
Chapter 14

Martin’s Axiom

In this chapter, we shall introduce a set-theoretic axiom, known as Martin’s Axiom,
which is independent of ZFC. In the previous chapter we have compared forcing
extensions with group extensions. Similarly, we could also compare forcing exten-
sions with field extensions. Now, if we start, for example, with the field of rational
numbers Q and extend Q step by step with algebraic extensions, we finally obtain
an algebraic closure F of Q. Since F is algebraically closed, we cannot extend F

with an algebraic extension. With respect to forcing extensions, we have a somewhat
similar situation: If we start, for example, with Gödel’s model L, which is a model
of ZFC+ CH, and extend L step by step with forcing notions of a certain type, we
finally obtain a model of ZFC which cannot be extended by a forcing notion of that
type. The model we obtain in this way is a model in which Martin’s Axiom holds. In
other words, models in which Martin’s Axiom holds are closed under certain forcing
extensions, like algebraically closed fields are closed under algebraic extensions.

As a matter of fact we would like to mention that in the presence of the Continuum

Hypothesis, Martin’s Axiom is vacuously true. However, if the Continuum Hypothesis

fails, then Martin’s Axiom becomes an interesting combinatorial statement as well as
an important tool in Combinatorics which has many applications in Topology, but
also in areas like Analysis and Algebra (see RELATED RESULTS 83 & 84).

Filters on Partially Ordered Sets

Below, we introduce the standard terminology of partially ordered sets, as it is used
in forcing constructions.

In the context of forcing, a binary relation “≤” on a set P is a partial ordering

of P if it is transitive (i.e., p ≤ q and q ≤ r implies p ≤ r) and reflexive (i.e.,
p ≤ p for every p ∈ P ). Notice that we do not require that “≤” is anti-symmetric
(i.e., p ≤ q and q ≤ p implies p = q), as we have done in Chapter 6. If “≤” is a
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342 14 Martin’s Axiom

partial ordering on P , then (P,≤) is called a partially ordered set. If P = (P,≤)
is a partially ordered set, then the elements of P are usually called conditions,
since in the context of forcing, elements of partially ordered sets are conditions for
sentences to be true in generic extensions. Two conditions p1 and p2 of P are called
compatible, denoted p1 | p2, if there exists a q ∈ P such that p1 ≤ q ≥ p2;
otherwise they are called incompatible, denoted p1 ⊥ p2.

A typical example of a partially ordered set is the set of finite partial functions with
inclusion as their partial ordering: Let I and J be arbitrary sets. Then Fn(I, J) is
the set of all functions p such that

• dom(p) ∈ fin(I), i.e., dom(p) is a finite subset of I , and

• ran(p) ⊆ J .

For p, q ∈ Fn(I, J) define

p ≤ q ⇐⇒ dom(p) ⊆ dom(q) ∧ q|dom(p) = p.

If we consider functions as sets of ordered pairs, as we usually do, then p ≤ q is just
p ⊆ q. We leave it as an exercise to the reader to verify that (Fn(I, J),⊆) is indeed
a partially ordered set.

Let P = (P,≤) be a partially ordered set, and for the moment let C ⊆ P .

• C is called directed if for any p1, p2 ∈ C there is a q ∈ C such that p1 ≤ q ≥ p2.

• C is called open (or upwards closed), if p ∈ C and q ≥ p implies q ∈ C. For
example with respect to (Fn(I, J),⊆), for every x ∈ I the set {p ∈ Fn(I, J) :
x ∈ dom(p)} is open.

• C is called downwards closed if p ∈ C and q ≤ p implies q ∈ C.

• C is called dense if for every condition p ∈ P there is a q ∈ C such that
q ≥ p. For example with respect to (Fn(I, J),⊆), for every x ∈ I the set {p ∈
Fn(I, J) : x ∈ dom(p)} is dense.

• A non-empty set F ⊆ P is a filter (on P ) if it is directed and downwards closed.
Notice that this definition of “filter” reverses the ordering from the definition
given in Chapter 6.

• Let D ⊆ P(P ) be a set of open dense subsets of P . A filter G ⊆ P is a D-

generic filter on P if G ∩D 6= ∅ for every set D ∈ D . As an example, consider
again (Fn(I, J),⊆). If F is a filter on Fn(I, J), then

⋃
F : X → J is a function,

where X is some (possibly infinite) subset of I .

PROPOSITION 14.1. If (P,≤) is a partially ordered set and D is a countable set of
open dense subsets of P , then there exists a D-generic filter on P . Moreover, for
every p ∈ P there exists a D-generic filter G on P which contains p.
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Proof. For D = {Dn : n ∈ ω} and p−1 := p, choose for each n ∈ ω a pn ∈ Dn

such that pn ≥ pn−1, which is possible since Dn is dense. Then the set

G =
{
q ∈ P : ∃n ∈ ω(q ≤ pn)

}

is a D-generic filter on P and p ∈ G. ⊣

It is natural to ask whether the restriction on the size of D can be weakened. In
particular, one can ask whether D-generic filters also exist in the case when D is
uncountable, or whether it is at least consistent that such fiters exist. In order to
get a positive answer to these questions, we have to put a restriction on the partial
ordering: Let (P,≤) be a partially ordered set. A subset A ⊆ P is an anti-chain in
P if any two distinct elements of A are incompatible. As mentioned in Chapter 6,
this definition of “anti-chain” is different from the one used in Order Theory. A
partially ordered set P = (P,≤) satisfies the countable chain condition, denoted
ccc, if every anti-chain in P is at most countable (i.e., finite or countably infinite).

