐⇒
⋃

{um : m ∈ T } ∈ V .

Notice that for any S, S′ ∈ S we have S ∩ S′ ∈ S , in particular, S ∩ S′ ∈ [ω]ω;
similarly for T, T ′ ∈ T . In fact, since U and V are ultrafilters, S and T are
ultrafilters, too. We show now that due to the fact that U �RK V , the two ultrafilters
S and T can be separated. For this we prove the following two claims.

CLAIM 1. There are S ∈ S and T ∈ T such that S ∩ T = ∅.

Proof of Claim 1. If there are S ∈ S and T ∈ T such that S ∩ T is finite, then
S′ = S \ (S ∩ T ) is in S and S′ ∩ T = ∅. So, assume towards a contradiction that
for all S ∈ S and T ∈ T we have |S ∩ T | = ω.

First we show that this implies that for all S ∈ S and T ∈ T , S ∩ T ∈ S ∩ T ,
and consequently we get S = T . Indeed, if S0 ∩ T0 /∈ S for some S0 ∈ S

and T0 ∈ T , then S′0 := ω \ (S0 ∩ T0) belongs to S , and since S is a filter,
S′0 ∩ S0 ∈ S . Hence, (S′0 ∩ S0) ∩ T0 = S′0 ∩ (S0 ∩ T0) = ∅ and for S := S′0 ∩ S0

in S and T = T0 in T we have S ∩ T = ∅, which contradicts our assumption.



302 11 Happy Families and Their Relatives

Now we show that S = T implies U ≤RK V , which contradicts the fact that
U �RK V : Let g ∈ ωω be such that for allm ∈ ω we have g[um] := {am}. Then for
each y ∈ V we get g[y] ∈ U . To see this, notice that the set {m ∈ ω : y∩um 6= ∅}
belongs to T and therefore, by the definition of g and since S = T , we get
g[y] ∈ U . So, g(V ) = U , which implies that U ≤RK V . ⊣Claim 1

CLAIM 2. There are S ∈ S and T ∈ T such that S ∩ T = ∅ and for all distinct
m,m′ ∈ S ∪ T , |m −m′| ≥ 2, where |m −m′| denotes the absolute value of the
difference m−m′.

Proof of Claim 2. By CLAIM 1 there are S̃ ∈ S and T̃ ∈ T such that S̃ ∩ T̃ = ∅.
Let A := {2k : k ∈ ω} and B := {2k + 1 : k ∈ ω}. Then either the set S̃ ∩ A or
the set S̃ ∩B belongs to S ; similarly, either the set T̃ ∩A or the set T̃ ∩B belongs
to T . Without loss of generality, let us assume S̃ ∩ A ∈ S .

If T̃ ∩ A ∈ T , let S0 := S̃ ∩ A and T0 := T̃ ∩ A. Then S0 ∈ S , T0 ∈ T , and
because S and T are disjoint, S0 and T0 are disjoint subsets of A and for all distinct
m,m′ ∈ S0 ∪ T0 we have |m−m′| ≥ 2.

If T̃ ∩A /∈ T , then T̃ ∩B ∈ T . Now, by the definition of S and T , and since U

and V are filters, the sets

xA := {a2k : k ∈ ω} and yB :=
⋃

{u2k+1 : k ∈ ω}

belong to U and V , respectively. Let g+, g− ∈ ωω be functions such that for all
k ∈ ω we have: g+[u2k+1] := {a2k+2}, g−[u2k+1] := {a2k}, and g+[u2k+1] =
g−[u2k] := {0}. In particular, we get g+[yB] = xA \ {a0} and g−[yB] = xA, i.e.,
both sets g+[yB] and g−[yB] belong to U . On the other hand, since U �RK V , we
have that neither g+(V ) = U nor g−(V ) = U . Hence, there are y+, y− ∈ [yB]

ω

which belong to V such that neither g+[y+] nor g−[y−] belongs to U . So, for ȳ :=
y+ ∩ y− we get that ȳ ⊆ yB , ȳ ∈ V , and

g+[ȳ] /∈ U and g−[ȳ] /∈ U .

