Chapter 1
The Setting

For one cannot order or compose anything, or understand the nature of the composite,
unless one knows first the things that must be ordered or combined, their nature, and
their cause.

GIOSEFFO ZARLINO
Le Istitutioni Harmoniche, 1558

What is Infinitary Combinatorics?

Combinatorics with all its various aspects is a broad field of mathematics which
has many applications in areas like Topology, Group Theory and even Analysis.
A reason for its wide range of applications might be that Combinatorics is rather
a way of thinking than a homogeneous theory, and consequently Combinatorics is
quite difficult to define. Nevertheless, let us start with a definition of Combinatorics,
and in particular of infinitary Combinatorics, which will be suitable for our purpose:

Combinatorics is the branch of mathematics which studies collections of objects
that satisfy certain criteria, and is in particular concerned with deciding how large
or how small such collections might be. If the collections being considered are
infinite, we speak of infinitary Combinatorics.

Below we give a few examples which should illustrate some aspects of infinitary
Combinatorics. At the same time, we shall present the main topics of this book,
which are the Axiom of Choice, cardinal characteristics of the continuum, the forc-
ing technique, and Ramsey Theory, but first, let us say a few words about “infinity”:
We shall never assume something like a “standard universe of sets” in which notions
like “finiteness”, “infinity”, or “natural numbers” are defined semantically (i.e., ac-
cording to their meaning). For example, when we say that a certain set is “infinite”,

we mean that there is no bijection between this set and some natural number, where
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a natural number is an element of the set w, which will be defined formally in Chap-
ter 3. In particular, the elements of w define the notion of “finiteness”, and a set is
infinite if and only if it is not finite. Later we shall see that there is a subtle difference
between the set w and the set IN of the so-called standard natural numbers, but until
we have defined w, we will work with IN.

The Axiom of Choice

Let us start with an example from Graph Theory: A graph is a set of vertices, where
some pairs of vertices are connected by an edge. Connected pairs of vertices are
called neighbours. A graph is infinite if it has a infinitly many vertices. A tree is a
cycle-free (i.e., one cannot walk in proper cycles along edges), connected (i.e., any
two vertices are connected by a path of edges) graph, where one of its vertices is
designated as the root. A tree is finitely branching if every vertex has only a finite
number of neighbours. Furthermore, a branch through a tree is a maximal edge-path
beginning at the root, in which no edge appears twice.

Now we are ready to state Kdnig’s Lemma, which is often used implicitly in fields
like Combinatorics, Topology, and many other branches of mathematics.

Konig's Lemma. Every infinite, finitely branching tree contains an infinite branch.

At first glance, this result looks straightforward and one would construct an infinite
branch as follows: Let v be the root. Since the tree is infinite but finitely branching,
there must be a neighbour of vy from which we can reach infinitely many vertices
without going back to vg. Let v; be such a neighbour of vy. Again, since we reach
infinitely many vertices from v; (without going back to v;) and the tree is finitely
branching, there must be a neighbour of vy, say v, from which we reach infinitely
many vertices without going back to v,. Proceeding in this way, we finally get the
infinite branch (vg, v1,va, . ..).

Let us now have a closer look at this proof: Firstly, in order to prove that the set
of neighbours of vy from which we reach infinitely many vertices without going
back to vy is not empty, we need an infinite version of the so-called Pigeon-Hole
Principle. The Pigeon-Hole Principle can be seen as the fundamental principle of
Combinatorics.

Pigeon-Hole Principle. If n 4 1 pigeons roost in n holes, then at least two pigeons
must share a hole. More prosaically: If m objects are coloured with n colours and

m > n, then at least two objects have the same colour.

An infinite version of the Pigeon-Hole Principle reads as follows:



Cardinal Characteristics 5

Infinite Pigeon-Hole Principle. If infinitely many objects are coloured with finitely
many colours, then infinitely many objects have the same colour.