Now we are ready to formulate Martin’s Axiom in its general form.

Martin’s Axiom (MA). If P = (P,≤) is a partially ordered set which satisfies ccc,
and D is a set of less than c open dense subsets of P , then there exists a D-generic
filter on P . In other words, MA(κ) holds for each cardinal κ < c.

If we assume CH, then κ < c is the same as saying κ ≤ ω, thus, by PROPO-
SITION 14.1, CH implies MA. On the other hand, MA can replace the Contin-

uum Hypothesis in many proofs that use CH. Furthermore, MA is consistent with
ZFC+ ¬CH, as we shall see in Chapter 19.

Instead of requiring that |D | < c, we can require that |D | ≤ κ for some cardinal κ.

MA(κ). If P = (P,≤) is a partially ordered set which satisfies ccc, and D is a set
of at most κ open dense subsets of P , then there exists a D-generic filter on P .

On the one hand, MA(ω) is just PROPOSITION 14.1, and therefore, MA(ω) is prov-
able in ZFC. On the other hand, MA(c) is just false as we will see in FACT 14.5. So,
we cannot generalise MA by omitting |D | < c. Another attempt to generalise MA

would be to omit ccc. However, this attempt also fails.

FACT 14.2. There exists a (non ccc) partially ordered set P = (P,≤) and a set D

of cardinality ω1 of open dense subsets of P such that no filter on P is D-generic.

Proof. Consider the partially ordered set (Fn(ω, ω1),⊆). Notice first that, for ex-
ample,

{
〈0, α〉 : α ∈ ω1

}
is an uncountable anti-chain, and hence, (Fn(ω, ω1),⊆)

does not satisfy ccc. Now, for each α ∈ ω1, the set

Dα =
{
p ∈ Fn(ω, ω1) : α ∈ ran(p)

}
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is an open dense subset of Fn(ω, ω1): Obviously, Dα is open. To see that Dα is
also dense, take any p ∈ Fn(ω, ω1). If α ∈ ran(p), then p ∈ Dα and we are done.
Otherwise, let n ∈ ω be such that n /∈ dom(p) (notice that such an n exists since
dom(p) is finite). Now, let q := p ∪ {〈n, α〉}; then q ∈ Dα and q ≥ p. Similarly,
for each n ∈ ω, the set En = {p ∈ Fn(ω, ω1) : n ∈ dom(p)} is open dense.

Let D = {Dα : α ∈ ω1} ∪ {En : n ∈ ω}; then |D | = ω1. Assume that G ⊆
Fn(ω, ω1) is a D-generic filter on Fn(ω, ω1). Since for each n ∈ ω, G ∩ En 6= ∅,
fG =

⋃
G is a function from ω to ω1. Now, since for each α ∈ ω1,G∩Dα 6= ∅, the

function fG : ω → ω1 is even surjective, which contradicts the definition of ω1. ⊣

In order to show that ccc cannot be omitted in MA, we first show that for countable
sets J , Fn(I, J) satisfies ccc, and for this, we first prove the following powerful
combinatorial result.

LEMMA 14.3 (∆-SYSTEM LEMMA). Let E be an uncountable family of finite sets.
Then there exists an uncountable family C ⊆ E and a finite set ∆ such that for any
pair of distinct elements x, y ∈ C : x ∩ y = ∆.

Proof. Notice first that either

there exists an uncountable E ′ ⊆ E such that for every a ∈ ⋃E ′,
{x ∈ E ′ : a ∈ x} is countable,

or

for every uncountable E ′ ⊆ E there exists an a ∈ ⋃E ′ such that
{x ∈ E ′ : a ∈ x} is uncountable.

If we are in the first case, let E ′ be an uncountable subset of E such that for each
a ∈ ⋃

E ′, {x ∈ E ′ : a ∈ x} is countable. Recall that the set of finite subsets
of a countable set is always countable. So, since E ′ is an uncountable family of
finite sets,

⋃
E ′ is uncountable, and notice that for any countable set C ⊆ ⋃

E ′,
the set {x ∈ E ′ : x ∩ C = ∅} must also be uncountable. By transfinite induction
we construct an uncountable family {xα : α ∈ ω1} ⊆ E ′ of pairwise disjoint
sets as follows: Let x0 be any member of E ′. If we have already constructed a set
Cα = {xξ : ξ ∈ α ∈ ω1} ⊆ E ′ of pairwise disjoint sets, let xα ∈ E ′ be such that
xα ∩⋃Cα = ∅. Then C = {xα : α ∈ ω1} and ∆ = ∅ are as required.