Now, since U is an ultrafilter and g+[ȳ] /∈ U , we get (ω \ g+[ȳ]) ∈ U , which
implies that x+ := xA ∩ (ω \ g+[ȳ]) belongs to U ; similarly, we get that x− :=
xA ∩ (ω \ g−[ȳ]) belongs to U . For x̄ := x+ ∩ x− we get x̄ ⊆ xA, x̄ ∈ U , and

g+[ȳ] ∩ x̄ = ∅ and g−[ȳ] ∩ x̄ = ∅ .

With respect to x̄ and ȳ, consider the two sets

S0 :=
{
2k ∈ ω : a2k ∈ x̄

}
and T0 :=

{
2k + 1 ∈ ω : ȳ ∩ u2k+1 6= ∅

}
.

By definition, S0 ∈ S , T0 ∈ T , and S0 ∩ T0 = ∅. Furthermore, if n ∈ T0, then
n = 2k+1 (for some k ∈ ω) and ȳ∩u2k+1 6= ∅. Hence, by definition of g+ and g−,

a2k+2 ∈ g+[ȳ] and a2k ∈ g−[ȳ] ,
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which implies that neither a2k+2 nor a2k belongs to x̄, and consequently neither
2k + 2 nor 2k belongs to S0. In other words, if n ∈ T0, then neither n + 1 nor
n − 1 belongs to S0, which shows that for all m ∈ S0 and n ∈ T0, |m − n| ≥ 2.
Furthermore, since x̄ ⊆ xA, for any distinct m,m′ ∈ x̄ we have |m − m′| ≥ 2.
Similarly, since ȳ ⊆ yB, for any distinct m,m′ ∈ ȳ we have |m −m′| ≥ 2. Thus,
S0 ∩ T0 = ∅ and for all distinct m,m′ ∈ S0 ∪ T0 we have |m − m′| ≥ 2, as
required. ⊣Claim 2

Let S0 ∈ S and T0 ∈ T be such thatS0∩T0 = ∅ and for all distinctm,m′ ∈ S∪T ,
|m − m′| ≥ 2. Consider the run 〈x0, t∗0, y1, s∗1, . . .〉 of the game GU

V
, where the

MAIDEN plays according to her strategy σ and DEATH plays

t∗2n :=

{
{am+1} if n = km, m+ 1 ∈ S0, and am+1 ∈ x∗,

∅ otherwise,

and

s∗2n+1 =

{
y∗ ∩ um+1 if n = km and m+ 1 ∈ T0,

∅ otherwise.

It is clear that
⋃
n∈ω t

∗
2n ∈ U and that

⋃
n∈ω s

∗
2n+1 ∈ V . In other words, the

MAIDEN loses the game if the moves of DEATH satisfy the rules of the game GU
V

.
To see this, notice first that for any m ∈ ω we have

x∗ \ km+1 = x∗ \ f(km) ⊆
⋂
Xkm ⊆

⋂
{x0, . . . , x2km} ⊆ x2km ,

where x0, y1 . . . , x2km are the moves played by the MAIDEN when DEATH plays
t∗0, s

∗
1 . . . , s

∗
2km−1

; and

y∗ \ km+1 = y∗ \ f(km) ⊆
⋂
Ykm ⊆

⋂
{y1, . . . , y2km+1} ⊆ y2km+1 ,

where x0, y1 . . . , x2km , y2km+1 are the moves played by the MAIDEN when DEATH

plays t∗0, s
∗
1 . . . , t

∗
2km

. By definition, for all m ∈ ω, t∗2km and s∗2km+1 are both sub-
sets of km+2—in fact, they are subsets of [km+1, km+2). Now, recall that whenever
m+ 1 ∈ S0 (m+ 1 ∈ T0), then m+ 1 /∈ T0 (m+ 1 /∈ S0) and neither m ∈ S0 nor
m ∈ T0. In particular, if m′ < m and m′ + 1,m+ 1 ∈ S0 ∪ T0, then m′ ≤ m− 2.
Hence, for n = km, m′ < m, and m+ 1 ∈ S0 ∪ T0, we get that t∗2km′

and s∗2km′+1

are both subsets of n (e.g., if m′ = m − 1, then both sets t∗2km′
and s∗2km′+1 are

empty). This shows that the moves of DEATH satisfy the rules of the game GU
V

,
which completes the proof. ⊣
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NOTES