Using the Infinite Pigeon-Hole Principle we are now sure that the set of neighbours
of vy from which we reach infinitely many vertices without going back to vy is not
empty. However, the next problem we face is which element we should choose from
that non-empty set. If the vertices are ordered in some way, then we can choose the
first element with respect to that order, but otherwise, we would need some kind
of choice function which selects infinitely often (and this is the crucial point!) one
vertex from a given non-empty set of vertices. Such a choice function is guaranteed
by the Axiom of Choice, denoted AC, which is introduced in Chapter 3 and discussed
in great detail in Chapter 6.

Axiom of Choice. For every family .% of non-empty sets, there is a function f, called
a choice function, which selects one element from each member of .% (i.e., for each
x € Z, f(x) € x); or equivalently, every Cartesian product of non-empty sets is
non-empty.

Except in Chapter 5, where we shall see how combinatorics can, to some extent,
replace the Axiom of Choice, we always work in Zermelo—Fraenkel Set Theory with
the Axiom of Choice—even in the case as in Chapters 8 & 17 when we construct
models of Set Theory in which AC fails.

Now, let us turn back to Kénig’s Lemma. In order to prove Koénig’s Lemma we do
not need full AC, since it would be enough if every family of non-empty finite sets
had a choice function—the family would consist of all subsets of neighbours of
vertices. However, as we will see later, even this weaker form of AC is a proper
axiom and is independent of the other axioms of Set Theory (cf. PROPOSITION 8.7).
Thus, depending on the axioms of Set Theory we start with, AC—as well as some
weakened forms of it—may fail, and consequently, Kénig's Lemma may become
unprovable. On the other hand, as we will see in Chapter 6, Kénig’s Lemma may be
used as a non-trivial choice principle.

Thus, this first example shows that—with respect to our definition of Combinatorics
given above—some “objects satisfying certain criteria,” may, but need not, exist.

Cardinal Characteristics

The next example can be seen as a problem in infinitary Extremal Combinatorics.
The word “extremal” describes the nature of problems dealt with in this field and
refers to the second part of our definition of Combinatorics, namely “how large or
how small collections satisfying certain criteria might be.”
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If the objects considered are infinite, then the answer, how large or how small certain
sets are, depends again on the underlying axioms of Set Theory, as the next example
shows.

Reaping Families. A family Z of infinite subsets of the natural numbers IN is said
to be reaping if for every colouring of IN with two colours there exists a monochro-
matic set in the family Z.

For example, the set of all infinite subsets of IN is such a family. The reaping num-
ber t, which is a so-called cardinal characteristic of the continuum, is the smallest
cardinality (i.e., size) of a reaping family. In general, a cardinal characteristic of the
continuum is typically defined as the smallest cardinality of a subset of a given set
S which has certain combinatorial properties, where .S is of the same cardinality as
the continuum R.

Consider the cardinal characteristic v (i.e., the size of the smallest reaping family).
Since v is a well-defined cardinality we can ask: How large is ¢t ? Can it be countable?
Is it always equal to the cardinality of the continuum?

Let us show that a reaping family can never be countable: Let & = {A; : i € IN} be
any countable family of infinite subsets of IN. For each 7 € IN, pick n; and m,; from
the set A; in such a way that, at the end, for all ¢ we have n; < m; < n;y1. Now we
colour all n;’s blue and all m;’s red. For this colouring, there is no monochromatic
set in &7, and hence, .2/ cannot be a reaping family. The Continuum Hypothesis,
denoted CH, states that every subset of the continuum R is either countable or of
cardinality ¢, where ¢ denotes the cardinality of R. Thus, if we assume CH, then
any reaping family is of cardinality c¢. The same holds if we assume Martin’s Axiom,
which shall be introduced in Chapter 14. The question is now, can we say anything
about v and ¢ if we assume neither CH nor MA?

The Forcing Technique

With the forcing technique—invented by Paul Cohen in the early 1960s—one can
show that the axioms of Set Theory do not decide CH. In other words, there are
models of Set Theory in which CH holds, and other models of Set Theory in which
CH fails. Moreover, we can force models of Set Theory in which CH fails and in
which t < ¢. The forcing technique to construct such models is introduced in Part I1I
and a model in which v < ¢ is given in Chapter 18.