If we are in the second case, consider the function ν : E → ω, where for all x ∈ E ,
ν(x) := |x|. Since E is an uncountable family of finite sets, there is an n ∈ ω and
an uncountable set E ′ ⊆ E such that ν|E ′ is constant, say ν(x) = n for all x ∈ E ′.
Notice that n ≥ 2, since otherwise, there is no a ∈ ⋃E ′ such that {x ∈ E ′ : a ∈ x}
is uncountable.
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The proof is now by induction on n ≥ 2: If n = 2, then there is an a ∈ ⋃E ′ such
that {x ∈ E ′ : a ∈ x} is uncountable. Let C := {x ∈ E ′ : a ∈ x} and ∆ = {a}.
Then C is uncountable and for all x, y ∈ C we have x ∩ y = ∆.

Now, let us assume that the lemma holds for n and that for each x ∈ E ′, ν(x) =
n + 1. Since there is an a0 ∈ ⋃E ′ such that {x ∈ E ′ : a0 ∈ x} is uncountable,
we can apply the induction hypothesis to the uncountable family E ′n := {x \ {a0} :
x ∈ E ′ ∧ a0 ∈ x} and obtain an uncountable family Cn ⊆ E ′n and a finite set
∆n, such that for any distinct elements x, y ∈ Cn we have x ∩ y = ∆n. Then
C :=

{
x ∪ {a0} : x ∈ Cn

}
and ∆ := ∆n ∪ {a0} are as required. ⊣

COROLLARY 14.4. If I is arbitrary and J is countable, then Fn(I, J) satisfies the
countable chain condition.

Proof. Let F ⊆ Fn(I, J) be an uncountable family of partial functions. We have to
show that F is not an anti-chain, i.e., we have to find at least two distinct conditions
in F which are compatible. Let E := {dom(p) : p ∈ F}. Then E is obviously a
family of finite sets. Now, since J is assumed to be countable, for every finite set
K ∈ fin(I) the set {p ∈ E : dom(p) = K} is countable, and therefore, since F is
uncountable, E is uncountable as well.

Applying the ∆-SYSTEM LEMMA 14.3 to the family E yields an uncountable
family C ⊆ F and a finite set ∆ ⊆ I , such that for all distinct p, q ∈ C ,
dom(p) ∩ dom(q) = ∆.

Since J is countable and ∆ is finite, uncountably many conditions of C must agree
on ∆, i.e., for some p0 ∈ Fn(I, J) with dom(p0) = ∆, the set C ′ = {q ∈ C :
q|∆ = p0} is uncountable. So, C ′ is an uncountable subset of F consisting of
pairwise compatible conditions, hence, F is not an anti-chain. ⊣

Now we show that ccc cannot be omitted in MA.

FACT 14.5. MA(c) is false.

Proof. Consider the partially ordered set (Fn(ω, 2),⊆). Then, by COROLLARY 14.4,
Fn(ω, 2) satisfies ccc. For each g ∈ ω2, the set

Dg =
{
p ∈ Fn(ω, 2) : ∃n ∈ ω

(
p(n) = 1− g(n)

)}

is an open dense subset of Fn(ω, 2): Obviously, Dg is open, and for p /∈ Dg let
q := p ∪ {〈n, 1 − g(n)〉} where n /∈ dom(p). Then q ∈ Dg and q ≥ p. Similarly,
for each n ∈ ω, the set Dn = {p ∈ Fn(ω, 2) : n ∈ dom(p)} is open dense.

Let D = {Dg : g ∈ ω2} ∪ {Dn : n ∈ ω}. Then |D | = |ω2| = c. Assume that
G ⊆ Fn(ω, 2) is a D-generic filter on Fn(ω, 2). Since for each n ∈ ω,G∩Dn 6= ∅,
fG =

⋃
G is a function from ω to 2. Now, since for each g ∈ ω2, G ∩ Dg 6= ∅,

fG 6= g. Thus, fG would be a function from ω to 2 which differs from every function
g ∈ ω2, which is impossible. ⊣
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Weaker Forms of MA

Below, we introduce a few forms of Martin’s Axiom which are in fact proper weak-
enings of MA (cf. RELATED RESULT 82).

Let P = (P,≤) be a partially ordered set. P is said to be countable if the set P is
countable. Furthermore, a set Q ⊆ P is called centred if every finite subset of Q
has an upper bound (i.e., for any finite set {q0, . . . , qn−1} ⊆ Q there is a p ∈ P
such that for each i ∈ n, p ≥ qi). Notice that the upper bound does not necessarily
belong to Q. Finally, P is said to be σ-centred if P is the union of countably many
centred sets.

Let P be any property of partially ordered sets, e.g., P = σ-centred, P = ccc, or
P = countable. Then MA(P) is the following statement.

MA(P). If P = (P,≤) is a partially ordered set having the property P , and D is a
set of less than c open dense subsets of P , then there exists a D-generic filter on P .

Since every countable partially ordered set is σ-centred, and every σ-centred par-
tially ordered set satisfies ccc, we obviously get

MA ⇒ MA(σ-centred) ⇒ MA(countable).

Below, we present some consequences of Martin’s Axiom for countable and σ-centred
partially ordered sets.

Some Consequences of MA(σ-centred)

We now investigate the pseudo-intersection number p, which was introduced in
Chapter 9. Recall that ω1 ≤ p ≤ c.

THEOREM 14.6. MA(σ-centred) implies p = c.