Happy Families and Ramsey Ultrafilters. Happy families were introduced by
Mathias [12] in order to investigate the Ramsey property as well as Ramsey ul-
trafilters. Furthermore, happy families are closely related to Mathias forcing—also
introduced in [12]—which will be discussed in Chapter 26. FACT 11.3 and PROPO-
SITION 11.5 are taken from Mathias [12, p. 61 ff.]. PROPOSITION 11.6 is due to
Mathias [12, Proposition 0.8] and the characterisation of Ramsey ultrafilters (i.e.,
PROPOSITION 11.7 and FACT 11.8) is taken from Bartoszyński and Judah [1, The-
orem 4.5.2] and Booth [3, Theorem 4.9] (according to Booth [3, p. 19], most of [3,
Theorem 4.9] is due to Kunen).

On P -points. A point x of a topological space X is called a P -point if every
intersection of countably many open sets containing x contains an open set con-
taining x. Now, the ultrafilters we called P -points are in fact the P -points of the
topological space βω \ ω (defined on p. 273). The existence of P -points of the
space βω \ ω cannot be shown in ZFC (see RELATED RESULT 68). However, by
THEOREM 11.16, which is due to Ketonen [10] (see also Bartoszyński and Judah [1,
Theorem 4.4.5]), it follows that P -points exist if we assume CH—which was first
proved by Rudin [16]. PROPOSITION 14.9 is due to Booth.

Ramsey Families and P -families. Ramsey families and P -families were first in-
troduced and studied by Laflamme in [11], where the filters associated to a Ramsey
family are called +-Ramsey filters, and the filters associated to a P -family are called
P+-filters. Furthermore, PROPOSITION 11.19 is a generalisation of Halbeisen [6,
Proposition 6.2].

Characterisation of Ramsey ultrafilters and P -points in terms of games. THEO-
REM 11.17 can be found in terms of functions, which can be interpreted as strategies
for certain games, in Grigorieff’s paper [5] (see Proposition 6.4 and Corollary 1.16).
At about the same time (i.e., around 1970), THEOREM 11.17 was also discovered
by Galvin, Hechler, and McKenzie, but their paper was never published (see RE-
LATED RESULT 71). The proof of THEOREM 11.17 presented here is taken from
Bartoszyński and Judah [1, Theorems 4.5.3 & 4.4.4]. Furthermore, LEMMA 11.27
is due to Shelah [18, Lemma 5.11], who proved it in a slightly different way using
finite models.

The Rudin–Keisler Ordering. The basic properties of the so-called Rudin–Keisler
ordering of ultrafilters over ω were studied by Keisler [9] and Rudin [14] (see also
Rudin [15, p. 355 ff.]). However, it was apparently Katětov [8] who first defined an
ordering of arbitrary filters equivalent to the Rudin–Keisler ordering. The results
about the Rudin–Keisler ordering presented above were discovered independently
by many people and can be found for example in Booth [3]. For the Rudin–Keisler
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ordering of P -points we refer the reader to Blass [2] and to Comfort and Negrepon-
tis [4§16].

RELATED RESULTS

64. On the existence of Ramsey ultrafilters. Mathias showed that under CH, ev-
ery happy family contains a Ramsey ultrafilter (see Mathias [12, Proposi-
tion 0.11]). In particular, this shows that Ramsey ultrafilters exist if we assume
CH (according to Booth [3, p. 23], this was first shown by Galvin). However,
by PROPOSITION 11.9 we know that p = c is sufficient for the existence of
Ramsey ultrafilters. With Martin’s Axiom in place of p = c, this result is due to
Booth [3, Theorem 4.14]. Furthermore, Keisler showed that if we assume CH,
then there are 2c pairwise non-isomorphic Ramsey ultrafilters (see Blass [2,
p. 148]). Finally, by combining the proofs of Keisler and Booth, Blass [2,
Theorem 2] showed that t = c is enough to get 2c pairwise non-isomorphic
Ramsey ultrafilters (see PROPOSITION 14.10 for a slightly more general result
and for t see Chapter 9 | RELATED RESULT 55). On the other hand, we shall
see in Chapter 26 & 27 that the existence of Ramsey ultrafilters is independent
of ZFC (see also Chapter 22 | RELATED RESULT 121).

