
Chapter 3

Axioms of Set Theory

Every mathematical science relies upon demonstration rather than argument and opinion.
Certain principles, called premises, are granted, and a demonstration is made which re-
solves everything easily and clearly.

GIOSEFFO ZARLINO

Le Istitutioni Harmoniche, 1558

Why Axioms?

In the middle and late 19th century, members of the then small mathematical com-
munity began the search for a rigorous foundation of Mathematics. In accordance
with the Euclidean model of reasoning, the ideal foundation ought to consist of a
few simple, clear principles, so-called axioms, on which the rest of knowledge can
be built via firm and reliable thoughts free of contradiction. However, at the time
it was not clear what assumptions should be made and what operations should be
allowed in mathematical reasoning.

At the beginning of the last book of Politeia [79], Plato develops his theory of ideas.
Translated into the mathematical setting, Plato’s theory of ideas reads as follows:
Even though there may be more than one human approach to Mathematics, there
is only one true idea of Mathematics (i.e., a unique mathematical world), and from
this idea alone can one attain real knowledge. In particular, the mathematical world
already exists and is just waiting to be discovered. So, from a Platonic point of view
it would make sense to search for the unique set of true axioms for Set Theory—
also because the axioms of Set Theory are supposed to describe the world of “real”
Mathematics.

However, if we consider Set Theory as a mathematical discipline, then, like in any
other field of Mathematics, there is no true axiom system, and moreover, we are
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even allowed to weaken the axioms or to extend them by additional assumptions in
order to get weaker or stronger theories. This is done, for example, in Group Theory
when we study semigroups or monoids, or focus on abelian groups.

It is often the case that a mathematical theory is developed long before its formal
axiomatisation, and in rare instances, mathematical theories were already partially
developed before mathematicians were aware of them. This happened with Group
Theory: Around the year 1600 in England it was discovered that by altering the
fittings around each bell in a bell tower, it was possible for each ringer to main-
tain precise control of when his (there were no female ringers then) bell sounded.
This enabled the ringers to ring the bells in any particular order, and either maintain
that order or permute the order in a precise way. (For technical reasons, not every
permutation is allowed. In fact, just products of mutually disjoint elementary trans-
positions may be used, which means that two bells can exchange their places only
if they are adjacently rung before-hand.) So, in the first half of the 17th century the
ringers tried to continuously change the order of the bells for as long as possible,
while not repeating any particular order. This game evolved into a challenge to ring
the bells in every possible order, without any repeats, and return to the initial or-
der at the end. Thus, bell-ringers began to investigate permutations and Stedman’s
work Campanologia [94] can fairly be said to be the first work in which Group The-
ory was successfully applied to a “musical” situation and consequently, Stedman
can be regarded as the first group theorist. This also shows that permutations—the
prototype of finite groups—were first studied in the 17th century in the context of
change-ringing, and therefore had a practical application long before they were used
in Lagrange’s work of 1770–1771 on the theory of algebraic equations.

Let us now turn back to Set Theory. The history of Set Theory is rather different
from the history of most other areas of Mathematics. Usually a long process can be
traced in which ideas evolve until an ultimate flash of inspiration, often by a number
of mathematicians almost simultaneously, produces a discovery of major impor-
tance. Set Theory, however, is the creation of only one person, namely of Georg
Cantor (1845–1918), who first discovered that infinite sets may have different sizes,
i.e., cardinalities. In fact, the birth of Set Theory dates to 1873 when Cantor proved
that the set of real numbers is uncountable. Until then, no one envisioned the pos-
sibility that infinities come in different sizes, and moreover, mathematicians had no
use for the actual infinite—in contrast to the potential infinite, as it is introduced
by Aristotle in Physics [1] Book III. The difference between actual and potential
infinite is that the latter just means “unlimited” or “arbitrarily large” (e.g., there are
arbitrarily large—and therefore arbitrarily many—prime numbers), whereas the for-
mer means that there are infinite objects which actually exist (e.g., there exists a set
containing all, i.e., infinitely many, prime numbers). Moreover, Cantor also showed
that for every infinite set, there is a set of larger cardinality, which implies that there
is no largest set. Cantor never introduced formal axioms for Set Theory, even though
he was tacitly using most of the axioms introduced later by Zermelo and Fraenkel.
However, Cantor considered a set as any collection of well-distinguished objects of
our mind, which leads directly to RUSSELL’S PARADOX: On the one hand, there
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are collections which contain themselves as a member (i.e., the collection of all sets
is a set which is a member of itself). On the other hand, there are collections which
do not contain themselves as a member (i.e., the set of negative natural numbers,
since it is empty, cannot be a member of itself). Now, call a set x good if x is not
a member of itself and let C be the collection of all sets which are good. Is C, as a
set, good or not? If C is good, then C is not a member of itself, but since C contains
all sets which are good, C is a member of C, a contradiction. Otherwise, if C is a
member of itself, then C must be good, again a contradiction. In order to avoid this
paradox we have to exclude the collection C from being a set, but then, we have to
give reasons why certain collections are sets and others are not. The axiomatic way
to do this is described by Zermelo as follows: Starting with the historically grown
Set Theory, one has to search for the principles required for the foundations of this
mathematical discipline. In solving the problem we must, on the one hand, restrict
these principles sufficiently to exclude all contradictions and, on the other hand, take
them sufficiently wide to retain all the features of this theory.

The principles, which are called axioms, will tell us how to get new sets from already
existing ones. In fact, most of the axioms of Set Theory are constructive to some
extent, i.e., they tell us how new sets are constructed from already existing ones and
what elements they contain.

The Axioms of Zermelo–Fraenkel Set Theory

In 1905, Zermelo began to axiomatise Set Theory and in 1908 he published his
first axiomatic system consisting of seven axioms. In 1922, Fraenkel and Skolem
independently improved and extended Zermelo’s original axiomatic system, and the
final version was again presented by Zermelo in 1930.

In this section we give Zermelo’s axiomatic system of Set Theory, called Zermelo–
Fraenkel Set Theory, denoted ZF. This axiomatic system contains all axioms of
modern Set Theory except the Axiom of Choice, which will be introduced later in
this chapter and discussed in great detail in Chapter 6. Alongside the axioms of Set
Theory we shall develop the theory of ordinals and give various notations which
will be used throughout this book.

Before we begin to present the axioms of Set Theory, let us say a few words about
Set Theory in general: The language of Set Theory contains only one non-logical
symbol, namely the binary membership relation, denoted by ∈, and there exists
just one type of object, namely sets. In other words, every object in the domain is a
set and there are no other objects than sets. However, to make life easier, instead of
∈(a, b) we write a ∈ b (or on rare occasions also b ∋ a) and say that “a is an element
of b”, or that “a belongs to b”. Furthermore, we write a /∈ b as an abbreviation
of ¬(a ∈ b). Later we will extend the language of Set Theory by defining some
constants (like “∅” and “ω”), relations (like “⊆”), and operations (like the power set
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operation “P”), but in fact, all that can be formulated in Set Theory can be written
as a formula containing only the non-logical relation “∈” (but for obvious reasons,
we will usually not do so).

After these general remarks, let us now start to present the axioms of Set Theory.

0. The Axiom of Empty Set
∃x∀z(z /∈ x)

This axiom not only postulates the existence of a set without any elements, i.e.,
an empty set, it also shows that the set-theoretic universe is non-empty, because
it contains at least an empty set (of course, the logical axioms L14 and L11 already
incorporate this fact).

1. The Axiom of Extensionality

∀x∀y
(
∀z(z ∈ x↔ z ∈ y) → x = y

)

This axiom says that any sets x and y having the same elements are equal. Notice
that the converse—which is x = y implies that x and y have the same elements—is
just a consequence of the logical axiom L15.

The Axiom of Extensionality also shows that the empty set, postulated by the Axiom

of Empty Set, is unique. For assume that there are two empty sets x0 and x1, then we
have ∀z(z /∈ x0∧z /∈ x1), which implies that ∀z(z ∈ x0 ↔ z ∈ x1), and therefore,
x0 = x1.

Let us introduce the following notation: If ϕ(x) is any first-order formula with free
variable x (i.e., x occurs at a particular place in the formula ϕ where it is not in the
range of any logical quantifier), then

∃!xϕ(x) : ⇐⇒ ∃x
(
ϕ(x) ∧ ∀z

(
ϕ(z) → z = x

))
.

With this definition we can reformulate the Axiom of Empty Set as follows:

∃!x∀z(z /∈ x) ,

and this unique empty set is denoted by ∅.

We say that y is a subset of x, denoted y ⊆ x, if ∀z(z ∈ y → z ∈ x). Notice that
the empty set is a subset of every set. If y is a proper subset of x, i.e., y ⊆ x and
y 6= x, then this is sometimes denoted by y  x.

One of the most important concepts in Set Theory is the notion of ordinal number,
which can be seen as a transfinite extension of the natural numbers. In order to define
the concept of ordinal numbers, we must first give some definitions: Let z ∈ x.
Then z is called an ∈-minimal element of x if ∀y(y /∈ z ∨ y /∈ x), or equivalently,
∀y(y ∈ z → y /∈ x). A set x is ordered by ∈ if for any sets y1, y2 ∈ x we
have y1 ∈ y2, or y1 = y2, or y1 ∋ y2, but we do not require the three cases to
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be mutually exclusive. Now, a set x is called well-ordered by ∈ if it is ordered
by ∈ and every non-empty subset of x has an ∈-minimal element. Further, a set
x is called transitive if ∀y(y ∈ x → y ⊆ x). Notice that if x is transitive and
z ∈ y ∈ x, then this implies z ∈ x. A set is called an ordinal number, or just
an ordinal, if it is transitive and well-ordered by “∈”. Ordinal numbers are usually
denoted by Greek letters like α, β, γ, λ, et cetera, and the collection of all ordinal
numbers is denoted by Ω. We will see later, when we know more properties of
ordinals, that Ω is not a set. However, we can consider “α ∈ Ω” as an abbreviation
of “α is an ordinal”, which is just a property of α, and thus, there is no harm in
using the symbol Ω in this way, even though Ω is not an object of the set-theoretic
universe.

FACT 3.1. If α ∈ Ω, then either α = ∅ or ∅ ∈ α.

Proof. Since α ∈ Ω, α is well-ordered by ∈. Thus, either α = ∅, or, since α ⊆ α, α
contains an ∈-minimal element, say x0 ∈ α. If x0 6= ∅, then we find a z ∈ x0, and
by transitivity of α, we get z ∈ α, which implies that z is not an ∈-minimal element
of α. Hence, we must have x0 = ∅, which shows that ∅ ∈ α. ⊣

Notice that until now, we cannot prove the existence of any ordinal—or even of any
set—beside the empty set, postulated by the Axiom of Empty Set. This will change
with the following axiom.

2. The Axiom of Pairing

∀x∀y∃u∀z
(
z ∈ u↔ (z = x ∨ z = y)

)

Informally, we just write
∀x∀y∃u

(
u = {x, y}

)
,

where {x, y} denotes the set which contains just the elements x and y.

In particular, for x = y we get the set u = {x, x}, which is, by the Axiom of Exten-

sionality, the same as {x}. Thus, by the Axiom of Pairing, if x is a set, then {x} is also
a set. Starting with ∅, an iterated application of the Axiom of Pairing yields for exam-
ple the sets ∅, {∅}, {{∅}}, {{{∅}}}, . . . , and {∅, {∅}}, {{∅}, {∅, {∅}}}, . . . . Among
these sets, ∅, {∅}, and {∅, {∅}} are ordinals but, for example, {{∅}} is not an ordi-
nal.

So far, we have not excluded the possibility that a set may be an element of itself,
and in fact, we need the Axiom of Foundation in order to do so. However, we can
already show that no ordinal is an element of itself:

FACT 3.2. If α ∈ Ω, then α /∈ α.

Proof. Assume towards a contradiction that α ∈ α. Then {α} is a non-empty subset
of α and therefore contains an ∈-minimal element. Now, since {α} just contains the
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element α, the ∈-minimal element of {α} must be α, but on the other hand, α ∈ α
implies that α is not ∈-minimal, a contradiction. ⊣

For any sets x and y, the Axiom of Extensionality implies that {x, y} = {y, x}. So,
it does not matter in which order the elements of a 2-element set are written down.
However, with the Axiom of Pairing we can easily define ordered pairs, denoted
〈x, y〉, as follows:

〈x, y〉 :=
{
{x}, {x, y}

}

Notice that 〈x, y〉 = 〈x′, y′〉 iff x = x′ and y = y′, and further notice that this
definition also makes sense in the case when x and y are equal—at least as long as
we know that {{x}} is supposed to denote an ordered pair. By a similar trick, one
can also define ordered triples by stipulating, for example, 〈x, y, z〉 := 〈x, 〈y, z〉〉,
ordered quadruples, et cetera, but the notation becomes hard to read and it requires
additional methods to distinguish, for instance, between ordered pairs and ordered
triples. However, once we have more axioms at hand, we will be able to define
arbitrarily large tuples.

3. The Axiom of Union

∀x∃u∀z
(
z ∈ u↔ ∃w ∈ x(z ∈ w)

)

More informally, for all sets x there exists the union of x, denoted
⋃
x, consisting

of all sets which belong to at least one element of x.

For sets x and y, let x ∪ y :=
⋃{x, y} denote the union of x and y. Notice that

x =
⋃{x}. For x ∪ y, where x and y are disjoint (i.e., do not have any common

elements), we sometimes write x ∪̇ y, and for x = {yι : ι ∈ I} we sometimes write⋃
ι∈I yι instead of

⋃
x.

Now, using the Axiom of Union and the Axiom of Pairing, and by defining the suc-
cessor x+ of x by stipulating x+ := x ∪ {x}, we can build, for example, the
following sets (which are in fact ordinals): 0 := ∅, 1 := 0+ = 0 ∪ {0} = {0},
2 := 1+ = 1 ∪ {1} = {0, 1}, 3 := 2+ = 2 ∪ {2} = {0, 1, 2}, and so on. This
construction leads to the following definition:

A set x such that ∀y(y ∈ x → (y ∪ {y}) ∈ x) is called inductive. Obviously, the
empty set ∅ is inductive, but of course, this definition is only useful if some other
inductive sets exist. However, in order to guarantee that non-empty inductive sets
exist we need the following axiom.

4. The Axiom of Infinity

∃I
(
∅ ∈ I ∧ ∀y

(
y ∈ I → (y ∪ {y}) ∈ I

))

Informally, the Axiom of Infinity postulates the existence of a non-empty inductive
set containing ∅. All the sets 0, 1, 2, . . . constructed above—which we recognise as
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natural numbers—must belong to every inductive set. So, if there were a set which
contains just the natural numbers, it would be the “smallest” inductive set containing
the empty set. In order to construct this set, we need the following axiom.

5. The Axiom Schema of Separation

For each first-order formula ϕ(z, p1, . . . , pn) with free(ϕ) ⊆ {z, p1, . . . , pn}, the
following formula is an axiom:

∀x∀p1 · · · ∀pn∃y∀z
(
z ∈ y ↔

(
z ∈ x ∧ ϕ(z, p1, . . . , pn)

))

One can think of the sets p1, . . . , pn as parameters of ϕ, which are usually some
fixed sets. Informally, for each set x and every first-order formula ϕ(z), {z ∈ x :
ϕ(z)} is a set. Notice that the Axiom Schema of Separation allows us to separate all
elements z of a given set x that satisfy a certain property ϕ into a new set, without
allowing us to build the collection of all sets z that satisfy ϕ.

Before we give some applications of the Axiom Schema of Separation, let us intro-
duce the following notation: If ϕ(z) is any first-order formula with free variable z,
and x is any set, then

∀z ∈ x
(
ϕ(z)

)
: ⇐⇒ ∀z

(
(z ∈ x) → ϕ(z)

)
,

and similarly
∃z ∈ x

(
ϕ(z)

)
: ⇐⇒ ∃z

(
(z ∈ x) ∧ ϕ(z)

)
.