Proof. Let κ < c be an infinite cardinal and let F = {xα : α ∈ κ} ⊆ [ω]ω be
a family with the strong finite intersection property (i.e., intersections of finitely
many members of F are infinite) of cardinality κ. Under the assumption of MA(σ-
centred) we construct an infinite pseudo-intersection of F .

Let P be the set of all ordered pairs 〈s, E〉 such that s ∈ [ω]<ω and E ∈ fin(κ); and
for 〈s, E〉, 〈t, F 〉 ∈ P define

〈s, E〉 ≤ 〈t, F 〉 ⇐⇒ s ⊆ t ∧E ⊆ F ∧ (t \ s) ⊆
⋂

{xα ∈ F : α ∈ E}.
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For s ∈ [ω]<ω let Ps := {〈s, E〉 ∈ P : E ∈ fin(κ)}. Then any finite set
〈s, E1〉, . . . , 〈s, En〉 ∈ Ps has an upper bound, namely 〈s,⋃ni=1 Ei〉, and since
[ω]<ω is countable and P =

⋃{Ps : s ∈ [ω]<ω}, the partially ordered set (P,≤) is
σ-centred. For each α ∈ κ and n ∈ ω, the set

Dα,n =
{
〈s, E〉 ∈ P : α ∈ E ∧ |s| > n

}

is an open dense subset of P . Let D = {Dα,n : α ∈ κ ∧ n ∈ ω}. Then |D | = κ,
in particular, |D | < c. So, by MA(σ-centred) there exists a D-generic filter G on P .
Let xG :=

⋃{s ∈ [ω]<ω : ∃E ∈ fin(κ)(〈s, E〉 ∈ G)}. Then, by construction, xG
is infinite. Moreover, since G intersects everyDα,n ∈ D , for every α ∈ κ there is a
condition 〈s, E〉 ∈ G such that α ∈ E, which implies that xG \ s ⊆ xα. Hence, for
each α ∈ κ we have xG ⊆∗ xα, and therefore, xG is an infinite pseudo-intersection
of F . ⊣

The key idea in the next proof, in which we will see that MA(σ-centred) =⇒ 2κ =
c for all infinite cardinals κ < c, is to encode subsets of an almost disjoint family
of cardinality κ < c by subsets of ω. We will construct these codes in the following
lemma, in which we will use PROPOSITION 9.6, which asserts that there is always
an almost disjoint family of cardinality c, and therefore of any cardinality κ ≤ c.

LEMMA 14.7. Let κ < c be an infinite cardinal and let A = {xα : α ∈ κ} ⊆ [ω]ω

be an almost disjoint family of cardinality κ. Furthermore, let B ⊆ A be any
subfamily of A and let C = A \ B. Without loss of generality we assume that
neither B nor C is empty. If we assume MA(σ-centred), then there exists a set
c ⊆ ω such that for all x ∈ A :

|c ∩ x| = ω ⇐⇒ x ∈ B

Proof. Similarly to the proof of THEOREM 14.6, let P be the set of all ordered pairs
〈s, E〉 such that s ∈ [ω]<ω and E ∈ fin(C ); and for 〈s, E〉, 〈t, F 〉 ∈ P define

〈s, E〉 ≤ 〈t, F 〉 ⇐⇒ s ⊆ t ∧ E ⊆ F ∧ (t \ s) ∩
⋃
E = ∅.

Similarly, one shows that the partially ordered set (P,≤) is σ-centred.

Now, for each xγ ∈ C , the set

Dxγ
=
{
〈s, E〉 ∈ P : xγ ∈ E

}

is an open dense subset of P ; and for each xβ ∈ B and each k ∈ ω, the set

Dxβ ,k =
{
〈s, E〉 ∈ P : |s ∩ xβ | ≥ k

}

is also an open dense subset of P . Finally, let D = {Dxγ
: xγ ∈ C } ∪ {Dxβ,k :

xβ ∈ B ∧ k ∈ ω}. Then, since |B ∪ C | = κ, |D | = κ, and since κ < c we get
|D | < c. So, by MA(σ-centred) there exists a D-generic filter G on P . Let c =
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⋃{s ∈ [ω]<ω : ∃E ∈ fin(C )(〈s, E〉 ∈ G)}. Then for any xβ ∈ B, |c ∩ xβ | = ω;
and, as in the proof of THEOREM 14.6, for any xγ ∈ C , |c ∩ xγ | < ω. Thus, the set
c ⊆ ω has the required properties. ⊣

Now we are ready to prove the following consequences of MA(σ-centred):

THEOREM 14.8. If we assume MA(σ-centred), then for all infinite cardinals κ < c

we have 2κ = c, and as a consequence we see that c is regular.