Thus, the second example shows that—depending on the additional axioms of Set
Theory we start with—we can get different answers when we try to “decide how
large or how small certain collections might be.”

Many more cardinal characteristics like hom and par (see below) are introduced
in Chapter 9. Possible (i.e., consistent) relations between these cardinals are inves-
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tigated in Part III and more systematically in Part [V—where the cardinal charac-
teristics are also used to distinguish the combinatorial features of certain forcing
notions.

Ramsey Theory

Another field of Combinatorics is the so-called Ramsey Theory, and since many
results in this work rely on Ramsey-type theorems, let us give a brief description of
Ramsey Theory.

Loosely speaking, Ramsey Theory (which can be seen as a part of extremal Com-
binatorics) is the branch of Combinatorics which deals with structures preserved
under partitions, or colourings. Typically, one looks at the following kind of ques-
tion: If a particular object (e.g., algebraic, geometric or combinatorial) is arbitrarily
coloured with finitely many colours, what kinds of monochromatic structure can we
find?

For example, VAN DER WAERDEN’S THEOREM, which will be proved in Chap-
ter 12, tells us that for any positive integers r and n, there is a positive integer
N such that for every r-colouring of the set {0,1,..., N} we can always find a
monochromatic (non-constant) arithmetic progression of length n.

Even though VAN DER WAERDEN’S THEOREM is one of the earliest results in Ram-
sey Theory, the most famous result in Ramsey Theory is surely RAMSEY’S THEO-
REM (which will be discussed in detail in Chapter 4):

RAMSEY’S THEOREM. Let n be any positive integer. If we colour all n-element
subsets of IN with finitely many colours, then there exists an infinite subset of IN all
of whose n-element subsets have the same colour.

There is also a finite version of RAMSEY’S THEOREM which gives an answer to
problems like the following:

How many people must be invited to a party in order to make sure that three of
them mutually shook hands on a previous occasion or three of them mutually did
not shake hands on a previous occasion?

It is quite easy to show that at least six people must be invited. On the other hand,
if we ask how many people must get invited such that there are five people who
all mutually shook hands or did not shake hands on a previous occasion, then the
precise number is not known—but it is conjectured that it is sufficient to invite 43
people.
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As we shall see later, RAMSEY’S THEOREM has many—sometimes unexpected—
applications. For example, if we work in Set Theory without AC, then RAMSEY’S
THEOREM can help to construct a choice function, as we will see in Chapter 5.
Sometimes we get Ramsey-type (or anti-Ramsey-type) results even for partitions
into infinitely many classes (i.e., using infinitely many colours). For example, one
can show that there is a colouring of the points in the Euclidean plane with countably
many colours, such that no two points of any “copy of the rationals” have the same
colour. This result can be seen as an anti-Ramsey-type theorem (since we are far
away from “monochromatic structures”), and it shows that Ramsey-type theorems
cannot be generalised arbitrarily. However, concerning RAMSEY’S THEOREM, we
can ask for a “nice” family .% of infinite subsets of IN, such that for every colouring
of the n-element subsets of IN with finitely many colours, there exists a homoge-
neous set in the family .%, where an infinite set z C IN is called homogeneous if
all n-element subsets of x have the same colour. Now, “nice” could mean “as small
as possible” but also “is an ultrafilter.” In the former case, this leads to the homoge-
neous number hom, which is the smallest cardinality of a family .# which contains
a homogeneous set for every 2-colouring of the 2-element subsets of IN. One can
show that hom is uncountable and—Iike for the reaping number—that the axioms
of Set Theory do not decide whether or not hom is equal to ¢ (see Chapter 18).
The latter case, where “nice” means “is an ultrafilter,” leads to so-called Ramsey
ultrafilters. It is not difficult to show that Ramsey ultrafilters exist if one assumes
CH (see Chapter 11), but on the other hand, the axioms of Set Theory alone do not
imply the existence of Ramsey ultrafilters (see PROPOSITION 26.23). A somewhat
anti-Ramsey-type question would be to ask how many 2-colourings of the 2-element
subsets of IN we need to make sure that no single infinite subset of IN is almost ho-
mogeneous for all these colourings, where a set H is called almost homogeneous if
there is a finite set K such that H \ K is homogeneous. This question leads to the
partition number par. Again, par is uncountable and the axioms of Set Theory do
not decide whether or not par is equal to ¢ (see, for example, Chapter 18).