As a first application of the Axiom Schema of Separation we define the intersection
of two sets x0 and x1: We use x0 as a parameter and let ϕ(z, x0) be the formula
z ∈ x0, denoted ϕ(z, x0) ≡ z ∈ x0. Then, by the Axiom Schema of Separation,
there exists a set y = {z ∈ x1 : ϕ(z, x0)}, i.e.,

z ∈ y ↔ (z ∈ x1 ∧ z ∈ x0) .

In other words, for any sets x0 and x1, the collection of all sets which belong to both
x0 and x1 is a set. This set is called the intersection of x0 and x1 and is denoted by
x0 ∩ x1. In general, for non-empty sets x we define

⋂
x :=

{
z ∈ ⋃x : ∀y ∈ x (z ∈ y)

}
,

which is the intersection of all sets which belong to x. In order to see that
⋂
x is a

set, let ϕ(z, x) ≡ ∀y ∈ x (z ∈ y) and apply the Axiom Schema of Separation to
⋃
x.

Notice also that x∩ y =
⋂{x, y}. Furthermore, for x = {yι : ι ∈ I} we sometimes

write
⋂
ι∈I yι instead of

⋂
x.

Another example is when ϕ(z, y) ≡ z /∈ y, where y is a parameter. In this case,
{z ∈ x : z /∈ y} is a set, denoted x \ y, which is called the set-theoretic difference

of x and y.
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Let us now turn back to ordinal numbers:

THEOREM 3.3.

(a) If α, β ∈ Ω, then α ∈ β or α = β or α ∋ β, where these three cases are
mutually exclusive.

(b) If α ∈ β ∈ Ω, then α ∈ Ω.

(c) If α ∈ Ω, then also (α ∪ {α}) ∈ Ω.

(d) Ω is transitive and is well-ordered by ∈. More precisely, Ω is transitive, is or-
dered by ∈, and every non-empty collectionC ⊆ Ω has an ∈-minimal element.

Proof. (a) First, notice that by FACT 3.2 the three cases α ∈ β, α = β, α ∋ β, are
mutually exclusive.

Let α, β ∈ Ω be given. If α = β, then we are done. So, let us assume that α 6= β.
Without loss of generality we may assume that α \ β 6= ∅.

We first show that α ∩ β is the ∈-minimal element of α \ β: Let γ be an ∈-minimal
element of α \ β. Since α is transitive and γ ∈ α, ∀u(u ∈ γ → u ∈ α), and since γ
is an ∈-minimal element of α \ β, ∀u(u ∈ γ → u ∈ β), which implies γ ⊆ α ∩ β.
On the other hand, if there is a w ∈ (α ∩ β) \ γ, then, since α is ordered by ∈ and
γ 6= w (γ /∈ β ∋ w), we must have γ ∈ w, and since β is transitive and w ∈ β, this
implies that γ ∈ β, which contradicts the fact that γ ∈ (α \ β). Hence, γ = α ∩ β
is the ∈-minimal element of α \ β. Now, if also β \ α 6= ∅, then we would find that
α ∩ β is also the ∈-minimal element of β \ α, which is obviously a contradiction.

Thus, α \ β 6= ∅ implies that β \ α = ∅, or in other words, β ⊆ α, which is the
same as saying β = α∩β. Consequently we see that β is the ∈-minimal element of
α \ β, in particular, β ∈ α.

(b) Let α ∈ β ∈ Ω. Since β is transitive, α is ordered by ∈. So, it remains to show
that α is transitive and well-ordered by ∈.

well-ordered by ∈: Because β is transitive, every subset of α is also a subset of
β and consequently contains an ∈-minimal element.

transitive: Let δ ∈ γ ∈ α. We have to show that δ ∈ α. Since β is transitive,
δ ∈ β, and since β is ordered by ∈, we have either δ ∈ α or δ = α or α ∈ δ. If
δ ∈ α, we are done, and if δ = α or α ∈ δ, then the set {α, γ, δ} ⊆ β does not have
an ∈-minimal element, which contradicts the fact that β is well-ordered by ∈.

(c) We have to show that α ∪ {α} is transitive and well-ordered by ∈.
transitive: If β ∈ (α ∪ {α}), then either β ∈ α or β = α, and in both cases we

have β ⊆ (α ∪ {α}).
well-ordered by ∈: Since α is an ordinal, α ∪ {α} is ordered by ∈. Let now

x ⊆ (α ∪ {α}) be a non-empty set. If x = {α}, then α is obviously an ∈-minimal
element of x. Otherwise, x ∩ α 6= ∅, and since α ∈ Ω, x ∩ α has an ∈-minimal
element, say γ. Since α is transitive we have x ∩ γ = ∅ (otherwise, γ would not be
∈-minimal in x ∩ α), which implies that γ is ∈-minimal in x.
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(d) Ω is transitive and ordered by ∈: This follows immediately from part (b) and
part (a), respectively.

Ω is well-ordered by ∈: Let C ⊆ Ω be a non-empty collection of ordinals. If
C = {α} for some α ∈ Ω, then α is the ∈-minimal element of C. Otherwise, C
contains an ordinal δ0 such that δ0 ∩ C 6= ∅ and let x := δ0 ∩ C. Then x is a
non-empty set of ordinals. Now, let α ∈ x and let γ be an ∈-minimal element of
x∩(α∪{α}). By definition, γ ∈ (α∪{α}), and since (α∪{α}) ∈ Ω, γ ⊆ (α∪{α}).
Thus, every ordinal γ′ ∈ γ belongs to α ∪ {α}, but by the definition of γ, γ′ can-
not belong to x ∩ (α ∪ {α}), which implies that γ is also ∈-minimal in x, and
consequently in C. ⊣

By THEOREM 3.3 (d) we find that Ω is transitive and well-ordered by ∈. Thus, if Ω
were a set, Ω would be an ordinal number and therefore would belong to itself, but
this is a contradiction to FACT 3.2.

In general, a collection of sets, satisfying for example a certain formula, which is
not necessarily a set is called a class. For example, Ω is a class which is not a set
(it consists of all transitive sets which are well-ordered by ∈). Even though proper
classes (i.e., classes which are not sets) do not belong to the set-theoretic universe,
it is sometimes convenient to handle them like sets, e.g., taking intersections or
extracting certain subsets or subclasses from them.

By THEOREM 3.3 (c) we know that if α ∈ Ω, then also (α ∪ {α}) ∈ Ω. Now, for
ordinals α ∈ Ω let α+1 := α∪ {α}. Part (a) of the following result—which is just
a consequence of THEOREM 3.3—motivates this notation.

COROLLARY 3.4.

(a) If α, β ∈ Ω and α ∈ β, then α + 1 ⊆ β. In other words, α + 1 is the least
ordinal which contains α.

(b) For every ordinal α ∈ Ω we have either α =
⋃
α or there exists a β ∈ Ω such

that α = β + 1.

Proof. (a) Assume α ∈ β, then {α} ⊆ β, and since β is transitive, we also have
α ⊆ β; thus, α+ 1 = α ∪ {α} ⊆ β.

(b) Since α is transitive,
⋃
α ⊆ α. Thus, if α 6= ⋃

α, then α \ ⋃α 6= ∅. Let β
be ∈-minimal in α \ ⋃α. Then β ∈ α and β + 1 ∈ Ω, and by part (a) we have
β + 1 ⊆ α. On the one hand, α ∈ β + 1 would imply that α ∈ α, a contradiction
to FACT 3.2. On the other hand, β + 1 ∈ α would imply that β ∈ ⋃

α, which
contradicts the choice of β. Thus, we must have β + 1 = α. ⊣

This leads to the following definitions: An ordinal α is called a successor ordinal if
there exists an ordinal β such that α = β+1; otherwise, it is called a limit ordinal.
In particular, ∅ is a limit ordinal.
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We are now going to construct the smallest inductive set containing the empty set,
which will turn out to be the least non-empty limit ordinal. By the Axiom of Infinity

we know that there exists an inductive set I with ∅ ∈ I . In order to isolate the
smallest inductive set containing ∅, we consider first the set IΩ = I ∩ Ω. More
precisely, let

IΩ = {α ∈ I : α is an ordinal}.
Then IΩ is a set of ordinals and by THEOREM 3.3 (c), IΩ is even an inductive set.
Now, let C := Ω \ IΩ; then C is a proper class of ordinals. Thus, by THEO-
REM 3.3 (d), C contains an ∈-minimal ordinal, say λ0. Since every α ∈ λ0 be-
longs to IΩ and IΩ is inductive, λ0 must be inductive. Furthermore, since ∅ ∈ IΩ
(i.e., ∅ /∈ C), λ0 6= ∅, and since λ0 is inductive, λ0 must be a non-empty limit
ordinal. Finally, let Λ :=

{
α ∈ λ0 : α 6= ∅ ∧ ⋃α = α

}
. If Λ = ∅ let ω := λ0;

otherwise, let ω be the ∈-minimal element of Ω\Λ. In both cases, ω is the least non-
empty limit ordinal, i.e.,

⋃
ω = ω. In particular, for each α ∈ ω we have α+1 ∈ ω,

which shows that ω is inductive. Furthermore, becauseω is the smallest limit ordinal
besides ∅, each ordinal α ∈ ω except ∅ is a successor.

The ordinals belonging to ω are called natural numbers. Since ω is the smallest
non-empty limit ordinal, all natural numbers, except 0, are successor ordinals. Thus,
for each n ∈ ω we have either n = 0 or there is an m ∈ ω such that n = m + 1.
Furthermore, if we define the binary ordering relation “<” on ω by stipulating

k < n :⇐⇒ k ∈ n

then for each n ∈ ω we find n = {k ∈ ω : k < n}.

The following theorem is a consequence of the fact that Ω is transitive and well-
ordered by ∈ (which is just THEOREM 3.3 (d)).

THEOREM 3.5 (TRANSFINITE INDUCTION THEOREM). Let C ⊆ Ω be a class of
ordinals and assume that:

(a) if α ∈ C, then α+ 1 ∈ C,

(b) if α is a limit ordinal and ∀β ∈ α(β ∈ C), then α ∈ C.

Then C is the class of all ordinals.

Proof. Notice first that by (b) we have 0 ∈ C which shows that C 6= ∅.

Assume towards a contradiction that C 6= Ω and let α0 be the ∈-minimal ordinal
which does not belong to C (such an ordinal exists by THEOREM 3.3 (d)). Now,
α0 can be neither a successor ordinal, since this would contradict (a), nor a limit
ordinal, since this would contradict (b). Thus, α0 does not exist, which implies that
Ω \ C = ∅, i.e., C = Ω. ⊣
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The following result is just a reformulation of the TRANSFINITE INDUCTION THE-
OREM.

COROLLARY 3.6. For any first-order formula ϕ(x) with free variable x we have

∀α ∈ Ω
(
∀β ∈ α

(
ϕ(β)

)
→ ϕ(α)

)
→ ∀α ∈ Ω

(
ϕ(α)

)
.

Proof. Let C ⊆ Ω be the class of all ordinals α ∈ Ω such that ϕ(α) holds and apply
the TRANSFINITE INDUCTION THEOREM 3.5. ⊣

When some form of COROLLARY 3.6 is involved we usually do not mention the
corresponding formula ϕ and just say “by induction on . . .” or “by transfinite in-
duction”.

6. The Axiom of Power Set

∀x∃y∀z(z ∈ y ↔ z ⊆ x)

Informally, the Axiom of Power Set states that for each set x there is a set P(x),
called the power set of x, which consists of all subsets of x.

With the Axiom of Power Set (and other axioms like the Axiom of Union or the Ax-

iom Schema of Separation) we can now define notions like functions, relations, and
sequences: For arbitrary sets A and B we define the Cartesian product A × B by
stipulating

A×B :=
{
〈x, y〉 : x ∈ A ∧ y ∈ B

}

where 〈x, y〉 = {{x}, {x, y}}. Thus, the Cartesian product of two sets A and B is a
subsets of P(P(A ∪B)). Further, let

AB :=
{
f ⊆ A×B : ∀x ∈ A∃!y ∈ B

(
〈x, y〉 ∈ f

)}
.

An element f ∈ AB, usually denoted by f : A → B, is called a function or
mapping from A to B, where A is called the domain of f , denoted dom(f).

For f : A → B we usually write f(x) = y instead of 〈x, y〉 ∈ f . If S is a
set, then the image of S under f is denoted by f [S] = {f(x) : x ∈ S} and
f |S = {〈x, y〉 ∈ f : x ∈ S} is the restriction of f to S. Furthermore, for a function
f : A→ B, f [A] is called the range of f , denoted ran(f).

A function f : A → B is surjective, or onto, if ∀y ∈ B ∃x ∈ A(f(x) = y). We
sometimes emphasise the fact that f is surjective by writing f : A։ B.

A function f : A→ B is injective, also called one-to-one, if we have

∀x1 ∈ A∀x2 ∈ A
(
f(x1) = f(x2) → x1 = x2

)
.

To emphasise the fact that f is injective we sometimes write f : A →֒ B.
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A function f : A → B is bijective if it is injective and surjective. If f : A → B is
bijective, then

∀y ∈ B ∃!x ∈ A
(
〈x, y〉 ∈ f

)

which implies that
f−1 :=

{
〈y, x〉 : 〈x, y〉 ∈ f

}
∈ BA

is a function which is also bijective. So, if there is a bijective function from A to
B, then there is also one from B to A and we sometimes just say that there is a
bijection between A and B. Notice that if f : A →֒ B is injective, then f is a
bijection between A and f [A].

Now, we are ready to define the notion of finiteness and countability: A set A is
called finite if there exists a surjection from a natural number n ∈ ω onto A,
otherwise, A is called infinite. In particular, each natural number is finite and ω
is the smallest infinite (i.e., not finite) ordinal number. Furthermore, a set C is
called countable if there exists a surjection from ω onto C, otherwise, C is called
uncountable.

Let us turn back to Cartesian products: Assume that for each ι ∈ I (for some
set I) we have assigned a non-empty set Aι. For A =

⋃
ι∈I Aι, where we define⋃

ι∈I Aι :=
⋃{Aι : ι ∈ I}, the set

×
ι∈I

Aι =
{
f ∈ IA : ∀ι ∈ I

(
f(ι) ∈ Aι

)}

is called the Cartesian product of the sets Aι (ι ∈ I). Notice that if all sets Aι are
equal to a given set A, then ×ι∈I Aι =

IA. If I = n for some n ∈ ω, in abuse of
notation we also write An instead of nA by identifying nA with the set

An = A× . . .×A︸ ︷︷ ︸
n-times

.

Closely related to functions is the notion of sequence: For α ∈ Ω we can identify
a function f ∈ αA with the sequence 〈f(0), f(1), . . . , f(β), . . .〉α of length α, and
vice versa. Sequences (of length α) are usually denoted using angled brackets (and
by using α as a subscript), e.g., 〈s0, . . . , sβ , . . .〉α or 〈sβ : β < α〉. In general, for
any set A, let seq(A) be the set of all finite sequences which can be formed with
elements of A, or more formally:

seq(A) :=
⋃

n∈ω

nA

Furthermore, let seq1-1(A) be those sequences of seq(A) in which no element ap-
pears twice. Again more formally, this reads as follows:

seq1-1(A) :=
{
σ ∈

⋃

n∈ω

nA : σ is injective
}
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Similar to finite sequences, we can also define finite subsets: For any n ∈ ω and
any set S, let [S]n denote the set of all n-element subsets of S (e.g., [S]0 = {∅}).
Slightly more formally, for n ∈ ω and an arbitrary set S,

[S]n :=
{
x ∈ P(S) : there exists a bijection between x and n

}
.

Further, the set of all finite subsets of a set S is denoted by [S]<ω or just fin(S). In
other words,

fin(S) :=
⋃

n∈ω

[S]n.

Finally, for any set S, [S]ω denotes the set of all countably infinite subsets of S, in
particular, since every infinite subset of ω is countable, [ω]ω is the set of all infinite
subsets of ω.

Let us turn back again to Cartesian products, or more precisely, to subsets of finite
Cartesian products:

• For any set A and any n ∈ ω, a set R ⊆ An is called an n-ary relation on A.