Proof. Let κ < c be an infinite cardinal. We have to show that 2κ = c. For this, fix
an almost disjoint family A = {xα : α ∈ κ} ⊆ [ω]ω of cardinality κ (which exists
by PROPOSITION 9.6), and for each u ∈ P(κ) let Bu := {xα ∈ A : α ∈ u}.
Then, by LEMMA 14.7, there is a set cu ⊆ ω such that for each x ∈ A we have
|cu ∩ x| = ω ⇐⇒ x ∈ Bu. Notice that for any distinct u, v ∈ P(κ) we have
cu 6= cv. Indeed, if u, v ∈ P(κ) are distinct, then without loss of generality we
may assume that there exists an α ∈ κ such that α ∈ u \ v. So, cu ∩ xα is infinite,
whereas cv ∩ xα is finite, and hence, cu 6= cv. Thus, the mapping

P(κ) → P(ω)

u 7→ cu

is one-to-one, which implies that 2κ ≤ c. Now, since ω ≤ κ, and consequently
c ≤ 2κ, we finally get 2κ = c.

To see that c is regular assume towards a contradiction that κ = cf(c) < c. Then, by
COROLLARY 3.30, c < cκ, but since c = 2κ we find that cκ = (2κ)κ = 2κ = c,
a contradiction. ⊣

We conclude this section by showing that MA(σ-centred) implies that there are P -
points which are not Q-points.

PROPOSITION 14.9. If we assume MA(σ-centred), then there exists an ultrafilter
U ⊆ [ω]ω which is a P -point but not a Q-point.

Proof. We shall construct a P -point U ⊆ [ω]ω which is not a Q-point. For this,
we first define a partition I = {In ⊆ ω : n ∈ ω} of ω into finite blocks In: Let
I0 := [0, 1) (in fact, I0 = {0}), and for n ∈ ω let In+1 := [2n, 2n+1). Furthermore,
let

A :=
{
aα ∈ [ω]ω : α ∈ c

}

be an enumeration of all infinite subsets of ω such that for each n ∈ ω, |aα∩In| ≤ 1.
For each α ∈ c, let cα := ω \ aα and let C := {cα : α ∈ c}. Then, since the blocks
of the partition I are arbitrarily large, the family C has the strong finite intersection
property, denoted sfip. To see this, let C ∈ fin(C ). Then |C| = k for some k ∈ ω,
which implies that for every n ≥ k,
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∣∣∣
⋂
C ∩ In+1

∣∣∣ ≥ 2n − k ,

and therefore, ∣∣∣
⋂
C
∣∣∣ =

∣∣∣
⋃

n∈ω

(⋂
C ∩ In

)∣∣∣ = ω .

Now, let P := {Pα : α ∈ c} be an enumeration of all partitions of ω, where
P0 := I . By induction on c, for every α ∈ c we define a family Fα ⊆ [ω]ω of
filters:

Let F0 := {ω \ s : s ∈ [ω]<ω(ω)} be the Fréchet filter. Notice that F0 ∪C has the
sfip and that |F0| < c.

Assume now that α ∈ c is a successor ordinal, say α = β0 + 1, and assume that
Fβ0 ∪ C has the sfip and that |Fβ0 | < c. Let

E :=
{⋂

X : X ∈ fin
(
Fβ0 ∪ C

)}

be the collection of all intersections of finitely many members of Fβ0 ∪ C . Since
Fβ0 ∪ C has the sfip, we get that E ⊆ [ω]ω. Now, we consider the following three
cases:

Case 1. There exists a Y0 ∈ Pβ0 such that for each E ∈ E , |E ∩ Y0| = ω. Then
{Y0 ∩ cβ0} ∪ Fβ0 ∪ C has the sfip and we define

Fα := Fβ0 ∪ {Y0 ∩ cβ0} .

Notice that by construction, Fα ∪ C has the sfip and that |Fα| < c.

Case 2. There exists an E0 ∈ E such that for each Y ∈ Pβ0 , |E0 ∩ Y | < ω. Then
we define

Fα := Fβ0 ∪ {E0 ∩ cβ0} .
Notice that Fα ∪ C has the sfip and that |Fα| < c.

Case 3. If we are neither in Case 1 nor in Case 2, then

for each Y0 ∈ Pβ0 there is an E ∈ E such that |E ∩ Y0| < ω, (1)

and
for each E0 ∈ E there is a Y ∈ Pβ0 such that |E0 ∩ Y | = ω. (2)

In order to construct Fα, we shall define a σ-centred partially ordered set and apply
MA(σ-centred), but first we have to prove the following two claims:

CLAIM 1. For each E ∈ E there are infinitely many parts Y ∈ Pβ0 such that
|E ∩ Y | = ω.

Proof of Claim 1. Assume towards a contradiction that there exists an E0 ∈ E such
that Y :=

{
Y ∈ Pβ0 : |E0 ∩ Y | = ω

}
is finite. Let E ∈ E be arbitrary. Then
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E ∩ E0 ∈ E and by (2) there exists a Y0 ∈ Pβ0 with |(E ∩ E0) ∩ Y0| = ω, which
implies that Y0 ∈ Y . Since E ∈ E was arbitrary, there is a Y ∈ Y such that for all
E ∈ E , |E ∩ Y | = ω, which contradicts (1). Hence, for each E ∈ E , the set

YE :=
{
Y ∈ Pβ0 : |E ∩ Y | = ω

}

is infinite. ⊣Claim 1

CLAIM 2. For each Ỹ ∈ fin(Pβ0), each E ∈ E , and each k ∈ ω, there is an n ∈ ω
such that ∣∣∣(E ∩ In) \

⋃
Ỹ

∣∣∣ > k .