65. How many Ramsey ultrafilters exist? As mentioned above, there may be 2c

pairwise non-isomorphic Ramsey ultrafilters and there are models of ZFC in
which there are no Ramsey ultrafilters. Moreover, in Chapter 23 we shall con-
struct a model in which there are exactly c Ramsey ultrafilters, and in Chap-
ter 27 we shall see that it is consistent with ZFC that there are exactly κ Ram-
sey ultrafilters for any cardinal κ with 0 ≤ κ ≤ ω2.

66. There may be P -points which are not Ramsey. It is consistent with ZFC

that there exists a P -point which is not a Ramsey ultrafilter (see PROPOSI-
TION 14.9). Moreover, there is a model of ZFC in which there are justP -points
but no Q-points (see Chapter 26 | RELATED RESULT 155).

67. On the existence of Q-points. Mathias [13, Proposition 10] showed that d =
ω1 implies the existence ofQ-points. Recall that by PROPOSITION 11.9, p = c

implies the existence of Ramsey ultrafilters; in particular the existence of P -
points andQ-points. Thus, the existence ofQ-points is consistent with d > ω1.
However, if there are justP -points but noQ-points, then we must have d > ω1.

68. On the existence of P -points. P -points were studied by Rudin [16], who
proved, assuming CH, that they exist and that any of them can be mapped
to any other by a homeomorphism of βω \ ω onto itself. In particular, CH
implies the existence of P -points. Of course, this follows from the fact that
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CH implies the existence of Ramsey ultrafilters, and Ramsey ultrafilters are
P -points. However, as mentioned above, the converse is not true. Now, it is
natural to ask whether there are also models of ZFC in which there are no P -
points. This is indeed the case, as Shelah showed in [17] (see also Shelah [18,
VI, §4], Wimmers [20], or Bartoszyński and Judah [1, 4.4.7]). Moreover, as
for Ramsey ultrafilters, it is consistent with ZFC that, up to permutations of ω,
there exists a single P -point (see Shelah [18, XVIII, §4]).

69. Simple Pκ-points. For any regular uncountable cardinal κ, a free ultrafilter
U ⊆ [ω]ω is called a simple Pκ-point if U is generated by an almost de-
creasing (i.e., modulo finite) κ-sequence of infinite subsets of ω. Clearly, ev-
ery simple Pκ-point is a P -point. It is conjectured that the existence of both, a
simple Pω1-point and a Pω2 -point, is consistent with ZFC. (For weak P -points
and other points in βω \ ω see, for example, van Mill [19, Section 4].)

70. Rapid and unbounded filters. A free filter F ⊆ [ω]ω is called a rapid fil-

ter if for each f ∈ ωω there exists an x ∈ F such that for all n ∈ ω,
|x ∩ f(n)| ≤ n. By definition, if F is rapid filter, then {fx : x ∈ F} is
a dominating family. It is not hard to verify that all Q-points are rapid (see
FACT 26.22), but the converse does not hold (see, for example, Bartoszyński
and Judah [1, Lemma 4.6.3] and in particular the remark after the proof of that
lemma). However, as for P -points or Q-points, the existence of a rapid filter
is independent of ZFC (see PROPOSITION 26.23). A weaker notion than that
of rapid filters is the notion of unbounded filters, where a free filter F ⊆ [ω]ω

is called unbounded if the family {fx : x ∈ F} is unbounded. Since every
free ultrafilter induces an unbounded family (cf. PROPOSITION 11.15 (a)), un-
bounded filters always exist. Furthermore, one can show that every unbounded
filter induces a set which does not have the Ramsey property (for a slightly
more general result see Judah [7, Fact 8]).