• If n = 2, then R ⊆ A × A is also called a binary relation. For binary relations
R we usually write xRy instead of 〈x, y〉 ∈ R.

• A binary relationR onA is a linear ordering onA, if for any elements x, y ∈ A
we have

either xRy or x = y or yRx

where these three cases are mutually exclusive.

• A linear ordering R on A is a well-ordering on A if every non-empty subset
S ⊆ A has an R-minimal element, i.e., there exists a x0 ∈ S such that for each
y ∈ S we have x0Ry. Notice, that since R is a linear ordering, the R-minimal
element x0 is unique.

• If there is a well-ordering R on A, then we say that A is well-orderable. The
discussion of whether each set is well-orderable has to be postponed until we
have the Axiom of Choice.

Other important binary relations are the so-called equivalence relations: Let S be an
arbitrary non-empty set. A binary relation “∼” on S is an equivalence relation if it
is

• reflexive (i.e., for all x ∈ S: x ∼ x),

• symmetric (i.e., for all x, y ∈ S: x ∼ y ↔ y ∼ x), and

• transitive (i.e., for all x, y, z ∈ S: x ∼ y ∧ y ∼ z → x ∼ z).

The equivalence class of an element x ∈ S, denoted [x] ,̃ is the set {y ∈ S : x ∼ y}.
We would like to recall the fact that for any x, y ∈ S we have either [x]˜= [y]˜or
[x]˜∩ [y]˜= ∅. A set A ⊆ S is a set of representatives if for each equivalence class
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[x] ,̃ A has exactly one element in common with each equivalence class. We would
like to mention that the existence of a set of representatives relies in general on the
Axiom of Choice.

With the axioms we have so far, we could already construct a model of Peano
Arithmetic. However, we postpone this construction and proceed with the ax-
ioms of Zermelo–Fraenkel Set Theory. The next axiom we present is Fraenkel’s
axiom schema of replacement, which allows us to build, for example, sets like
{Pn(ω) : n ∈ ω}, where P0(ω) := ω and Pn+1(ω) := P(Pn(ω)).

7. The Axiom Schema of Replacement

For every first-order formula ϕ(x, y, p) with free(ϕ) ⊆ {x, y, p}, where p can be an
ordered n-tuple of parameters, the following formula is an axiom:

∀A∀p
(
∀x ∈ A∃!y ϕ(x, y, p) → ∃B ∀x ∈ A∃y ∈ B ϕ(x, y, p)

)

In other words, for every set A and for each class function F (i.e., a certain class of
ordered pairs of sets) defined on A, F [A] = {F (x) : x ∈ A} is a set. Or even more
informally, images of sets under functions are sets.

As a first application of the Axiom Schema of Replacement we prove a result which
will be used, for example, to define ordinal addition (see THEOREM 3.8) or to build
the cumulative hierarchy of sets (see THEOREM 3.12).

THEOREM 3.7 (TRANSFINITE RECURSION THEOREM). Let F be a class function
which is defined for all sets. Then there is a unique class function G defined on Ω
such that for each α ∈ Ω we have

G(α) = F (G|α), where G|α =
{〈
β,G(β)

〉
: β ∈ α

}
.

Proof. If such a class functionG exists, then, by the Axiom Schema of Replacement,
for every ordinal α, ran(G|α) is a set, and consequently, G|α is a function with
dom(G|α) = α. This leads to the following definition: For δ ∈ Ω, a function g with
dom(g) = δ is called a δ-approximation if

∀β ∈ δ
(
g(β) = F (g|β)

)
.

In other words, g is an δ-approximation if and only if g has the following proper-
ties:

(a) If β + 1 ∈ δ, then g(β + 1) = F (g|β ∪ {〈β, g(β)〉}).
(b) If β ∈ δ is a limit ordinal, then g(β) = F (g|β).

In particular, by (b) we get g(0) = F (∅). For example g1 = {〈0, F (∅)〉} is a
1-approximation; in fact, g1 is the unique 1-approximation. Similarly,
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g2 = {〈0, F (∅)〉, 〈1, F ({〈0, F (∅)〉})〉}

is the unique 2-approximation.

First, notice that for all ordinals δ and δ′, if g is a δ-approximation and g′ is a
δ′-approximation, then g|δ∩δ′ = g′|δ∩δ′ . Otherwise, there would be a smallest ordi-
nal β0 such that g(β0) 6= g′(β0), but by (a) and (b), β0 would be neither a successor
ordinal nor a limit ordinal.

Now we show that for each ordinal δ there exists a δ-approximation: Otherwise,
by THEOREM 3.3 (d), there would be a smallest ordinal δ0 such that there is no
δ0-approximation. In particular, for each δ ∈ δ0 there would be a δ-approximation,
i.e.,

∀δ ∈ δ0 ∃!d (“d is a δ-approximation” ) .

Hence, by the Axiom Schema of Replacement,

∃D ∀δ ∈ δ0 ∃d ∈ D (“d is a δ-approximation”) ,

and
⋃
D is a δ′-approximation for some δ′ ∈ Ω. Now, if δ0 is a limit ordinal,

then δ′ = δ0 and we get a δ0-approximation, and if δ0 is a successor ordinal, then
δ0 = δ′ + 1 and we get a δ0-approximation by (a). So, in both cases we get a
contradiction to our assumption that there is no δ0-approximation.

Now, for each α ∈ Ω define G(α) := g(α), where g is the δ-approximation for any
δ such that α ∈ δ. ⊣

When the TRANSFINITE RECURSION THEOREM is involved in some construction
or proof, we usually just say “by transfinite recursion. . .” without defining the cor-
responding class function F .

As a first application of the TRANSFINITE RECURSION THEOREM we show how we
can define addition, multiplication, and exponentiation of arbitrary ordinal numbers:

ORDINAL ADDITION. For arbitrary ordinals α ∈ Ω we define:

(a) α+ 0 := α.

(b) α+ (β + 1) := (α + β) + 1, for all β ∈ Ω.

(c) If β ∈ Ω is non-empty and a limit ordinal, then α+ β :=
⋃
δ∈β(α + δ).

Notice that addition of ordinals is in general not commutative (e.g., 1 + ω = ω but
ω + 1 6= ω).

ORDINAL MULTIPLICATION. For arbitrary ordinals α ∈ Ω we define:

(a) α · 0 := 0.

(b) α · (β + 1) := (α · β) + α, for all β ∈ Ω.
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(c) If β ∈ Ω is a limit ordinal, then α · β :=
⋃
δ∈β(α · δ).

Notice that multiplication of ordinals is in general not commutative (e.g., 2 · ω = ω
but ω · 2 = ω + ω 6= ω).

ORDINAL EXPONENTIATION. For arbitrary ordinals α ∈ Ω we define:

(a) α0 := 1.

(b) αβ+1 := αβ · α, for all β ∈ Ω.

(c) If β ∈ Ω is non-empty and a limit ordinal, then αβ :=
⋃
δ∈β α

δ .

Notice that, for example, 2ω = ω. This should not be confused with cardinal expo-
nentiation, which will be defined later in this chapter.

THEOREM 3.8. Addition, multiplication, and exponentiation of ordinals are well-
defined binary operations on Ω.

Proof. We will prove this result for addition (the proof for the other operations is
similar): For each α ∈ Ω define a class function Fα by stipulating Fα(x) := ∅ if x
is not a function; if x is a function, then let

Fα(x) =





α if x = ∅,

x(β) ∪ {x(β)} if dom(x) = β + 1 and β ∈ Ω,⋃
δ∈β x(δ) if dom(x) = β and β ∈ Ω \ {∅} is a limit ordinal,

∅ otherwise.

By the TRANSFINITE RECURSION THEOREM 3.7, for each α ∈ Ω there is a
unique class function Gα defined on Ω such that for each β ∈ Ω we have
Gα(β) = Fα(Gα|β).
By definition of Fα, Gα(∅) = Fα(∅) = α, which shows that Gα(∅) = α+ ∅. If, for
some β ∈ Ω, we already have Gα(β) = α+ β, then, by definition of Fα,

Gα(β + 1) = Fα(Gα|β+1) = α+ β ∪ {α+ β} ,

which shows that Gα(β + 1) = (α + β) + 1, hence, by part (b) of the definition of
ordinal addition, we get Gα(β+1) = α+(β+1). Finally, if β ∈ Ω is a non-empty
limit ordinal and for all δ ∈ β we have Gα(δ) = α+ δ, then, again by definition of
Fα,

Gα(β) = Fα(Gα|β) =
⋃

δ∈β

Gα(δ) ,

which shows that Gα(β) =
⋃
δ∈β Gα(δ) = α + β. Thus, for each β ∈ Ω we get

Gα(β) = α+ β. ⊣

Notice that even though addition and multiplication of ordinals are not commutative,
they are still associative.
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PROPOSITION 3.9. Addition and multiplication of ordinals defined as above are
associative operations.

Proof. We have to show that for all α, β, γ ∈ Ω, (α + β) + γ = α + (β + γ) and
(α · β) · γ = α · (β · γ). We give the proof for addition and leave the proof for
multiplication as an exercise to the reader.

Let α and β be arbitrary ordinals. The proof is by induction on γ ∈ Ω. For γ = 0
we obviously have (α + β) + 0 = α + β = α + (β + 0). Now, let us assume that
(α+ β) + γ = α+ (β + γ) for some γ. Then:

(α+ β) + (γ + 1) =
(
(α+ β) + γ

)
+ 1 (by definition of “ + ”)

=
(
α+ (β + γ)

)
+ 1 (by our assumption)

= α+
(
(β + γ) + 1

)
(by definition of “ + ”)

= α+
(
β + (γ + 1)

)
(by definition of “ + ”)

Finally, let γ be a limit ordinal. Notice first that β + γ is a limit ordinal and that

α+ (β + γ) =
⋃

δ∈(β+γ)

α+ δ =
⋃

(β+γ′)∈(β+γ)

α+ (β + γ′) =
⋃

γ′∈γ

α+ (β + γ′) .

Thus, if (α+ β) + γ′ = α+ (β + γ′) for all γ′ ∈ γ, then

(α + β) + γ =
⋃

γ′∈γ

(α+ β) + γ′ =
⋃

γ′∈γ

α+ (β + γ′) = α+ (β + γ).

⊣

As another application of the TRANSFINITE RECURSION THEOREM we introduce
the notion of the transitive closure of a set S, which is the smallest transitive set
which contains S. Informally, we could define the transitive closure TC(S) of S by
stipulating

TC(S) =
⋂{

T : T ⊇ S and T is transitive
}
,

but we will do it in a more explicit way: Let S be an arbitrary set. Define the class
function FS by stipulating FS(x) := ∅ if x is not a function; and if x is a function,
then let

FS(x) =





S if x = ∅,⋃
x(β) if dom(x) = β + 1 and β ∈ Ω,⋃
δ∈β x(δ) if dom(x) = β and β ∈ Ω \ {∅} is a limit ordinal,

∅ otherwise.

By the TRANSFINITE RECURSION THEOREM 3.7, there is a unique class function
GS defined on Ω such that for each β ∈ Ω we have GS(β) = FS(GS |β). In parti-
cular, we have GS(∅) = S and for n ∈ ω we get GS(n+ 1) =

⋃
GS(n).
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PROPOSITION 3.10. The set GS(ω) is the smallest transitive set which contains S,
i.e., GS(ω) = TC(S).

Proof. To simplify the notation, for each n ∈ ω let Sn = GS(n) and let S̄ :=⋃
n∈ω Sn. Then S0 = S, Sn+1 =

⋃
Sn, and GS(ω) = S̄. We have to show that S̄

is the smallest transitive set which contains S.

Since S = S0, S is contained in S̄. Furthermore, if x ∈ y ∈ S̄, then there is an
n ∈ ω such that y ∈ Sn, which implies that x ∈ Sn+1. Hence, x ∈ S̄, which shows
that S̄ is transitive. It remains to show that S̄ is the smallest transitive set containing
S. For this, choose a proper transitive subset T  S̄ and let x0 ∈ S̄ \ T . Since
x0 ∈ S̄, there is an n ∈ ω such that x0 ∈ Sn; let

n0 :=
⋂{

n ∈ ω : x0 ∈ Sn
}
.

If n0 = 0, then x0 ∈ S which implies that S is not a subset of T . Otherwise, let
Y0 = {x0}. Since T is transitive and x0 /∈ T , Y0 ∩ T = ∅. By induction on ω,
starting with n0 and Y0, we define sequences 〈nk : k ∈ ω〉 and 〈Yk : k ∈ ω〉 as
follows: If nk = 0, then nk+1 := 0 and Yk+1 := Yk. Otherwise,

Yk+1 :=
{
y ∈ S̄ : ∃x ∈ Yk(x ∈ y)

}

and
nk+1 =

⋂{
n ∈ ω : ∃y ∈ Yk+1(y ∈ Sn)

}
.

By construction we get nk+1 ∈ nk (in fact nk+1 + 1 = nk) and Yk+1 6= ∅.
Furthermore, since T is transitive, by construction we get Yk ∩ T = ∅ implies
Yk+1 ∩ T = ∅. Thus, by induction we get Yk ∩ T = ∅ for all k ∈ ω. Consider now
the set N = {nk : k ∈ ω} ⊆ ω. Since N is non-empty and ω is well-ordered by ∈,
there exists an ∈-minimal element nk0 in N , and by construction, nk0 = 0. For the
corresponding set Yk0 we get that Yk0 is a non-empty subset of S which is disjoint
from T , and hence, S * T . ⊣

8. The Axiom of Foundation

∀x
(
x 6= ∅ → ∃y ∈ x(y ∩ x = ∅)

)

As a consequence of the Axiom of Foundation we see that there is no infinite de-
scending sequence x0 ∋ x1 ∋ x2 ∋ · · · since otherwise, the set {x0, x1, x2, . . .}
would contradict the Axiom of Foundation: To see this, assume there is a set x =
{xn : n ∈ ω} such that for each n ∈ ω we have xn ∈ xn+1. Then, for each y ∈ x
we find an n ∈ ω such that y = xn, which implies xn+1 ∈ y ∩ x. So, for each
y ∈ x, y ∩ x 6= ∅, which contradicts the Axiom of Foundation. Moreover, there is
no set x such that x ∈ x (consider the set {x}) and there are also no cycles like
x0 ∈ x1 ∈ · · · ∈ xn ∈ x0 (consider the set {x0, . . . , xn}). As a matter of fact,
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we would like to mention that if one assumes the Axiom of Choice, then the non-
existence of infinite descending sequences x0 ∋ x1 ∋ x2 ∋ · · · can be proved to be
equivalent to the Axiom of Foundation.

The axiom system containing the axioms 0–8 is called Zermelo–Fraenkel Set The-

ory and is denoted by ZF. In fact, ZF contains all axioms of Set Theory except the
Axiom of Choice.

Even though the Axiom of Foundation is irrelevant outside Set Theory, it is extremely
useful in the metamathematics of Set Theory, since it allows us to arrange all sets
in a cumulative hierarchy—as we shall do after discussing the consistency of Set
Theory.

On the Consistency of ZF

Zermelo writes in [102, p. 262] that he was not able to show that the seven axioms
for Set Theory given in that article are consistent. Even though it is essential to know
whether a theory is consistent or not, we will see that there is no way to prove the
consistency of ZF without the aid of some metamathematical assumptions.

By GÖDEL’S INCOMPLETENESS THEOREM 2.4 we know that for every consistent
theory which is sufficiently strong to prove the axioms of Peano Arithmetic PA,
there is a sentence σ which is independent of that theory. To apply this result for
Set Theory, we first have to show that ZF is sufficiently strong to define the concept
of natural numbers. In other words, we have to show that ZF is strong enough to
provide a model N of PA.