Proof of Claim 2. Assume towards a contradiction that there exists a finite set Ỹ0 ∈
fin(Pβ0), a set E0 ∈ E , and some k0 ∈ ω, such that for each n ∈ ω we have

∣∣∣(E0 ∩ In) \
⋃

Ỹ0

∣∣∣ ≤ k0 .

Then there is a finite set {aαi
: i ∈ k0} ⊆ A such that for all n ∈ ω,

(E0 ∩ In) \
⋃

Ỹ0 ⊆
⋃

i∈k0

aαi
.

By taking the complements of the aαi
’s we get

(
(E0∩In)\

⋃
Ỹ0

)
∩⋂i∈k0 cαi

= ∅,
and since

⋃
n∈ω In = ω, we have

(
E0 \

⋃
Ỹ0

)
∩
⋂

i∈k0

cαi
= ∅ .

This implies that for every Y ∈ Pβ0 \ Ỹ0 we have

(
E0 ∩

⋂

i∈k0

cαi

)
∩ Y = ∅ .

Now, since E0 ∩
⋂
i∈k0

cαi
∈ E and Ỹ0 is finite, this contradicts CLAIM 1. ⊣Claim 2

Now we are ready to construct the family Fα. For this, let Pβ0 = {Ym : m ∈ ω}
and let P = (P,≤) be defined as follows: Conditions p ∈ P are ordered pairs of the
form p = (〈sni

: i ∈ k + 1〉, X), where

• k ∈ ω and {ni : i ∈ k + 1} ⊆ ω,

• for all i ∈ k, ni < ni+1,

• for all i ∈ k + 1, sni
⊆
(
Ini

\⋃m∈i Ym
)

and |sni
| = 2i,

• X ∈ fin(Fβ0).
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For two conditions p = (〈sni
: i ∈ k+1〉, X) and p′ = (〈s′n′

i
: i ∈ k′ +1〉, X ′) we

define

p ≤ p′ : ⇐⇒
⋃

i≤k

sni
⊆
⋃

i≤k′

s′n′
i

∧ X ⊆ X ′ ∧
⋃

k<i≤k′

s′n′
i
⊆
⋂
X .

Notice that since there are just countably many finite subsets of ω, there are just
countably many first coordinates, and since any two conditions with the same first
coordinate are compatible, P is σ-centred. Now, for each x ∈ Fβ0 let

Dx :=
{
(〈sni

: i ∈ k + 1〉, X) ∈ P : x ∈ X
}
.

By CLAIM 2, for each x ∈ Fβ0 , the set Dx is an open dense subset of P . Hence,
since |Fβ0 | < c, the set D := {Dx ⊆ P : x ∈ Fβ0} is of cardinality less than c

and by MA(σ-centred), there exists a D-generic filter G on P ; let

xG :=
⋃{⋃

i≤k

sni
: ∃X ∈ fin(Fβ0)

(
(〈sni

: i ∈ k + 1〉, X) ∈ G
)}
.

By definition of the conditions p ∈ P , we get that for each Y ∈ Pβ0 , |xG ∩Y | < ω.
Furthermore, since the sets Dx are open dense, we get that for each x ∈ Fβ0 ,
|xG∩x| = ω, which shows that Fβ0 ∪{xG} has the sfip. Moreover, by construction
even the family Fβ0 ∪ C ∪ {xG} has the sfip. Finally, let

Fα := Fβ0 ∪ {xG ∩ cβ0} .

This completes the construction of Fα in the case when α is a successor ordinal.
Notice that Fα ∪ C has the sfip and that |Fα| < c.

If α ∈ c is a limit ordinal and for all β ∈ β′ ∈ α we have Fβ ⊆ Fβ′ , Fβ ∪ C has
the sfip, and |Fβ | < c, then let Fα :=

⋃
β∈α Fβ . Notice that since α < c, by the

properties of Fβ we get that Fα ∪ C has the sfip and |Fα| < c.

Let now Fc :=
⋃
α∈c Fα. Then Fc has the sfip, and therefore, by the Ultrafilter

Theorem, Fc can be extended to some ultrafilter U . It remains to show that U is
a P -point but not a Q-point: Firstly notice that since Fc contains the Fréchet filter,
U is non-principal (i.e., U ⊆ [ω]ω). Furthermore, for each partition P of ω, either
there is a Y ∈ P which belongs to U , or there is an x ∈ U such that for each
Y ∈ P , x ∩ Y is finite. Hence, U is a P -point. Finally, by construction we get that
C ⊆ U , which shows that A ∩ U = ∅. In other words, there is no x ∈ U such
that for all n ∈ ω we have |x ∩ In| ≤ 1, which shows that U is not a Q-point. ⊣
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MA(countable) Implies the Existence of Ramsey Ultrafilters

In this section we shall see that MA(countable) implies the existence of 2c pair-
wise non-isomorphic Ramsey ultrafilters, where two Ramsey ultrafilters U1 and
U2 are isomorphic if, up to a permutation of ω, they are equal (see FACT 11.21).
By PROPOSITION 11.9, it would be enough to show that MA(countable) implies
p = c. However, this is not the case (cf. RELATED RESULTS 80–82 and COROL-
LARY 22.11).