RAMSEY’S THEOREM, as well as Ramsey Theory in general, play an impor-
tant role throughout this book. For example, in most chapters of Part I we shall
meet—sometimes unexpectedly—RAMSEY’S THEOREM in one form or the other.

NOTES

Gioseffo Zarlino. All citations of Zarlino (1517-1590) are taken from Part Three
of his book entitled Le Istitutioni Harmoniche (cf. [1]). This section of Zarlino’s
Institutioni is concerned primarily with the art of counterpoint, which is, accord-
ing to Zarlino, the concordance or agreement born of a body with diverse parts,
its various melodic lines accommodated to the total composition, arranged so that
voices are separated by commensurable, harmonious intervals. The word “counter-
point” presumably originated at the beginning of the 14th century and was derived
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from “punctus contra punctum,” i.e., point against point or note against note. Zarlino
himself was an Italian music theorist and composer. While he composed a number
of masses, motets and madrigals, his principal claim to fame is as a music theorist:
For example, Zarlino was ahead of his time in proposing that the octave should be
divided into twelve equal semitones, that is to say, he advocated a practice in the
16th century which was universally adopted three centuries later. He also advocated
equal temperament for keyboard instruments and just intonation for unaccompanied
vocal music and strings—a system which has been successfully practised up to the
present day. Furthermore, Zarlino arranged the modes in a different order of succes-
sion, beginning with the Ionian mode instead of the Dorian mode. This arrangement
seems almost to have been dictated by a prophetic anticipation of the change which
was to lead to the abandonment of the modes in favour of a newer tonality, for his
series begins with a form which corresponds exactly with our modern major mode
and ends with the prototype of the descending minor scale of modern music. (For
the terminology of music theory we refer the interested reader to Benson [2].)

Zarlino’s most notable student was the music theorist and composer Vincenzo
Galilei, the father of Galileo Galilei.

Konig’s Lemma and Ramsey’s Theorem. A proof of Konig’'s Lemma can be found
in Konig’s book on Graph Theory [3, VI, §2, Satz 6], where he called the result Un-
endlichkeitslemma. As a first application of the Unendlichkeitslemma he proved the
following theorem of de la Vallée Poussin: If E is a subset of the open unit interval
(0,1) which is closed in R and I is a set of open intervals covering E, then there is
a natural number n, such that if one partitions (0, 1) into 2™ intervals of length 2~",
each of these intervals containing a point of E is contained in an interval of I. Using
the Unendlichkeitslemma, Konig also showed that VAN DER WAERDEN’S THEO-
REM is equivalent to the following statement: If the positive integers are finitely
coloured, then there are arbitrarily long monochromatic arithmetic progressions. In
a similar way we will use Kdnig's Lemma to derive the FINITE RAMSEY THEOREM
from RAMSEY’S THEOREM (cf. COROLLARY 4.3).

At first glance, Kénig’s Lemma and RAMSEY’S THEOREM seem to be quite unre-
lated statements. In fact, Kdnig’s Lemma is a proper (but rather weak) choice prin-
ciple, whereas RAMSEY’S THEOREM is a very powerful combinatorial tool. How-
ever, as we shall see in Chapter 6, RAMSEY’S THEOREM can also be considered as
a proper choice principle which turns out to be even stronger than Kénig's Lemma
(see THEOREM 6.14).
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