We do this by constructing an LPA-structure N with domain ω, and show that N is
a model of PA. Recall that LPA = {0, s,+, · }. The LPA-structure is defined by the
following assignments:

0
N := ∅

s
N : ω → ω

n 7→ n+ 1

+N : ω × ω → ω

〈n,m〉 7→ n+m

·N : ω × ω → ω

〈n,m〉 7→ n ·m
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Before we show that the LPA-structure N is a model of Peano Arithmetic, we first
recall the axioms of PA:

PA0: ¬∃x(sx = 0)

PA1: ∀x∀y(sx = sy → x = y)

PA2: ∀x(x + 0 = x)

PA3: ∀x∀y(x + sy = s(x+ y))

PA4: ∀x(x · 0 = 0)

PA5: ∀x∀y(x · sy = (x · y) + x)

If ϕ is any LPA-formula with x ∈ free(ϕ), then:

PA6:
(
ϕ(0) ∧ ∀x(ϕ(x) → ϕ(s(x)))

)
→ ∀xϕ(x)

Let us now show that N � PA:

• PA0: Since
⋃ ∅ = ∅, by COROLLARY 3.4 (b) we get that there is no n ∈ ω such

that n+ 1 = ∅.

• PA1: If n,m ∈ ω and n 6= m, then, by THEOREM 3.3 (a), we have either n ∈ m
or m ∈ n, and in both cases we get n+ 1 6= m+ 1.

• PA2 and PA3: Follow immediately from (a) and (b) of ORDINAL ADDITION.

• PA4 and PA5: Follow immediately from (a) and (b) of ORDINAL MULTIPLICA-
TION.

• PA6: Let ϕ be an LPA-formula with x ∈ free(ϕ) and assume

ϕ(∅) ∧ ∀n ∈ ω
(
ϕ(n) → ϕ(n+ 1)

)
.

Furthermore, let E := {n ∈ ω : ¬ϕ(n)}. Obviously,E is a subset of ω. Assume
towards a contradiction that E 6= ∅ and let m be the ∈-minimal element of E.
Now, m can neither be ∅, since we assumed ϕ(∅), nor a successor ordinal (i.e.,
of the form n + 1), since we assumed ϕ(n) → ϕ(n + 1) which is equivalent
to ¬ϕ(n + 1) → ¬ϕ(n). Thus, there is no ∈-minimal element of E, which is
only possible when E is empty. Now, E = ∅ implies that there is no n ∈ ω such
that ¬ϕ(n), i.e., ∀n ∈ ω

(
ϕ(n)

)
.

Since every model of ZF contains a model N of PA (with domain ω), by GÖDEL’S

COMPLETENESS THEOREM 2.4 we get that the consistency of ZF implies the con-
sistency of PA.
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On the other hand, one can show that, without additional assumptions, no model
of ZF contains a model of ZF: If we can prove from ZF that a certain set V0 is
the domain of a model of ZF, then we can prove in ZF that V0 contains a set V1
which is again the domain of a model of ZF. Proceeding this way, this would result
in an infinite, strictly decreasing sequence V0 ∋ V1 ∋ V2 ∋ · · · of sets, which is
a contradiction to the Axiom of Foundation (compare with RELATED RESULT 91).
Thus, ZF cannot provide a model of ZF. In other words, there is no way to construct
or to define a model of ZF without the aid of some concepts that go beyond what
is provided in ordinary Mathematics. More formally, any proof of Con(ZF) has to
be carried out in some extension of ZF, which contains some information that is not
provable from ZF.

Even though ZF cannot provide a model of ZF, we know that if ZF is consistent,
then it has a model—such a model will be constructed in the next section.

Models of ZF

Let us assume that ZF is consistent. Then, by GÖDEL’S COMPLETENESS THEO-
REM 2.4 we know that there must be a model M of ZF. Surprisingly, the model
M can be easily described as a hierarchy of sets. For this, we construct within the
model M a certain hierarchy of sets and show that every set in M belongs to this
hierarchy.

First, we define the following sets:

V0 := ∅
Vα :=

⋃

β∈α

Vβ if α is a limit ordinal

Vα+1 := P(Vα)

and then we define the class V by stipulating

V :=
⋃

α∈Ω

Vα.

To carry out the construction in the framework of ZF, we define the class function
F by stipulating F (x) := ∅ if x is not a function; and if x is a function, then let

F (x) =





∅ if x = ∅,

P
(
x(β)

)
if dom(x) = β + 1 and β ∈ Ω,⋃

δ∈β x(δ) if dom(x) = β and β ∈ Ω \ {∅} is a limit ordinal,

∅ otherwise.
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By the TRANSFINITE RECURSION THEOREM 3.7, there is a unique class function
G defined on Ω such that for each α ∈ Ω we have G(α) = F (G|α). In particular,
for each α ∈ Ω we have G(α) = Vα.

Notice that by construction, or more precisely by the Axiom Schema of Replacement,
for each α ∈ Ω, Vα is a set. Moreover, we can easily prove the following

FACT 3.11. For any α, β ∈ Ω we have:

(a) Vα is transitive.

(b) The class V is transitive.

(c) If α ∈ β, then Vα  Vβ .

(d) α ⊆ Vα and α ∈ Vα+1.

Proof. (a) First, notice that V0 is transitive. Now, if α is a non-empty limit ordinal
and for each β ∈ α, Vβ is transitive, then

⋃
β∈αVβ is obviously transitive, too.

Finally, if α = β + 1 and Vβ is transitive, then Vα = P(Vβ), and for all sets x
and y, such that y ∈ x ∈ Vα we have y ∈ x ⊆ Vβ . Hence, y ∈ Vβ , and since
Vβ is transitive, we get y ⊆ Vβ which shows that y ∈ Vα. Therefore, by transfinite
induction we get that for each α ∈ Ω, Vα is transitive.

(b) Since arbitrary unions of transitive sets are transitive, this follows immediately
from (a).

(c) If β = α + 1, then, since Vα is transitive, Vα ⊆ Vβ , and since Vα ∈ Vβ
but Vα /∈ Vα, we get Vα  Vβ . Now, if β is a limit ordinal and α ∈ β, then
Vα  Vα+1  Vβ .

(d) If α = 0, then we obviously have α ⊆ Vα and α ∈ Vα+1. Now, let α0 be
an ordinal and assume that for all β ∈ α0 we have β ⊆ Vβ and β ∈ Vβ+1. If
α0 is a limit ordinal, then the assumption implies α0 ⊆ Vα0 , and consequently we
get α0 ∈ Vα0+1. Finally, if α0 = β + 1, then, by the assumption, β ∈ Vα0 , and
since Vα0 is transitive, α0 ⊆ Vα0 , and consequently α0 ∈ Vα0+1. Therefore, by
transfinite induction we get that for each α ∈ Ω, α ⊆ Vα and α ∈ Vα+1. ⊣

The previous fact is visualised by the following figure:
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Now we prove that the so-called cumulative hierarchy V, which we have con-
structed within the model M, contains all sets of M, hence M = V.

THEOREM 3.12. For every set x in M there is an ordinal α such that x ∈ Vα. In
particular, every model M of ZF has the structure of a cumulative hierarchy V.

Proof. Assume towards a contradiction that there exists a set x in M which does
not belong to V. Let x̄ := TC({x}) (i.e., x̄ is the transitive closure of {x}), and
let w := {z ∈ x̄ : z /∈ V}, i.e., w = x̄ \ {z′ ∈ x̄ : ∃α ∈ Ω (z′ ∈ Vα)}. Notice
that w ∈ M. Since x ∈ w we have w 6= ∅, and by the Axiom of Foundation there is
a z0 ∈ w such that (z0 ∩ w) = ∅. Since z0 ∈ w we have z0 /∈ V, which implies
that z0 6= ∅, but for all u ∈ z0 there is a least ordinal αu such that u ∈ Vαu

.
By the Axiom Schema of Replacement, {αu : u ∈ z0} is a set, and moreover,
α =

⋃{αu : u ∈ z0} ∈ Ω. This implies that z0 ⊆ Vα and consequently we get
z0 ∈ Vα+1, which contradicts the fact that z0 /∈ V and completes the proof. ⊣

So, the set-theoretic universe V constructed above contains all sets; but does this
imply that V is unique? Surprisingly, the answer is no, as we will show now.

First we extend the signature LZF = {∈} by adding countably many new constant
symbols c0, c1, c2, . . ., i.e., the new signature is {∈, c0, c1, c2, . . .}. Now, we extend
the axioms ZF by adding the formulae

c0 = {c1}︸ ︷︷ ︸
ϕ0

, c1 = {c2}︸ ︷︷ ︸
ϕ1

, c2 = {c3}︸ ︷︷ ︸
ϕ2

, . . .

and let Ψ be the set of these formulae. Now, if ZF has a model V and Φ is any finite
subset of Ψ, then, by interpreting the finitely many cn’s appearing in Ψ in a suitable
way, V is also a model of ZF ∪ Φ, which implies that ZF ∪ Φ is consistent. Thus,
by the COMPACTNESS THEOREM 2.7, ZF ∪ Ψ is also consistent and therefore has
a model, say V∗. Since V∗ � ZF ∪Ψ, we get that the Axiom of Foundation holds in
V∗. In particular, there must be a set z ∈ TC

(
c
V∗

0

)
such that

V∗ � z ∩ TC
(
c
V∗

0

)
= ∅ ,

which implies that z must be different from all the sets cV
∗

n . On the other hand, by
the Axiom of Foundation, the length of a decreasing sequence of the form

c
V∗

0 ∋ c
V∗

1 ∋ c
V∗

2 ∋ · · · ∋ z

must be finite in the sense of V∗. In other words, the length of such a decreasing
sequence must be an element of ωV∗

, which shows that ωV∗

cannot be the same
set as ωV; hence, the models V∗ and V are essentially different. In fact, ωV

∗

is
the domain of a non-standard model of PA (like the one we constructed in the last
section of Chapter 2). In particular, ωV∗

is different from the set N of standard
natural numbers.
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Since the model we got is just a so-called non-standard model of ZF, we may ask
whether there are also different standard models of ZF, (i.e., models of ZF in which
the set ω is the same). This is indeed the case, but we have to postpone the technique
to build proper models of Set Theory to Part III.

Cardinals and Ordinals in ZF

It is natural to ask whether there exists some kind of upper bound or ceiling for the
set-theoretic universe V or if there exist arbitrarily large sets. In order to address
this questions we have to introduce the notion of cardinal numbers.

Two sets A and B are said to have the same cardinality, denoted |A| = |B|, if
there is a bijection between A and B. For example, |ω + ω| = |ω|, e.g., define the
bijection f : ω + ω → ω by stipulating

f(α) =

{
β + β if α = ω + β,

α+ α+ 1 otherwise.

Notice that since every composite of bijections is a bijection, the cardinality equality
is an equivalence relation.

If |A| = |B′| for some B′ ⊆ B, then the cardinality of A is less than or equal to the
cardinality of B, denoted |A| ≤ |B|. Notice that |A| ≤ |B| iff there is an injection
from A into B. Finally, if |A| 6= |B| but |A| ≤ |B|, then the cardinality of A is
said to be strictly less than the cardinality of B, denoted |A| < |B|. Notice that the
relation “≤” is reflexive and transitive. The notation suggests that |A| ≤ |B| and
|B| ≤ |A| implies |A| = |B|. This is indeed the case and is consequence of the
following result.

LEMMA 3.13. Let A0, A1, A be sets such that A0 ⊆ A1 ⊆ A. If |A| = |A0|,
then |A| = |A1|.

Proof. If A1 = A or A1 = A0, then the statement is trivial. So, let us assume that
A0  A1  A and let C = A \ A1, i.e., A \ C = A1. Further, let f : A → A0 be
a bijection and define g : P(A) → P(A0) by stipulating g(D) := f [D]. With the
Axiom Schema of Separation we can define the following set:

H =
{
h ∈ ω

P(A) : h(0) = C ∧ ∀n ∈ ω
(
h(n+ 1) = g

(
h(n)

))}
.

By induction on n we show that the set H contains at most one function: If h, h′ ∈
H , then by definition h(0) = C = h′(0). Assume now that h(n) = h′(n) for some
n ∈ ω, then

h(n+ 1) = g
(
h(n)

)
= g
(
h′(n)

)
= h′(n+ 1) ,
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and consequently we get h = h′. In order to show that H contains at least one
function h0 we proceed as follows: Let h0 ⊆ ω × P(A) be the set of ordered pairs
〈n,D〉 for which we have:

• 〈0, C〉 ∈ h0

• ∀n ∀D ∀n′
(
〈n,D〉 ∈ h0 ∧ n′ < n→ ∃D′ (〈n′, D′〉 ∈ h0)

)

• ∀n ∀D ∀n′ ∀D′
(
〈n,D〉 ∈ h0 ∧ 〈n′, D′〉 ∈ h0 ∧ n′ = n+ 1 → D′ = g(D)

)

It remains to show that h0 ∈ ωP(A): By construction, h0(0) = C. Furthermore, if
h0(n) = D, for some n ∈ ω andD ⊆ A, then, by construction, h0(n+1) = g(D).
So, by induction on n we get h0 : ω → P(A) and h0 ∈ H . In particular, for all
n ∈ ω we have h0(n+ 1) = f [h0(n)]. Now, let

C̄ =
⋃{

h0(n) : n ∈ ω
}

and define the function f̃ : A→ A by stipulating

f̃(x) =

{
f(x) x ∈ C̄,

x otherwise.

By definition of f̃ and since f is a bijection which maps C into A0, f̃ [C̄] = C̄ \ C.
Moreover, the function f̃ is injective. To see this, let x, y ∈ A be distinct and con-
sider the following three cases:

(1) If x, y ∈ C̄ , then f̃(x) = f(x) and f̃(y) = f(y), and since f is injective we
get f̃(x) 6= f̃(y).

(2) If x, y ∈ A \ C̄, then f̃(x) = x and f̃(y) = y, and hence, f̃(x) 6= f̃(y).

(3) If x ∈ C̄ and y ∈ A \ C̄ , then f̃(x) = f(x) ∈ C̄ and f̃(y) = y /∈ C̄, and
therefore, f̃(x) 6= f̃(y).

We already know that f̃ [C̄] = C̄ \ C and by definition we have f̃ [A \ C̄] = A \ C̄.
Hence,

f̃ [A] = (A \ C̄) ∪̇ (C̄ \ C) = A \ C = A1

which shows that |A| = |A1|. ⊣

THEOREM 3.14 (CANTOR–BERNSTEIN THEOREM). Let A and B be any sets. If
|A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.

Proof. Let f : A →֒ B be a one-to-one mapping fromA into B, and g : B →֒ A be
a one-to-one mapping fromB intoA. Further, letA0 := (g ◦ f)[A] andA1 := g[B].
Then |A0| = |A| andA0 ⊆ A1 ⊆ A, hence, by LEMMA 3.13, |A| = |A1|, and since
|A1| = |B| we have |A| = |B|. ⊣
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As an alternative proof of the CANTOR–BERNSTEIN THEOREM 3.14 we give Bern-
stein’s original proof:

Bernstein’s proof of the Cantor–Bernstein Theorem. Let A and B be two arbitrary
sets and let f : A →֒ B and g : B →֒ A two injections. Further, let A0 := A,
B0 := g[B], and for n ∈ ω let An+1 := (g◦f)[An] and Bn+1 := (g◦f)[Bn], and
finally let D :=

⋂
n∈ω An. This construction is visualised by the following picture.

We leave it as an exercise to reader to show that the sets An and Bn have the fol-
lowing properties:

1. A0 = D ∪ (A0 \B0) ∪ (B0 \A1) ∪ (A1 \B1) ∪ (B1 \A2) ∪ . . .

2. B0 = D ∪ (B0 \A1) ∪ (A1 \B1) ∪ (B1 \A2) ∪ (A2 \B2) ∪ . . .

3. For all n ∈ ω, |An \Bn| = |An+1 \Bn+1|.

Since the sets (An \Bn), (Bn \An+1), and D, are pairwise disjoint, by (c) and by
regrouping the representation of B0 in (b), we get |A0| = |B0|. ⊣

As an application of the CANTOR–BERNSTEIN THEOREM 3.14 let us show that the
set of real numbers, denoted by R, has the same cardinality as P(ω).

PROPOSITION 3.15. |R| = |P(ω)|.