PROPOSITION 14.10. MA(countable) implies that there exist 2c pairwise non-
isomorphic Ramsey ultrafilters.

Proof. Since there are just c permutations of ω, in order to get 2c pairwise non-
isomorphic Ramsey ultrafilters it is enough to find 2c distinct Ramsey ultrafilters.
The 2c pairwise distinct Ramsey ultrafilters are constructed by transfinite induction.
In fact, we shall construct a binary tree of height c, such that every branch of the tree
corresponds to a Ramsey ultrafilter. More precisely, for every γ : c → 2 and every
α ∈ c we construct a set

Fγ|α =
{
xβ,γ(β) : β ∈ α

}
⊆ [ω]ω

with the sfip such that the filter generated by
⋃
α∈c Fγ|α is a Ramsey ultrafilter. In

addition, we make sure that for any two distinct γ, γ′ ∈ c2, the filters generated
by
⋃
α∈c Fγ|α and

⋃
α∈c Fγ′|α are distinct. In order to get Ramsey ultrafilters at

the end, by PROPOSITION 11.7 (b) it is enough to make sure that for every infinite
partition {Yn : n ∈ ω} of ω, either there is an n0 ∈ ω such that Yn0 ∈ ⋃α∈c Fγ|α ,
or there exists an x ∈ ⋃α∈c Fγ|α such that for all n ∈ ω, |x ∩ Yn| ≤ 1.

Let {Pα : α ∈ c} be the set of all infinite partial partitions of ω. Thus, for each
α ∈ c, Pα = {Y αn : n ∈ ω} is a set of pairwise disjoint subsets of ω such that⋃

Pα = ω. Furthermore, let

x0,0 := {2n : n ∈ ω} , x0,1 := {2n+ 1 : n ∈ ω} ,

and for δ ∈ {0, 1}, let

F{〈0,δ〉} := {x0,δ} ∪
{
x ⊆ ω : |ω \ x| < ω

}
.

Obviously, both sets F{〈0,0〉} and F{〈0,1〉} have the sfip. Let α ∈ c and assume that
for each η ∈ α2 and each β ∈ α we have already constructed a set

Fη|β =
{
xι,η(ι) : ι ∈ β

}
⊆ [ω]ω

with the sfip, such that for any β0 ∈ β1 ∈ α we have Fη|β0
⊆ Fη|β1

. In order to
construct Fη we have to consider two cases:
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α limit ordinal: If α is a limit ordinal, then let

Fη =
⋃

β∈α

Fη|β .

Since the sets Fη|β are increasing and each of these sets has the sfip, Fη has the
sfip as well.

α successor ordinal: If α is a successor ordinal, say α = β0 + 1, then we proceed
as follows: Consider the partition Pβ0 = {Yn : n ∈ ω} and notice that either there
is an n0 ∈ ω such that Fη|β0

∪ {Yn0} has the sfip, or for every n ∈ ω, Yn belongs
to the dual ideal of Fη|β0

, i.e., is a subset of the complement of a finite intersection
of members of Fη|β0

. We consider the two cases separately:

Case 1: Let n0 ∈ ω be such that Fη|β0
∪ {Yn0} has the sfip. Let P1 = Fn(Yn0 , 2)

and, for p, q ∈ P1, let p ≤ q ⇐⇒ p ⊆ q. Then (P1,≤) is countable and for every
finite set E ∈ fin(β0), every n ∈ ω and each δ ∈ {0, 1}, the set

DE,n,δ =

{
p ∈ P1 :

∣∣∣p−1(δ) ∩
⋂

ι∈E

xι,η(ι)

∣∣∣ ≥ n

}

is an open dense subset of P1. Now let

D =
{
DE,n,δ : E ∈ fin(β0) ∧ n ∈ ω ∧ δ ∈ {0, 1}

}
.

Then |D | ≤ max{|α|, ω} < c and by MA(countable) there exists a D-generic filter
G on P1. For δ ∈ {0, 1}, let

xβ0,δ :=
⋃{

p−1(δ) : p ∈ G
}
.

For δ ∈ {0, 1} we find that xβ0,δ ∈ [Yn0 ]
ω and that Fη := Fη|β0

∪ {xβ0,η(β0)}
has the sfip. Finally, let η, η′ ∈ α2 be such that η(β0) = 1 − η′(β0). Because
xβ0,0 ∩ xβ0,1 = ∅, we obviously have Fη 6= Fη′ . Moreover, by construction we
see that Fη ∪ Fη′ lacks the sfip, and therefore no ultrafilter can extend both Fη

and Fη′ .