71. Characterisations of ultrafilters by games. In their unpublished notes, Galvin,
Hechler, and McKenzie characterised different types of ultrafilters in terms of
games.

For example they characterised Ramsey ultrafilters by the following game,
where U ⊆ [ω]ω is some ultrafilter:

MAIDEN z0 /∈ U z1 /∈ U

Gk
U

: . . .

DEATH s0 ∈ [ω]k s1 ∈ [ω]k

where k is a positive integer, the sets z0, s0, z1, s1, . . . are pairwise disjoint,
and the MAIDEN wins the game if and only if

⋃
n∈ω zn ∈ U . Now, the ul-
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trafilter U is a Ramsey ultrafilter if and only if the MAIDEN does not have a
winning strategy in the game Gk

U
.

Furthermore, they characterised P -points by the following game, where V ⊆
[ω]ω is some ultrafilter:

MAIDEN z0 /∈ V z1 /∈ V

G∗
V

: . . .

DEATH s0 ∈ fin(ω) s1 ∈ fin(ω)

where the sets z0, s0, z1, s1, . . . are pairwise disjoint and the MAIDEN wins
the game if and only if

⋃
n∈ω zn ∈ V . Now, the ultrafilter V is a P -point if

and only if the MAIDEN does not have a winning strategy in the game G∗
V

.

Finally, they characterised Q-points by the following two games, where in
both games, W ⊆ [ω]ω is some ultrafilter:

MAIDEN z0 ∈ fin(ω) z1 ∈ fin(ω)

Gk
W

: . . .

DEATH s0 ∈ [ω]k s1 ∈ [ω]k

where k is a positive integer, the sets z0, s0, z1, s1, . . . are pairwise disjoint,
and the MAIDEN wins the game if and only if

⋃
n∈ω zn ∈ W .

DEATH a0 ∈ ω a1 ∈ ω

Gε
W

: . . .

MAIDEN ε0 ∈ {0, 1} ε1 ∈ {0, 1}
where a0, a1, . . . are pairwise distinct and the MAIDEN wins the game if and
only if the set {an : εn = 1} is infinite and does not belong to W .

Now, the following statements are equivalent:

(a) W is a Q-point.

(b) The MAIDEN does not have a winning strategy in the game Gk
W

.

(c) The MAIDEN does not have a winning strategy in the game Gε
W

.

72. Another characterisation of Ramsey ultrafilters. Let U ⊆ [ω]ω be an ultrafil-
ter. The game G′

U
is defined by
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MAIDEN (a0, x0) (a1, x1) (a2, x2)

G′
U

: . . .

DEATH y0 y1 y2

The sets yi and xi played by DEATH and the MAIDEN respectively must
belong to the ultrafilter U , and for each i ∈ ω, ai+1 must be a member
of yi. Furthermore, for each i ∈ ω we require that xi+1 ⊆ yi ⊆ xi and
that ai < min(xi). Finally, the MAIDEN wins the game G′

U
if and only if

{ai : i ∈ ω} does not belong to the ultrafilter U .

In 2002, Claude Laflamme showed me that U is a Ramsey ultrafilter if and
only if the MAIDEN has no winning strategy in the game G′

U
.

73. On strongly maximal almost disjoint families∗. A mad family A is called
strongly maximal almost disjoint if given countably many members of F

+
A

,
there is a member of A that meets each of them in an infinite set.

For a free family E , consider the following game: The moves of the MAIDEN

are members of E and DEATH responds as in the game GE . Furthermore,
DEATH wins if and only if the set of integers played by DEATH belongs to
A , but has infinite intersection with each set played by the MAIDEN.

If A is a mad family, then obviously, in the game described above, the
MAIDEN has a winning strategy if and only if A is not strongly maximal
almost disjoint, which motivates the following question: Is it the case that for
a mad family A , F

+
A

is Ramsey if and only if A is strongly maximal almost
disjoint?
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