Proof. Cantor showed that every real number r > 1 can be written in a unique way
as a product of the form

r =
∏

n∈ω

(
1 +

1

qn

)
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where all qn’s are positive integers and for all n ∈ ω we have qn+1 ≥ q2n. Such
products are called Cantor products. So, for every real number r > 1 there ex-
ists a unique infinite sequence q0(r), q1(r), . . . , qn(r), . . . of positive integers with
qn+1 ≥ q2n (for all n ∈ ω) such that r =

∏
n∈ω(1 +

1
qn
).

Let us first show that |R| ≤ |P(ω)|: For r ∈ R let

f(r) =

{∑

j≤n

qj(r)(2
j + 1) : n ∈ ω

}
.

Define the function h : R → R by stipulating h(x) := 1 + ex, where e is the
Euler number and ex =

∑
n∈ω(x

n/n!). Then h is a bijection between R and the
set of real numbers r > 1. We leave it as an exercise to the reader to verify that the
composition f◦h is an injective mapping from R into P(ω).

To see that |P(ω)| ≤ |R|, consider for example the function g(x) =
∑

n∈x 3
−n,

where g(∅) := 0, which is obviously a injective mapping from P(ω) into R (or
more precisely, into the interval [0, 32 ]).

So, by the CANTOR–BERNSTEIN THEOREM 3.14, |R| = |P(ω)|. ⊣

So far, we have used the notion of cardinality in order to compare the sizes of two
sets. Now, we will show that the cardinality of a set can also be considered as a set.
First, the cardinality of a set A, denoted |A|, can be defined as the class of all sets B
which have the same cardinality asA (i.e., for which there exists a bijection between
A and B), but this would have the disadvantage that except for A = ∅, |A| would
not belong to the set-theoretic universe. However, with the Axiom of Foundation the
cardinality of a set A can be defined as a proper set:

|A| = {B ∈ Vβ0 : there exists a bijection between B and A}

where β0 is the least ordinal number for which there is a B ∈ Vβ0 such that B has
the same cardinality as A. Notice that, for example, |∅| = {∅}, where {∅} ⊆ V1

(in this case, β0 = 1). The set |A| is called a cardinal number, or just a cardinal.
Notice that A is not necessarily a member of |A|. Further, notice that |A| = |B| iff
there is a bijection betweenA andB, and as above we write |A| ≤ |B| if |A| = |B′|
for some B′ ⊆ B. Cardinal numbers are usually denoted by Fraktur letters like m

and n. A cardinal number is finite if it is the cardinality of a natural number n ∈ ω,
otherwise it is infinite. Finite cardinals are usually denoted by letters like n,m, . . . .
An infinite cardinal which contains a well-orderable set is traditionally called an
aleph and consequently denoted by an “ℵ”, e.g., ℵ0 := |ω|. The following fact
summarises some simple properties of alephs.

FACT 3.16. All sets which belong to an aleph can be well-ordered and the cardinal-
ity of any ordinal is an aleph. Further, for any ordinals α, β ∈ Ω we have |α| < |β|
or |α| = |β| or |α| > |β|, and these three cases are mutually exclusive.
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A non-empty set A is called uncountable if there is no enumeration of the elements
of A, or equivalently, no mapping from ω to A is surjective.

By the Axiom of Infinity we know that there is an infinite set and we have seen that
there is even a smallest infinite ordinal, namely ω, which is of course a countable
set. Now, the question arises whether every infinite set is countable. We answer this
question in two steps: First we show that the set of real numbers is uncountable, and
then we show that in general, for every set A there exists a set of strictly greater
cardinality than A—which implies that there is no largest cardinal.

PROPOSITION 3.17. The set of real numbers is uncountable.

Proof. By PROPOSITION 3.15 we already know that there is a bijection between
R and P(ω). Further, we have |P(ω)| = |ω2|. Indeed, for every x ∈ P(ω) let
χx ∈ ω2 be such that

χx(n) =

{
1 if n ∈ x,

0 otherwise.

So, it is enough to show that no mapping from ω to ω2 is surjective. Let

g : ω −→ ω2

n 7−→ fn

be any mapping from ω to ω2. Define the function f ∈ ω2 by stipulating

f(n) = 1− fn(n).

Then for each n ∈ ω we have f(n) 6= fn(n), so, f is distinct from every function
fn (n ∈ ω), which shows that g is not surjective. ⊣

For cardinals m = |A| let 2m := |P(A)|. By modifying the proof above we can
show the following result:

THEOREM 3.18 (CANTOR’S THEOREM). For every cardinal m, 2m > m.

Proof. Let A ∈ m be arbitrary. It is enough to show that there is an injection f from
A into P(A), but there is no surjection g from A onto P(A).

First, for A = ∅ let f = ∅, and for A 6= ∅ define:

f : A −→ P(A)

x 7−→ {x}
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Then f is obviously an injection from A into P(A) and therefore we get m ≤ 2m.

Now, let g : A→ P(A) be an arbitrary function and let

Γ :=
{
x ∈ A : x /∈ g(x)

}
.

As a subset of A, the set Γ is an element of P(A). Let x be an arbitrary element of
A. Then

x ∈ Γ ⇐⇒ x /∈ g(x)

which shows that g(x) 6= Γ, and hence, since x was arbitrary, g is not surjective. ⊣

As an immediate consequence of CANTOR’S THEOREM 3.18 we find that there are
arbitrarily large cardinal numbers. Before we show that there are also arbitrarily
large ordinal numbers, recall that a binary relationR ⊆ A×A is a well-ordering on
A, ifR is a linear ordering onA and every non-empty subset ofA has anR-minimal
element.

The following proposition is crucial in order to define the order type of well-ordered
sets.

PROPOSITION 3.19. If α, β ∈ Ω and f : α → β is an order-preserving bijection
(i.e., for all γ1 ∈ γ2 ∈ α we have f(γ1) ∈ f(γ2)), then α = β.

Proof. Assume towards a contradiction that there is a pair of distinct ordinalsα, β ∈
Ω with β ∈ α such that there exists an order-preserving bijection f : α → β. Let
α0, β0 be such a pair with least ordinal α0 ∈ Ω and let f : α0 → β0 be an order-
preserving bijection. Since β0 ∈ α0 and f is a bijection, f(β0) ∈ β0. Furthermore,
since f is order-preserving, for all γ, δ ∈ Ω we have

γ ∈ β0 → f(γ) ∈ f(β0) and δ ∈ f(β0) → f−1(δ) ∈ β0

which shows that f [β0] = f(β0). Hence, f |β0 is an order-preserving bijection be-
tween β0 and f(β0), and since β0 ∈ α0 and f(β0) ∈ β0, the pair β0, f(β0) contra-
dicts the choice of the pair α0, β0 with least ordinal α0. ⊣

As a consequence of the previous result we show that each well-orderingR of a set
A corresponds to exactly one ordinal. This ordinal number is called the order type

of R and is denoted o.t.(R). The proof of the following result is essentially Zer-
melo’s first proof of the so-called Well-Ordering Principle, which shall be discussed
below.

PROPOSITION 3.20. Let A be an arbitrary set and let R be a well-ordering on A.
Then there exists a unique ordinal number o.t.(R) ∈ Ω for which there is a bijection
w : o.t.(R) → A such that for all α, β ∈ o.t.(R),

α ∈ β ⇐⇒ w(α)Rw(β) .
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Proof. Let R be a well-ordering on A. If A = ∅, then R = ∅, w = ∅, and we define
o.t.(A) := ∅. Otherwise, let P∗(A) := P(A) \ {∅} and let f : P∗(A) → A be
such that for each non-empty set S ∈ P∗(A), f(S) is the R-minimal element of S.

A one-to-one function wα : α →֒ A, where α ∈ Ω, is an f -set if for all γ ∈ α:

wα(γ) = f
(
A \ {wα(δ) : δ ∈ γ}

)
.

For example, w1(0) = f(A) is an f -set, in fact, w1 is the unique f -set with do-
main {0}. For distinct f -sets wα and wβ let wα ≺ wβ if wβ |α = wα. Notice that
wα ≺ wβ implies α ∈ β.

CLAIM. For any two f -sets wα and wβ we have

wα ≺ wβ or wα = wβ or wβ ≺ wα ,

where these three cases are mutually exclusive.

Proof of Claim. Let wα and wβ be any two f -sets and let

Γ =
{
γ ∈ (α ∩ β) : wα(γ) 6= wβ(γ)

}
.

If Γ 6= ∅, then, for γ0 =
⋂
Γ, we have wα(γ0) 6= wβ(γ0). On the other hand,

for all δ ∈ γ0 we have wα(δ) = wβ(δ), thus, by the definition of f -sets, we get
wα(γ0) = wβ(γ0). Hence, Γ = ∅, and consequently we get:

wα ≺ wβ ⇐⇒ α ∈ β

wα = wβ ⇐⇒ α = β

wβ ≺ wα ⇐⇒ β ∈ α

By THEOREM 3.3 (a), this proves the CLAIM. ⊣Claim

Now, let W := {α ∈ Ω : wα is an f -set} be a collection (not necessarily a set) of
ordinals and let

C =
{
X ⊆ A : ∃α ∈W (wα[α] = X)

}
.

Obviously, C is a subset of P(A). Furthermore, by the properties of f -sets, for any
α, β ∈W we have

α 6= β ⇐⇒ wα[α] 6= wβ [β] ,

which implies that there exists a bijection between C and W . Therefore, since C

is a set, by Axiom Schema of Replacement we get that W is also a set, and hence,
γ :=

⋃
W is an ordinal. Moreover,wγ is even an f -set.

Finally, let A′ := wγ [γ]. Then A′ = A; otherwise, wγ could be extended to the
f -set

wγ+1 = wγ ∪
{
〈γ, f(A \A′)〉

}
,

and since γ + 1 /∈W , this would contradict the definition of W .
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Thus, the f -setwγ is a bijection between the ordinal γ and the setA, and by PROPO-
SITION 3.19 we get that γ—which is the order type of R—is unique. ⊣

THEOREM 3.21 (HARTOGS’ THEOREM). For every cardinal m there is a smallest
aleph, denoted ℵ(m), such that ℵ(m) � m.

Proof. Let A ∈ m be arbitrary and let R ⊆ P(A × A) be the set of all well-
orderings of subsets of A. For every R ∈ R, o.t.(R) is an ordinal, and for every
R ∈ R and any β ∈ o.t.(R) there is an R′ ∈ R such that o.t.(R′) = β, which
shows that

α =
{
o.t.(R) : R ∈ R

}

is an ordinal. By definition, for every β ∈ α there is a well-ordering RS of some
S ⊆ A such that o.t.(RS) = β, which implies that |β| ≤ |A|. On the other hand,
|α| ≤ |A| would imply that α ∈ α, which is obviously a contradiction. Let ℵ(m) :=
|α|, then ℵ(m) � m and for each ℵ < ℵ(m) we have ℵ ≤ m. ⊣

COROLLARY 3.22. For every ordinal number α there exists an ordinal number β
such that |β| > |α|. Furthermore, for every cardinal number m, there exists an
ordinal number β such that |β| � m.

Proof. For the first inequality let α ∈ Ω and let n = |α|. By HARTOGS’ THEO-
REM 3.21 there is an aleph, namely ℵ(n), such that ℵ(n) � n. Now, since n and
ℵ(n) both contain well-ordered sets we have n < ℵ(n). Let w ∈ ℵ(n) be a well-
ordered set and let β be the order type of w. Then ℵ(n) = |β| > |α| = n.

For the second inequality let β be the order type of a well-ordered set which belongs
to ℵ(m). Then, by definition of ℵ(m), we have |β| � m. ⊣

Zermelo’s Axiom of Choice

In 1904, Zermelo published his first proof that every set can be well-ordered. The
proof is based on the so-called Axiom of Choice, denoted AC, which, in Zermelo’s
words, states that every product of an infinite totality of non-empty sets is non-
empty. The full theory ZF+ AC, denoted ZFC, is called Set Theory.

In order to state the Axiom of Choice we first define the notion of a choice function:
If F is a family of non-empty sets (i.e., ∅ /∈ F ), then a choice function for F is a
function f : F → ⋃

F such that for each x ∈ F , f(x) ∈ x.

The Axiom of Choice—which completes the axiom system of Set Theory and which
is in our counting the ninth axiom of ZFC—states as follows:
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9. The Axiom of Choice

∀F

(
∅ /∈ F → ∃f

(
f ∈ F

⋃
F ∧ ∀x ∈ F

(
f(x) ∈ x

)))

Informally, every family of non-empty sets has a choice function, or equivalently,
every Cartesian product of non-empty sets is non-empty. To see this, notice that each
element of ×x∈F

x is a choice function for F .

A seemingly different statement, which is in fact equivalent to the Axiom of Choice

(as we will see below), is the following principle:

Well-Ordering Principle. Every set can be well-ordered.

Before we show that the Axiom of Choice and the Well-Ordering Principle are equiv-
alent, let us first illustrate the difficulties in finding a well-ordering on the sets Q

and R. Obviously, both sets are linearly ordered by “<”. However, since for any
elements x and y with x < y there exists a z such that x < z < y, the ordering
“<” is far away from being a well-ordering. Even though (Q, <) and (R, <) have
similar properties (at least from an order-theoretical point of view), when we try to
well-order these sets they behave very differently. However, as we will show later
(see FACT 5.1), Q is countable (i.e., there is a bijection between Q and ω), and any
bijection f : Q → ω allows us to define a well-ordering “≺” on Q by stipulating
q ≺ p ⇐⇒ f(q) < f(p). Now, let us consider the set R. For example, we could
first well-order the rational numbers, or even the algebraic numbers, and then try
to extend this well-ordering to all real numbers. However, this attempt—as well as
all other attempts—to construct explicitly a well-ordering of the reals will end in
failure (the reader is invited to verify this claim by writing down explicitly some
orderings of R).

As mentioned above, Zermelo proved in 1904 that the Axiom of Choice implies the
Well-Ordering Principle. Just a few years later, he published a new proof, which we
present now.

THEOREM 3.23. The Well-Ordering Principle is equivalent to the Axiom of Choice.

Proof. (⇐) Let us first try a naive attempt: Let S be a non-empty set on which we
would like to define a well-ordering. In the first step, we choose an element a0 from
S. In the second step we choose an element a1 from S \ {a0}, then we choose an
element a2 from S\{a0, a1}, and so on, untilS\{a0, a1, . . .} is empty. Furthermore,
we define an ordering “≺” on S by stipulating a ≺ b iff in this process, a was
selected earlier than b, and finally we show that this ordering is a well-ordering on
S. There are some obvious difficulties with this attempt. Firstly, why can we be sure
that the process terminates? In other words, how can we prove that S \ {a0, a1, . . .}
eventually becomes the empty set? Secondly, how can we show that the ordering
we defined is a well-ordering on S? On the other hand, the easy part is to select an
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element from a non-empty subset of S, which we can do with a choice function for
P(S) \ {∅} (given by AC).

Let S be a set. If S = ∅, then S is already well-ordered. So, assume that S 6= ∅ and
let P∗(S) := P(S) \ {∅}. Further, let f : P∗(S) → S be an arbitrary but fixed
choice function for P∗(S) (which exists by AC). Notice that for everyA ∈ P∗(S)
we have f(A) ∈ A. For every A ∈ P∗(S), let A′ := A \ {f(A)}.

Now, a set W ⊆ P(S) is called a Θ-chain if it satisfies the following three condi-
tions:

(a) S ∈ W ,

(b) for each non-emptyA ∈ W , A′ ∈ W ,

(c) for each set A ⊆ W ,
⋂

A ∈ W .

For example, P(S) is a Θ-chain, which shows that the set of Θ-chains W ⊆ P(S)
is non-empty. Furthermore, since

⋂ ∅ = ∅, each Θ-chain contains ∅. As an immedi-
ate consequence of the definition we get that the intersection of Θ-chains is again a
Θ-chain. In particular, the intersection W0 of all Θ-chains is a Θ-chain, namely the
Θ-chain which does not properly contain any other Θ-chain (i.e., no proper subset
of W0 is a Θ-chain).