Case 2: If for each n ∈ ω, Yn belongs to the dual ideal of Fη|β0
, then each finite

intersection of members of Fη|β0
meets infinitely many sets of Pβ0 . Let P2 ⊆

Fn(ω, 2) be such that p ∈ P2 iff for every Y ∈ Pβ0 we have

max
{∣∣p−1(0) ∩ Y

∣∣,
∣∣p−1(1) ∩ Y

∣∣} ≤ 1,

and for p, q ∈ P2 let p ≤ q ⇐⇒ p ⊆ q. As before, (P2,≤) is countable and for
every finite set E ∈ fin(β0), every n ∈ ω and each δ ∈ {0, 1}, the set

DE,n,δ =

{
p ∈ P2 :

∣∣∣p−1(δ) ∩
⋂

ι∈E

xι,η(ι)

∣∣∣ ≥ n

}
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is an open dense subset of P2. Let

D =
{
DE,n,δ : E ∈ fin(β0) ∧ n ∈ ω ∧ δ ∈ {0, 1}

}

and let G be a D-generic filter on P2. Finally, for δ ∈ {0, 1}, let xβ0,δ :=⋃{p−1(δ) : p ∈ G}. Then Fη := Fη|β0
∪ {xβ0,η(β0)} has the sfip, and in ad-

dition, xβ0,η(β0) is such that for all n ∈ ω, |xβ0,η(β0) ∩ Yn| ≤ 1. Furthermore, for
η, η′ ∈ α2 with η(β0) = 1− η′(β0), no ultrafilter can extend both Fη and Fη′ .

Finally, for each γ ∈ c2, let Fγ be the filter generated by the set
⋃
α∈c Fγ|α . By

construction, for any two distinct γ, γ′ ∈ c2, Fγ and Fγ′ are two distinct Ram-
sey ultrafilters, and consequently there exist 2c pairwise non-isomorphic Ramsey
ultrafilters. ⊣

NOTES

Martin’s Axiom. MA was first formulated by Martin and Solovay [11]. The paper
contains various equivalent formulations of MA and numerous applications (includ-
ing THEOREM 14.8, see also Chapter 20). They also stress the usefulness of MA as
a viable alternative to CH and point out that many of the traditional problems solved
using CH can be solved using MA. Roughly speaking, this is because under MA,
sets of cardinality less than c usually behave like countable sets (but of course, there
are exceptions).

For equivalents of MA, consequences, weaker forms, history, et cetera, we refer
the reader to Kunen [10, Chapter II, §2–§5], Fremlin [7], Weiss [17], Rudin [13],
Blass [3, Section 7], and Jech [9, Chapter 16].

MA(σ-centred) and P -points. The result that under MA(σ-centred) there are
P -points which are not Q-points (i.e., PROPOSITION 14.9) is due to Booth (see [4,
Theorems 4.10 & 4.12]).

MA(countable) and Ramsey ultrafilters. PROPOSITION 14.10 is due to Can-
jar [5] (who actually proved even more), but the proof given above was commu-
nicated to me by Michael Hrušák (compare PROPOSITION 14.10 with Chapter 11 |
RELATED RESULT 64).

The ∆-System Lemma. This powerful combinatorial result was first proved by
Shanin [15] (see Kunen [10, Chapter II, §1] for a slightly more general result).
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RELATED RESULTS

80. MA(σ-centred) ⇐⇒ p = c. As we have seen above in THEOREM 14.6,
MA(σ-centred) implies p = c. On the other hand, the converse is also true,
i.e., p = c implies MA(σ-centred). This somewhat surprising result was first
proved by Bell [1] (see also Fremlin [7, 14C] or the proof of THEOREM 19.4).

81. MA(countable) ⇐⇒ cov(M) = c. Fremlin and Shelah showed in [8] that
MA(countable) is equivalent to cov(M) = c, where cov (M) denotes the
covering number of the meagre ideal (defined in Chapter 22). See also Martin
and Solovay [11§4], Blass [3, Theorem 7.13], and Miller [12] for some further
results concerning cov(M).

82. MA(σ-linked). A partially ordered set (P,≤) is said to be σ-linked if we
can write P =

⋃
n∈ω Pn, where each set Pn consists of pairwise compatible

elements.

On the one hand, it is easily verified that

MA =⇒ MA(σ-linked) =⇒ MA(σ-centred) =⇒ MA(countable)

but on the other hand, to show that none of the converse implications hold
requires quite sophisticated techniques. For the corresponding references we
refer the reader to Fremlin [7, Appendix B1].

83. The existence of magic sets under MA(σ-centred). A set of reals M ⊆ R is
called magic if for any two continuous, nowhere constant real-valued func-
tions f, g : R → R we have

f 6= g ⇐⇒ f [M ] * g[M ] ∧ g[M ] * f [M ] .

In 1993, Berarducci and Dikranjan [2, Theorem 8.5] proved that under CH,
magic sets exist. This result can be improved by showing that even MA(σ-
centred) implies the existence of magic sets (see Schumacher [14]). On the
other hand, there are also models of ZFC in which there are no magic sets (see
Ciesielski and Shelah [6]).

84. Whitehead’s Problem. One of the earliest applications of Martin’s Axiom in Al-
gebra was an answer to Whitehead’s problem, which is the question of whether
every Whitehead group is free.

A Whitehead group is an abelian group G such that for every group H and
any surjective group homomorphism h : H → G with kernel isomorphic
to Z, there exists a group homomorphism g : G → H such that h◦g is the
identity.
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One can show that every countable Whitehead group is free, but for uncount-
able Whitehead groups G, the question of whether G is free is undecidable in
ZFC. In particular, Shelah [16] showed that if MA is true and CH is false, then
there is a non-free Whitehead group (see also Fremlin [7, Section 34]).
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