An element A ∈ W0 is called a cut if for all X ∈ W0 we have either X  A or
A ⊆ X . For each cut A ∈ W0, let

UA = {X ∈ W0 : X  A} and VA = {X ∈ W0 : A ⊆ X} .

Let C0 ⊆ W0 be the set of cuts. We show now that C0 is a Θ-chain: Since S is
obviously a cut, C0 satisfies condition (a); conditions (b) & (c) are proved in the
following two claims.

CLAIM 1. If A is a non-empty element of C0, then also A′ ∈ C0.

Proof of Claim 1. Let A be a non-empty cut. We have to show that for every X ∈
W0, either X ∈ VA′ or X ∈ UA′ . For this, we first show that

WA′ := UA′ ∪ {A′} ∪ VA

is a Θ-chain. Obviously we have S ∈ WA′ , which shows that WA′ satisfies con-
dition (a). To see that WA′ satisfies condition (b), take an arbitrary X ∈ WA′ . If
X ∈ VA and X 6= A, then A  X and X ′ /∈ UA. Because A is a cut, this im-
plies X ′ ∈ VA, hence X ′ ∈ WA′ . If X = A, then X ′ = A′, hence X ∈ WA′ .
Finally, if X ∈ UA′ or X = A′, then X ′ ∈ UA′ , hence X ∈ WA′ . So, for every
X ∈ WA′ we have X ′ ∈ WA′ , which shows that WA′ satisfies condition (b). For
condition (c), take an arbitrary A ⊆ WA′ . If A ∩UA′ 6= ∅, then

⋂
A ∈ UA′ , hence⋂

A ∈ WA′ . If A ∩UA′ = ∅ andA /∈ A , then A ⊆ VA, which implies
⋂

A ∈ VA,
hence

⋂
A ∈ WA′ . Finally, if A ∩ UA′ = ∅ and A ∈ A , then

⋂
A = A, hence
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⋂
A ∈ WA′ . So, for every A ⊆ WA′ we have

⋂
A ∈ WA′ , which shows that WA′

satisfies condition (c).

Now, since WA′ ⊆ W0 is a Θ-chain and W0 is the smallest Θ-chain, we must have
WA′ = W0, i.e., W0 = UA′ ∪ {A} ∪ VA, which shows that A′ is a cut. ⊣Claim 1

CLAIM 2. If A ⊆ C0 is a set of cuts, then A0 :=
⋂

A is also a cut.

Proof of Claim 2. For each C ∈ C0 we have either C ∈ VA for some A ∈ A , or
for all A ∈ A we have C ∈ UA. In the former case we get C ∈ VA0 , and in the
latter case we get C ⊆ A0, which implies C ∈ UA0 or C = A0 (i.e., C ∈ VA0).
So, for each C ∈ C0 we have either C ∈ VA0 or C ∈ UA0 , which shows that A0

is a cut. ⊣Claim 2

Thus, the set of cuts C0 is a Θ-chain, and since C0 ⊆ W0, by definition of W0 we
get C0 = W0. In other words, every element A ∈ W0 is a cut. In particular, for any
distinct elements A,B ∈ W0 we have either B  A and B ⊆ A′ (if B ∈ UA), or
A  B and A ⊆ B′ (if B ∈ VA).

Let now P ∈ P∗(S) be an arbitrary non-empty subset of S, and let

P̄ =
⋂{

A ∈ W0 : P ⊆ A
}
.

Since W0 is a Θ-chain, by condition (c) we get P̄ ∈ W0, and by definition of P̄ we
have P ⊆ P̄ . Since P̄ ′ also belongs to W0, by definition of P̄ we get P * P̄ ′, which
implies that

f
(
P̄
)
∈ P .

CLAIM 3. The set P̄ is the unique element of W0 such that

P ⊆ P̄ and f
(
P̄
)
∈ P .

Proof of Claim 3. Let P̃ ∈ W0 be such that P ⊆ P̃ . If P̃ 6= P̄ , then, since each
element of W0 is a cut, we have either P̄  P̃ or P̃  P̄ . In the former case we
have P̄ ⊆ P̃ ′, which implies that f(P̃ ) /∈ P , and in the latter case we have P̃ ⊆ P̄ ′,
and since f

(
P̄
)
∈ P , we get P * P̃ . Hence, if P̃ 6= P̄ , then f(P̃ ) /∈ P or P * P̃ ,

which completes the proof. ⊣Claim 3

CLAIM 4. For every a ∈ S there exists a unique Wa ∈ W0 such that f(Wa) = a

Proof of Claim 4. To see this, let Wa := ¯{a}, i.e.,

Wa =
⋂{

A ∈ W0 : a ∈ A
}
.



Gödel’s Model of ZFC 67

Since f(Wa) ∈ {a}, we get f(Wa) = a. For the uniqueness of Wa, let P̃ ∈ W0

be such that f(P̃ ) = a. If P̃ is distinct from Wa, then, since Wa is a cut, we have
either P̃ ⊆ W ′a or Wa ⊆ P̃ ′, and in both cases we have f(P̃ ) 6= a (either because
a ∈W ′a or because a ∈ P̃ ′). ⊣Claim 4

Since for each a ∈ S, there exists a unique Wa ∈ W0 such that a ∈ Wa and
f(Wa) = a, and since each element of W0 is a cut, for any distinct elements a, b ∈ S
we have eitherWa  Wb orWb  Wa. In the former case we get a ∈Wb and write
b ≺ a, and in the latter case we get b ∈ Wa and write a ≺ b, i.e.,

a ≺ b : ⇐⇒ Wb  Wa .

By the properties of W0 (i.e., if a 6= b then either Wb  Wa or Wa  Wb) we get
that the binary relation “≺” is a linear ordering on S.

Finally, let P ∈ P∗(S) be an arbitrary non-empty subset of S and let P̄ be as
above. Then f

(
P̄
)

is the ≺-minimal element of P : To see this, let a := f
(
P̄
)

and
let b ∈ P be distinct from a. Notice, that since P̄ ∈ W0 and f

(
P̄
)
= a, we obtain

P̄ =Wa which implies
P ⊆Wa .

Now, for Wb ∈ W0, we have f(Wb) = b and either Wb  Wa or Wa  Wb. In
the former cases we get a ≺ b. In the latter case we get Wa ⊆ Wb \ {b}, and since
P ⊆Wa, we get b /∈ P , contrary to our assumption.

So, every non-empty subset of S has a ≺-minimal element, which shows that the
binary relation “≺” is a well-ordering on S, and since S was arbitrary, every set can
be well-ordered.

(⇒) Let F be any family of non-empty sets and let “<” be any well-ordering on⋃
F . Define f : F → ⋃

F by stipulating f(x) being the<-minimal element of x.
⊣

Gödel’s Model of ZFC

Before we proceed, we should address the question whetherAC is consistent relative
to the other axioms of Set Theory (i.e., relative to ZF), which is indeed the case.

Assume that ZF is consistent, then, by PROPOSITION 2.5, ZF has a model, say V.
To obtain the relative consistency of AC with ZF, we have to show that ZF+AC also
has a model. In 1935, Gödel informed von Neumann at the Institute for Advanced
Study in Princeton that he had found such a model. In fact, he showed that there
exists a smallest transitive subclass of V which contains all ordinals (i.e., contains Ω
as a subclass) in which AC as well as ZF holds. This unique submodel of V is called
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the constructible universe and is denoted by L. According to Paul Bernays, Gödel
originally used the old German script “C ” to denote the constructible universe,
where “C ” is a capital “C” and not—as one could think—a capital “L”. Roughly
speaking, the modelL consists of all “mathematically constructible” sets, or in other
words, all sets which are “constructible” or “describable”, but nothing else. To be
more precise, let us give the following definitions:

LetM be a set and ϕ(x0, . . . , xn) be a first-order formula in the language {∈}. Then
ϕM denotes the formula we obtain by replacing all occurrences of “∃x” and “∀x”
with “∃x ∈M” and “∀x ∈M”, respectively. A subset y ⊆M is definable overM
if there is a first-order formula ϕ(x0, . . . , xn) in the language {∈}, and parameters
a1, . . . , an in M , such that {z : ϕM (z, a1, . . . , an)} = y. Finally, for any set M :

def(M) = {y ⊆M : y is definable over M}.

Notice that for any set M , def(M) is a set, being itself a subset of P(M). Now,
by induction on α ∈ Ω, define the following sets (compare with the cumulative
hierarchy defined above):

L0 := ∅,

Lα+1 := def(Lα),

Lα :=
⋃

β∈α

Lβ if α is a limit ordinal,

L :=
⋃

α∈Ω

Lα.

For the cumulative hierarchy, one can show that for each α ∈ Ω, Lα is a transitive
set, α ⊆ Lα and α ∈ Lα+1, and that α ∈ β implies Lα  Lβ .

Moreover, Gödel showed that L � ZF + AC, and that L is the smallest transitive
class containing Ω as a subclass such that L � ZFC. Thus, by starting with any
model V of ZF we find a subclass L of V such that L � ZFC. In other words, we
find that if ZF is consistent then so is ZFC (roughly speaking, if ZFC is inconsistent,
then AC cannot be blamed for it).

Let us now work in ZFC and let us turn back to cardinals, or more precisely, to
cardinal arithmetic.

Cardinal Arithmetic in ZFC

In the presence of AC we are able to define cardinal numbers as ordinals: For any
set A we define

|A| =
⋂{

α ∈ Ω : there is a bijection between α and A
}
.
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In order to see that this definition makes sense, notice that byAC, every setA is well-
orderable and that by PROPOSITION 3.20 every well-ordering on A corresponds to
exactly one ordinal (which is the order type of the well-ordering). So, for each setA,
the set of ordinals α such that there is a bijection between α and A is a non-empty
set of ordinals. Hence, |A| defined as above, is an ordinal.

For example, we have |n| = n for every n ∈ ω, and |ω| = ω, but in general, for
α ∈ Ω, we do not have |α| = α. For example, |ω + 1| 6= ω + 1, since |ω + 1| = ω
and ω 6= ω + 1. However, there are also other ordinals α beside n ∈ ω and ω itself
for which we have |α| = α, which leads to the following definition:

An ordinal number κ ∈ Ω such that |κ| = κ is called a cardinal number, or just
a cardinal. Cardinal numbers are usually denoted by Greek letters like κ, λ, µ, et
cetera.

A cardinal κ is infinite if κ /∈ ω, otherwise, it is finite. In other words, a cardinal is
finite if and only if it is a natural number.

Since cardinal numbers are just a special kind of ordinal, they are well-ordered by
“∈”. However, for cardinal numbers κ and λ we usually write κ < λ instead of
κ ∈ λ, thus,

κ < λ ⇐⇒ κ ∈ λ.

Let κ be a cardinal. The smallest cardinal number which is greater than κ is denoted
by κ+, thus,

κ+ =
⋂{

α ∈ Ω : κ < |α|
}
.

Notice that by CANTOR’S THEOREM 3.18, for every cardinal κ there is a cardinal
λ > κ, in particular, for every cardinal κ,

⋂{α ∈ Ω : κ < |α|} is non-empty and
therefore κ+ exists.

A cardinal µ is called a successor cardinal if there exists a cardinal κ such that
µ = κ+; otherwise, it is called a limit cardinal. In particular, every positive num-
ber n ∈ ω is a successor cardinal and ω is the smallest non-zero limit cardinal. By
induction on α ∈ Ω we define ωα+1 := ω+

α , where ω0 := ω, and ωα :=
⋃
δ∈α ωδ

for limit ordinals α; notice that
⋃
δ∈α ωδ is a cardinal. In particular, ωω is the small-

est uncountable limit cardinal and ω1 = ω+
0 is the smallest uncountable cardinal.

Further, the collection {ωα : α ∈ Ω} is the class of all infinite cardinals, i.e., for ev-
ery infinite cardinal κ there is an α ∈ Ω such that κ = ωα. Notice that the collection
of cardinals is—like the collection of ordinals—a proper class and not a set.

Cardinal addition, multiplication, and exponentiation are defined as follows:

Cardinal addition: For cardinals κ and µ, let κ+ µ := |(κ× {0}) ∪̇ (µ× {1})|.
Cardinal multiplication: For cardinals κ and µ, let κ · µ := |κ× µ|.
Cardinal exponentiation: For cardinals κ and µ, let κµ := |µκ|.
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Since for any set A, |A2| = |P(A)|, the cardinality of the power set of a cardinal
κ is usually denoted by 2κ. However, because 2ω is the cardinality of the so-called
continuum R, it is usually denoted by c. Notice that by CANTOR’S THEOREM 3.18
for all cardinals κ we have κ < 2κ.

As a consequence of the definition we get the following

FACT 3.24. Addition and multiplication of cardinals is associative and commuta-
tive and we have the distributive law for multiplication over addition, and for all
cardinals κ, λ, µ, we have

κλ+µ = κλ · κµ, κµ·λ = (κλ)µ, (κ · λ)µ = κµ · λµ.

Proof. It is obvious that addition and multiplication is associative and commutative
and that we have the distributive law for multiplication over addition. Now, let κ, λ,
µ, be any cardinal numbers. First, for every function f : (λ×{0})∪ (µ×{1}) → κ
let the functions fλ : (λ× {0}) → κ and fµ : (µ× {1}) → κ be such that for each
x ∈ (λ× {0}) ∪ (µ× {1}),

f(x) =

{
fλ(x) if x ∈ λ× {0},

fµ(x) if x ∈ µ× {1}.

It is easy to see that each function f : (λ× {0})∪ (µ× {1}) → κ corresponds to a
unique pair 〈fλ, fµ〉, and vice versa, each pair 〈fλ, fµ〉 defines uniquely a function
f : (λ×{0})∪(µ×{1}) → κ. Thus, we have a bijection between κλ+µ and κλ ·κµ.

Secondly, for every function f : µ → λκ, let f̃ : µ × λ → κ be such that for all
α ∈ µ and all β ∈ λ we have

f̃
(
〈α, β〉

)
= f(α)(β).

We leave it as an exercise to the reader to verify that the mapping

µ
(
λκ
)
−→ µ×λκ

f 7−→ f̃

is bijective, and therefore we have κµ·λ = (κλ)µ.

Thirdly, for every function f : µ → κ × λ let the functions fκ : µ → κ and
fλ : µ → λ be such that for each α ∈ µ, f(α) = 〈fκ(α), fλ(α)〉. We leave it again
as an exercise to the reader to show that the mapping

µ(κ× λ) −→ µκ× µλ

f 7−→ 〈fκ, fλ〉

is a bijection. ⊣
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The next result shows that addition and multiplication of infinite cardinals is quite
simple:

THEOREM 3.25. For any ordinal numbers α, β ∈ Ω we have

ωα + ωβ = ωα · ωβ = ωα∪β = max{ωα, ωβ}.

In particular, for every infinite cardinal κ we have κ2 = κ.

Proof. It is enough to show that for all α ∈ Ω we have ωα ·ωα = ωα. For α = 0 we
already know that |ω×ω| = ω, thus, ω0 ·ω0 = ω0. Assume towards a contradiction
that there exists an α ∈ Ω such that ωα · ωα > ωα. Then there exists a least ordinal
α0 with this property, i.e.,

α0 =
⋂

{α ∈ Ω : ωα · ωα > ωα}.

On ωα0 × ωα0 we define an ordering “<” by stipulating

〈γ1, δ1〉 < 〈γ2, δ2〉 ⇐⇒





(γ1 ∪ δ1) ∈ (γ2 ∪ δ2), or

(γ1 ∪ δ1) = (γ2 ∪ δ2) ∧ γ1 ∈ γ2, or

(γ1 ∪ δ1) = (γ2 ∪ δ2) ∧ γ1 = γ2 ∧ δ1 ∈ δ2.

With respect to the ordering “<”, the first few elements of ωα0 × ωα0 are

〈0, 0〉 < 〈0, 1〉 < 〈1, 0〉 < 〈1, 1〉
< 〈0, 2〉 < 〈1, 2〉 < 〈2, 0〉 < 〈2, 1〉 < 〈2, 2〉 < 〈0, 3〉 < · · ·

and in general, for α ∈ β ∈ ωα0 we have 〈α, β〉 < 〈β, α〉.
The ordering “<” on ωα0 × ωα0 is visualised by the following picture:

It is easily verified that “<” is a linear ordering on ωα0 × ωα0 , and we leave it as an
exercise to the reader to show that “<” is even a well-ordering.
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Now, let η ∈ Ω be the order type of the well-ordering “<” on ωα0 × ωα0 and
let Γ : η → ωα0 × ωα0 be the unique order preserving bijection between η and
ωα0 × ωα0 . In particular, for any α, α′ ∈ η we get

α ∈ α′ if and only if Γ(α) < Γ(α′) .

Because ωα0 < |ωα0 ×ωα0 | we have ωα0 < |η|. Let now 〈γ0, δ0〉 := Γ(ωα0). Then,
since γ0, δ0 ∈ ωα0 , for ν = max{γ0, δ0} we have

|ν| < ωα0 and ωα0 ≤ |ν × ν| .

Thus, for ωβ = |ν| we get ωβ < ωα0 and ωβ · ωβ > ωβ , which is a contradiction to
the choice of ωα0 . ⊣

As a consequence of THEOREM 3.25 we get the following

COROLLARY 3.26. If κ is an infinite cardinal, then

(a) for all n ∈ ω, κn+1 = κ,

(b) seq(κ) = κ, and

(c) κκ = 2κ.

Proof. (a) The proof is by induction on n ∈ ω: If n = 0, then by definition we have
κ1 = κ. If n = 1, by THEOREM 3.25 we get κ2 = κ. Assume now that κn+1 = κ
for some n ∈ ω. Then κn+2 = κ · κn+1, which is, by assumption, equal to κ · κ,
and by THEOREM 3.25 we get κn+2 = κ.

(b) Notice that seq(κ) = |⋃n∈ω κn| = 1+κ+κ2+ . . .+κn+ . . ., which is, by (a),
equal to 1 + κ · ω = 1 + κ = κ.

(c) Since κ is infinite, we obviously have κκ = |κκ| ≥ |κ2| = 2κ. On the other hand,
by identifying each function f ∈ κκ with its graph, which is a subset of κ × κ, we
get |κκ| ≤ |P(κ×κ)|, and since |κ×κ| = κ we finally have κκ ≤ |P(κ)| = 2κ. ⊣

Let λ be an infinite limit ordinal. A subset C of λ is called cofinal in λ if
⋃ C = λ.

The cofinality of λ, denoted cf(λ), is the cardinality of a smallest cofinal set C ⊆ λ.
In other words,

cf(λ) = min
{
|C| : C is cofinal in λ

}
.

Notice that by definition, cf(λ) is always a cardinal number.

Let again λ be an infinite limit ordinal and let C = {βξ : ξ ∈ cf(λ)} ⊆ λ be cofinal
in λ. Now, for every ν ∈ cf(λ) let αν :=

⋃{βξ : ξ ∈ ν} (notice that all the αν’s
belong to λ). Then 〈αν : ν ∈ cf(λ)〉 is an increasing sequence (not necessarily in
the strict sense) of length cf(λ) with

⋃{αν : ν ∈ cf(λ)} = λ. Thus, instead of
cofinal subsets of λ we could equally well work with cofinal sequences.
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Since every infinite cardinal is an infinite limit ordinal, cf(κ) is also defined for
cardinals κ. An infinite cardinal κ is called regular if cf(κ) = κ; otherwise, κ is
called singular. For example, ω is regular and ωω is singular (since {ωn : n ∈ ω}
is cofinal in ωω). In general, for non-zero limit ordinals λ we have cf(ωλ) = cf(λ).
For example, cf(ωω) = cf(ωω+ω) = cf(ωωωω

) = ω.

FACT 3.27. For all infinite limit ordinals λ, the cardinal cf(λ) is regular.

Proof. Let κ = cf(λ) and let 〈αξ : ξ ∈ κ〉 be an increasing, cofinal sequence of
λ. Further, let C ⊆ κ be cofinal in κ with |C| = cf(κ). Now, 〈αν : ν ∈ C〉 is still
a cofinal sequence of λ, which implies that cf(λ) ≤ cf(κ). On the other hand we
have cf(κ) ≤ κ = cf(λ). Hence, cf(κ) = κ = cf(λ), which shows that cf(λ) is
regular. ⊣

The following result shows that all infinite successor cardinals are regular. As a
matter of fact, we would like to mention that in the absence of the Axiom of Choice,
ω1 can be singular (see Chapter 17 | RELATED RESULT 95).

PROPOSITION 3.28. If κ is an infinite cardinal, then κ+ is regular.

Proof. Assume towards a contradiction that there exists a subset C ⊆ κ+ such that
C is cofinal in κ+ and |C| < κ+, i.e., |C| ≤ κ. Since C ⊆ κ+, for every α ∈ C we
have |α| ≤ κ. Now, by AC, for each α ∈ C we can choose a one-to-one mapping
fα : α →֒ κ. In particular, for each α ∈ C and each ν ∈ α, fα(ν) ∈ κ. Furthermore,
let g : C →֒ κ be a one-to-one mapping from C into κ; in particular, for each α ∈ C,
g(α) ∈ κ. Then, {〈

g(α), fα(ν)
〉
: α ∈ C ∧ ν ∈ α

}

is a subset of κ×κ, which shows that |⋃ C| ≤ |κ×κ| = κ. Thus,
⋃ C 6= κ+, which

implies that C is not cofinal in κ+. ⊣

For example, ω1, ω17, and ωω+5 are regular, since ω1 = ω+
0 , ω17 = ω+

16, and
ωω+5 = ω+

ω+4.

We now consider arbitrary sums and products of cardinal numbers. For this, let I be
a non-empty set and let {κι : ι ∈ I} be a family of cardinals. We define

∑

ι∈I

κι :=

∣∣∣∣
⋃

ι∈I

Aι

∣∣∣∣

where {Aι : ι ∈ I} is a family of pairwise disjoint sets such that |Aι| = κι for each
ι ∈ I , e.g., Aι = κι × {ι} will do.
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Similarly we define ∏

ι∈I

κι :=
∣∣∣×
ι∈I

Aι

∣∣∣

where {Aι : ι ∈ I} is a family of sets such that |Aι| = κι for each ι ∈ I , e.g.,
Aι = κι will do.

THEOREM 3.29 (INEQUALITY OF KÖNIG–JOURDAIN–ZERMELO). Let I be a
non-empty set and let {κι : ι ∈ I} and {λι : ι ∈ I} be families of cardinal
numbers such that κι < λι for every ι ∈ I . Then

∑

ι∈I

κι <
∏

ι∈I

λι.

Proof. Let {Aι : ι ∈ I} be a family of pairwise disjoint sets such that |Aι| = κι for
each ι ∈ I . First, for each ι ∈ I choose a injection fι : Aι →֒ λι and an element
yι ∈ λι \ fι[Aι]. Notice that since |Aι| < λι, the set λι \ fι[Aι] is non-empty, so for
each ι ∈ I there is a yι as required.

In a first step we show that
∑

ι∈I κι ≤
∏
ι∈I λι: For each ι ∈ I define the function

f̄ι :
⋃
ι∈I Aι → λι by stipulating

f̄ι(x) =

{
fι(x) if x ∈ Aι,

yι otherwise.

and let
f̄ :

⋃
ι∈I Aι −→ ×ι∈I λι

x 7−→ 〈f̄ι(x) : ι ∈ I〉
Then f̄ is obviously a one-to-one function from

⋃
ι∈I Aι into ×ι∈I λι, which

shows that
∑
ι∈I κι ≤

∏
ι∈I λι.

To prove that
∑

ι∈I κι <
∏
ι∈I λι, it is enough to show that there is no bijection be-

tween
⋃
ι∈I Aι and ×ι∈I λι. For this, take any function g :

⋃
ι∈I Aι → ×ι∈I λι,

and for every ι ∈ I , let Pι(g[Aι]) be the projection of g[Aι] on λι. Then, since
|Aι| < λι, for each ι ∈ I we can choose an element zι ∈ λι \ Pι(g[Aι]). Evidently,
the sequence 〈zι : ι ∈ I〉 does not belong to g[

⋃
ι∈I Aι] which shows that g is not

surjective, and consequently, g is not bijective. ⊣

As an immediate consequence we get the following

COROLLARY 3.30. For every infinite cardinal κ we have

κ < κcf(κ) and cf(2κ) > κ.

In particular, cf(c) > ω.
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Proof. Let 〈αν : ν ∈ cf(κ)〉 be a cofinal sequence of κ. On the one hand we have

κ =

∣∣∣∣
⋃

ν∈cf(κ)

αν

∣∣∣∣ ≤
∑

ν∈cf(κ)

|αν | ≤ cf(κ) · κ = κ,

and hence, κ =
∑

ν∈cf(κ) |αν |. On the other hand, for each ν ∈ cf(κ) we have
|αν | < κ, and therefore, by THEOREM 3.29, we have

∑

ν∈cf(κ)

|αν | <
∏

ν∈cf(κ)

κ = κcf(κ).

Thus, we have κ < κcf(κ).

In order to see that cf(2κ) > κ, assume towards a contradiction that cf(2κ) ≤ κ.
Now,

cf(2κ) ≤ κ implies (2κ)cf(2
κ) ≤ (2κ)κ

and since (2κ)κ = 2κ·κ = 2κ, we get

(2κ)cf(2
κ) ≤ 2κ ,

which contradicts the fact that 2κ < (2κ)cf(2
κ).

To see that cf(c) > ω, recall that c = 2ω. So, by the previous result we obtain
cf(2ω) > ω. ⊣

NOTES

Some of the papers mentioned below, or at least their translation into English, can
be found in the collection [96] edited by van Heijenoort (whose biography is written
by Feferman [26]).

Let us discuss the development of Set Theory: To some extent, Set Theory is the
theory of infinite sets; but, what is the infinite and does it exist?

The Infinite. As mentioned before, there are two different kinds of infinite, namely
the actual infinite and the potential infinite. To illustrate the difference, let us con-
sider the collection of prime numbers. Euclid proved that for any prime number p
there is a prime number p′ which is larger than p (see [22, Book IX]). This shows
that there are arbitrarily many prime numbers, and therefore, the collection of primes
is “potentially” infinite. However, he did not claim that the collection of all prime
numbers as a whole “actually” exists. (The difference between actual and potential
infinite is discussed in greater detail, for example, in Bernays [4, Teil II].)
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Two quite similar attempts to prove the objective existence of the (actual) infinite
are due to Bolzano [9, 10§13] and Dedekind [19§5, No. 66], and both are similar to
the approach suggested in Plato’s Parmenides [80132a-b] (for a philosophical view
of the notion of infinity we refer the reader to Mancosu [65]). However, Russell [84,
Chapter XIII, p. 139 ff.] (see also [86, Chapter XLIII]) shows that these attempts
must fail. Moreover, he demonstrates that the infinite is neither self-contradictory
nor demonstrable logically and writes that we must conclude that nothing can be
known a priori as to whether the number of things in the world is finite or infinite.
The conclusion is, therefore, to adopt a Leibnizian phraseology, that some of the
possible worlds are finite, some infinite, and we have no means of knowing to which
of these two kinds our actual world belongs. The axiom of infinity will be true in
some possible worlds and false in others; whether it is true or false in this world, we
cannot tell (cf. [84, p. 141]).

If the infinite exists, the problem still remains how one would recognise infinite sets,
or in other words, how one would define the predicate “infinite”. Dedekind pro-
vided a definition in [19§5, No. 64], which is—as Schröder [88, p. 303 f.] pointed
out—equivalent to the definition given three years earlier by Peirce (cf. [77, p. 202]
or [3, p. 51]). However, the fact that an infinite set can be mapped injectively into
a proper subset of itself—which is the key idea of Dedekind’s definition of infi-
nite sets—was already discovered and clearly explained about 250 years earlier by
Galilei (see [36, First Day]). Another definition of the infinite—which will be com-
pared with Dedekind’s definition in Chapter 8—can be found in von Neumann [72,
p. 736]. More definitions of finiteness, as well as their dependencies, can be found
for example in Lévy [62] and in Spišiak and Vojtáš [93].

Birth of Set Theory. As mentioned above, the birth of Set Theory dates to 1873
when Cantor proved that the set of real numbers is uncountable. One could even
argue that the exact birth date is 7 December 1873, the date of Cantor’s letter to
Dedekind informing him of his discovery.

Cantor’s first proof that there is no bijection between the set of real numbers and
the set of natural numbers used an argument with nested intervals (cf. [13§2] or [18,
p. 117]). Later, he improved the result by showing that 2m > m for every cardinal m
(cf. [15] or [18, III.8]), which is nowadays called CANTOR’S THEOREM. The argu-
ment used in the proof of PROPOSITION 3.17—which is in fact just a special case
of CANTOR’S THEOREM—is sometimes called Cantor’s diagonal argument. The
word “diagonal” comes from the diagonal process used in the proofs of PROPO-
SITION 3.17 and CANTOR’S THEOREM. The diagonal process is a technique of
constructing a new member of a set of lists which is distinct from all members of a
given list. This is done by first arranging the list as a matrix, whose diagonal gives
information about the xth term of the xth row of the matrix. Then, by changing each
term of the diagonal, we get a new list which is distinct from every row of the matrix
(see also Kleene [58§2]).

For a brief biography of Cantor and for the development of Set Theory see, for
example, Fraenkel [33], Schoenflies [87], and Kanamori [53].
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Russell’s Paradox. The fact that a naïve approach to the notion of “set” leads to
contradictions was discovered by Russell in June 1901 while he was working on
his Principles of Mathematics [86] (see also Grattan-Guinness [41]). When Rus-
sell published his discovery, other mathematicians and set-theorists like Zermelo
(see [101, footnote p. 118 f.] or Rang and Thomas [81]) had already been aware
of this antinomy, which—according to Hilbert—had a downright catastrophic effect
when it became known throughout the world of Mathematics (cf. [46, p. 169] or [47,
p. 190]). However, Russell was the first to discuss the contradiction at length in his
published works, the first to attempt to formulate solutions and the first to fully ap-
preciate its importance. For example, the entire Chapter X of [86] was dedicated to
discussing this paradox (in particular, see [86, Chapter X, §102]). In order to prevent
the emergence of antinomies and paradoxes in Set Theory and in Logic in general,
Russell developed in [86, Appendix B] (see also [83]) his theory of logical types
which rules out self-reference. According to this theory, self-referential statements
are neither true nor false, but meaningless.

Russell’s Paradox as well as some other antinomies can also be found in Fraenkel,
Bar-Hillel, and Lévy [28, Chapter I].

Axiomatisation of Set Theory. In 1908, Zermelo published in [102] his first ax-
iomatic system consisting of seven axioms, which he called:

1. Axiom der Bestimmtheit

which corresponds to the Axiom of Extensionality

2. Axiom der Elementarmengen

which includes the Axiom of Empty Set as well as the Axiom of Pairing

3. Axiom der Aussonderung

which corresponds to the Axiom Schema of Separation

4. Axiom der Potenzmenge

which corresponds to the Axiom of Power Set

5. Axiom der Vereinigung

which corresponds to the Axiom of Union

6. Axiom der Auswahl

which corresponds to the Axiom of Choice

7. Axiom des Unendlichen

which corresponds to the Axiom of Infinity

In 1930, Zermelo presented in [103] his second axiomatic system, which he called
the ZF-system, in which he incorporated ideas of Fraenkel [30], Skolem [91], and
von Neumann citevNeumannI,vNeumannII,vNeumannIII (see also Zermelo [99]).
In fact, he added the Axiom Schema of Replacement and the Axiom of Foundation

to his former system, cancelled the Axiom of Infinity (since he thought that it does
not belong to the general theory of sets), and did not explicitly mention the Axiom of
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Choice (because of its different character and since he considered it as a general log-
ical principle). For Zermelo’s published work in Set Theory, described and analysed
in its historical context, see Zermelo [104], Kanamori [56] and Ebbinghaus [21].

The need for the Axiom Schema of Replacement was first noticed by Fraenkel (see
[104, p. 23]) who introduced a certain form of it in [30] (another form of it he gave
in [29, Definition 2, p. 158]). However, the present form was introduced by von Neu-
mann [73] (see the note below on the TRANSFINITE RECURSION THEOREM). As a
matter of fact we would like to mention that the Axiom Schema of Replacement

was already used implicitly by Cantor in 1899 (cf. [18, p. 444, line 3]). Besides
Fraenkel, Skolem also realised that Zermelo’s first axiomatic system was not suffi-
cient to provide a complete foundation for the usual theory of sets and introduced—
independently of Fraenkel—in 1922 the Axiom Schema of Replacement (see [91]
or [92, p. 145 f.]). In [91], he also gave a proper definition of the notion “definite
proposition” and, based on a theorem of Löwenheim [64], he discovered the fol-
lowing fact [92, p. 139] (stated in Chapter 16 as the LÖWENHEIM–SKOLEM THEO-
REM 16.1): If the axioms are consistent, there exists a domain in which the axioms
hold and whose elements can all be enumerated by means of the positive finite in-
tegers. At first glance this looks strange, since we know, for example, that the set of
real numbers is uncountable. However, this so-called Skolem Paradox—which we
will meet in a slightly different form in Chapter 16—is not a paradox in the sense
of an antinomy, it is just a somewhat unexpected feature of formal systems (see also
Kleene [58, p. 426 f.] and von Plato [97]).

Concerning the terminology we would like to mention that the definition of ordered
pairs given above was introduced by Kuratowski [61, Définition V, p. 171] (com-
pare with Hausdorff [44, p. 32] and see also Kanamori [55§5]), and that the infinite
set which corresponds to ω = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . .} was intro-
duced by von Neumann [70]. For more historical background, see Bachmann [2] or
Fraenkel [6, Part I], and for a brief discussion of the axiom systems of von Neumann,
Bernays, and Gödel, see Fraenkel [6, Part I, Section 7].

The Axiom of Foundation. As mentioned above, Zermelo introduced this axiom in
his second axiomatisation of Set Theory in 1930, but it goes back to von Neumann
(cf. [71, p. 239] and [74, p. 231]), and in fact, the idea can already be found in
Mirimanoff [67, 68]: For example in [67, p. 211] he calls a set x regular (French
“ordinaire”) if every descending sequence x ∋ x1 ∋ x2 ∋ . . . is finite. However, he
did not postulate the regularity of sets as an axiom, but if one would do so, one would
get the Axiom of Regularity saying that every set is regular. Now, as a consequence
of the Axiom of Foundation we got the fact that there are no infinite descending
sequences of the form x1 ∋ x2 ∋ . . . ∋ xi . . . , which just tells us that every
set is regular. Thus, the Axiom of Foundation implies the Axiom of Regularity. The
converse is not true, unless we assume some non-trivial form of the Axiom of Choice

(see Mendelson [66]). As a matter of fact, we would like to mention that Zermelo,
when he formulated the Axiom of Foundation in [103], gave both definitions and just
mentioned (without proof) that they are equivalent.
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Ordinal Numbers. The theory of ordinals was first developed in an axiomatic way
by von Neumann in [70] (see also [71, 72, 73]). For an alternative axiomatic ap-
proach to ordinals, independently of ordered sets and types, see Tarski [95] or Lin-
denbaum and Tarski [63]. For some more definitions of ordinals, see Bachmann [2,
p. 24].

The Transfinite Recursion Theorem. The Transfinite Recursion Theorem was first
formulated and proved by von Neumann [73], who also pointed out that, in addition
to Zermelo’s axioms, the Axiom Schema of Replacement also has to be used. Even
though a certain form of the Axiom Schema of Replacement was already given by
Fraenkel (see above), von Neumann showed that Fraenkel’s notion of function is not
sufficient to prove the TRANSFINITE RECURSION THEOREM. Moreover, he showed
(cf. [73, I.3]) that Fraenkel’s version of the Axiom Schema of Replacement given in
[31§1] follows from the other axioms given there (see also Fraenkel’s note [32]).

The Cantor–Bernstein Theorem. This theorem, unfortunately also known as the
SCHRÖDER–BERNSTEIN THEOREM, was first stated and proved by Cantor (cf.[14,
VIII.4] or [18, p. 413], and [16§2, Satz B] or [18, p. 285]). In order to prove this
theorem, Cantor used the Trichotomy of Cardinals, which is—as we will see in
Chapter 6—equivalent to the Axiom of Choice (see also [18, p. 351, Anm. 2]). An
alternative proof, avoiding any form of the Axiom of Choice, was found by Bern-
stein, who was initially a student of Cantor’s. Bernstein presented his proof around
Easter 1897 in one of Cantor’s seminars in Halle, and the result was published
in 1898 in Borel [11, p. 103–106] About the same time, Schröder gave a similar
proof in [88] (submitted May 1896), but unfortunately, Schröder’s proof was flawed
by an irreparable error. While other mathematicians regarded his proof as correct,
Korselt wrote to Schröder about the error in 1902. In his reply, Schröder admitted
his mistake which he had already found some time ago but did not have the oppor-
tunity to make public. A few weeks later, Korselt submitted the paper [60]—which
appeared almost a decade later—with a proof of the CANTOR–BERNSTEIN THE-
OREM which is quite different from the one given by Bernstein. A proof of the
CANTOR–BERNSTEIN THEOREM, similar to Korselt’s proof, was found in 1906
independently by Peano [76] and Zermelo (see [102, footnote p. 272 f.]). However,
they could not know that they had just rediscovered the proof that had already been
obtained twice by Dedekind in 1887 and 1897, since Dedekind’s proof—in our ter-
minology given above—was not published until 1932 (see [20, LXII & Erl. p. 448]
and [18, p. 449]). More about the CANTOR–BERNSTEIN THEOREM can be found
in Hinkis [48].

Cantor products. Motivated by a result due to Euler on partition numbers (cf.
[23, Caput XVI]), Cantor showed in [12] (see also [18, pp. 43–50]) that every
real number r > 1 can be written in a unique way as a product of the form∏
n∈ω(1+

1
qn
), where all qn’s are positive integers and qn+1 ≥ q2n. He also showed

that r =
∏
n∈ω(1 + 1

qn
) is rational if and only if there is an m ∈ ω such that for

all n ≥ m we have qn+1 = q2n, and further he gave the representation of the square
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roots of some small natural numbers. For example, the qn’s in the representation of√
2 are q0 = 3 and qn+1 = 2q2n − 1. More about Cantor products can be found, for

example, in Perron [78§35].

Cardinal Numbers. The concept of cardinal number is one of the most fundamental
concepts in Set Theory. Cantor describes cardinal numbers as follows (cf.[16§1] or
[18, p. 282 f.]): The general concept which with the aid of our active intelligence
results from a set M , when we abstract from the nature of its various elements and
from the order of their being given, we call the “power” or “cardinal number” of
M . This double abstraction suggests his notation M for the cardinality of M . As
mentioned above, one can define the cardinal number of a set M as an object M
which consists of all those sets (includingM itself) which have the same cardinality
as M . This approach, which was for example taken by Frege (cf. [34, 35]), and
Russell (cf. [82, p. 378] or [83, Section IX, p. 256]), has the advantage that it can
be carried out in naïve Set Theory (see also Kleene [58, p. 9]). However, it has the
disadvantage that for every non-empty set M , the object M is a proper class and
therefore does not belong to the set-theoretic universe.

Hartogs’ Theorem. The proof of HARTOGS’ THEOREM is taken from Hartogs [43].
In that paper, Hartogs’ main motivation was to find a proof for Zermelo’s Well-

Ordering Principle which does not make use of the Axiom of Choice. However, since
the Well-Ordering Principle and the Axiom of Choice are equivalent, he had to assume
something similar, which he had done assuming explicitly Trichotomy of Cardinals.
These principles will be discussed in greater detail in Chapter 6.

In 1935, Hartogs was forced to retire from his position in Munich, where he com-
mitted suicide in August 1943 because he could no longer bear the continuous hu-
miliations by the Nazis.

The Axiom of Choice. Fraenkel writes in [28, p. 56 f.] that the Axiom of Choice is
probably the most interesting and, in spite of its late appearance, the most discussed
axiom of Mathematics, second only to Euclid’s axiom of parallels which was intro-
duced more than two thousand years ago. We would also like to mention a different
view of choice functions, namely the view of Peano. In 1890, Peano published a
proof in which he was constrained to choose a single element from each set in a cer-
tain infinite sequenceA1, A2, . . . of infinite subsets of R. In that proof, he remarked
carefully (cf. [75, p. 210]): But as one cannot apply infinitely many times an arbi-
trary rule by which one assigns to a classA an individual of this class, a determinate
rule is stated here, by which, under suitable hypotheses, one assigns to each class
A an individual of this class. To obtain his rule, he employed least upper bounds.
According to Moore [69, p. 76], Peano was the first mathematician who—while
accepting infinite collections—categorically rejected the use of infinitely many ar-
bitrary choices.

The difficulty is well illustrated by a Russellian anecdote (cf. Sierpiński [90,
p. 125]): A millionaire possesses an infinite number of pairs of shoes, and an in-
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finite number of pairs of socks. One day, in a fit of eccentricity, he summons his
valet and asks him to select one shoe from each pair. When the valet, accustomed
to receiving precise instructions, asks for details as to how to perform the selec-
tion, the millionaire suggests that the left shoe be chosen from each pair. Next day
the millionaire proposes to the valet that he select one sock from each pair. When
asked as to how this operation is to be carried out, the millionaire is at a loss for a
reply, since, unlike shoes, there is no intrinsic way of distinguishing one sock of a
pair from the other. In other words, the selection of the socks cannot be carried out
without the aid of some choice function.

As long as the implicit and unconscious use of the Axiom of Choice by Cantor and
others involved only generalised arithmetical concepts and properties well-known
from finite numbers, nobody took offence. However, the situation changed drasti-
cally after Zermelo [100] published his first proof (essentially the proof of PROPO-
SITION 3.20) that every set can be well-ordered—which was one of the earliest as-
sertions of Cantor. It is worth mentioning that, according to Zermelo [100, p. 514]
and [101, footnote p. 118], it was in fact Erhard Schmidt’s idea to use the Axiom of

Choice in order to build the f -sets. Zermelo considered the Axiom of Choice as a log-
ical principle, that cannot be reduced to a still simpler one, but is used everywhere
in mathematical deductions without hesitation (see [100, p. 516]). Even though in
Zermelo’s view the Axiom of Choice was “self-evident”, which is not the same as
“obvious” (see Shapiro [89§5] for a detailed discussion of the meaning of “self-
evidence”), not all mathematicians at that time shared Zermelo’s opinion. Moreover,
after the first proof of the Well-Ordering Principle was published in 1904, the math-
ematical journals (especially volume 60 of Mathematische Annalen) were flooded
with critical notes rejecting the proof (see, for example, Moore [69, Chapter 2]),
mostly arguing that the Axiom of Choice was either illegitimate or meaningless (cf.
Fraenkel, Bar-Hillel, and Lévy [28, p. 82]). The reason for this was not only due
to the non-constructive character of the Axiom of Choice, but also because it was
not yet clear what a “set” should be. So, Zermelo decided to publish a more de-
tailed proof, essentially the proof of THEOREM 3.23, and at the same time taking
the opportunity to reply to his critics. This resulted in [101], his second proof of
the Well-Ordering Principle, which was published in 1908, the same year as he pre-
sented his first axiomatisation of Set Theory in [101]. It seems that this was not a
coincidence. Moore [69, p. 159] writes that Zermelo’s axiomatisation was primarily
motivated by a desire to secure his demonstration of the Well-Ordering Principle and,
in particular, to save his Axiom of Choice. Moreover, Hallett [42, p. xvi] goes even
further by trying to show that the selection of the axioms themselves was guided
by the demands of Zermelo’s reconstructed [second] proof. Hallett’s statement is
motivated by a remark on page 124 in Zermelo [101], where he emphasises that
the proof is just based on certain fixed principles to build initial sets and to derive
new sets from given ones—exactly what we would require for principles to form an
axiomatic system of Set Theory.
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We would like to mention that because of its different character (cf. Bernays [5])
and since he considered the Axiom of Choice as a general logical principle, he did
not include the Axiom of Choice in his second axiomatic system of Set Theory.

For a comprehensive survey of Zermelo’s Axiom of Choice, its origins, development,
and influence, we refer the reader to Moore [69] (see also Kanamori [54], Jech [49],
and Fraenkel, Bar-Hillel, and Lévy [28, Chapter II, §4]); and for a biography of
Zermelo (including the history of AC and axiomatic Set Theory) we refer the reader
to Ebbinghaus [21].

Gödel’s Constructible Universe. According to Kanamori [52, p. 28 ff.], in Octo-
ber of 1935 Gödel informed von Neumann at the Institute for Advanced Study in
Princeton that he had established the relative consistency of the Axiom of Choice.
Gödel established consistency by devising his constructible hierarchy L (originally
denoted by the old German script “C ”) and verifying the Axiom of Choice and
ZF axioms there. Furthermore, Gödel conjectured that the Continuum Hypothesis

would also hold in L, but he soon fell ill and only gave a proof of this and the Gen-

eralised Continuum Hypothesis (i.e., for all α ∈ Ω, 2ωα = ωα+1) two years later.
The crucial idea apparently came to him during the night of June 14/15, 1937 (see
also [40, pp. 1–8]).

Gödel’s article [37] was the first announcement of these results, in which he de-
scribes the model L as the class of all “mathematically constructible” sets, where
the term “constructible” is to be understood in the semi-intuitionistic sense which
excludes impredicative procedures. This means “constructible” sets are defined to
be those sets which can be obtained by Russell’s ramified hierarchy of types, if ex-
tended to include transfinite orders. In the succeeding article [38], Gödel provided
more details in the context of ZF, and in his monograph [39]—based on lectures
given at the Institute for Advanced Study during the winter of 1938/39—Gödel gave
another presentation of L. This time he generated L set by set with a transfinite re-
cursion in terms of eight elementary set generators, a sort of Gödel numbering into
the transfinite (cf. Kanamori [52, p. 30], and for Gödel’s work in Set Theory, see
Kanamori [57]).

Cardinal Arithmetic in the Presence of AC. The definition of cardinals given
above can also be found, for example, in von Neumann [72, VII.2, p. 731].

The first proof of THEOREM 3.25 appeared in Hessenberg [45, p. 593] (see also
Jourdain [51]).

Regularity of cardinals was investigated by Hausdorff, who also raised the question
of the existence of regular limit cardinals (cf. [44, p. 131]).

The INEQUALITY OF KÖNIG–JOURDAIN–ZERMELO 3.29—also known as König’s
Theorem—was proven by König [59] (but only for countable sums and products),
and independently by Jourdain [50] and by Zermelo [102] (for historical facts,
see Moore [69, p. 154] and Fraenkel [27, p. 98]). Obviously, the INEQUALITY OF

KÖNIG–JOURDAIN–ZERMELO implies the Axiom of Choice (since it guarantees that
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every Cartesian product of non-empty sets is non-empty), and consequently we get
that the INEQUALITY OF KÖNIG–JOURDAIN–ZERMELO is equivalent to the Axiom

of Choice.
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90. WACŁAW SIERPIŃSKI, Leçons sur les nombres transfinis, Gauthier-Villars
et Fils, Paris, 1928.

91. THORALF SKOLEM, Einige Bemerkungen zur axiomatischen Begründung der
Mengenlehre, Matematikerkongressen i Helsingfors den 4–7 Juli 1922, Den
femte skandinaviska matematikerkongressen (Helsingfors),Akademiska Bok-
handeln, 1923, pp. 217–232 (see [96] for a translation into English).

92. , Selected Works in Logic,Universitetsforlaget,Oslo-Bergen-Tromsö,
1970.

93. LADISLAV SPIŠIAK AND PETER VOJTÁŠ, Dependences between definitions
of finiteness, Czechoslovak Mathematical Journal, vol. 38(113) (1988), 389–
397.

94. FABIAN STEDMAN, Campanalogia: or the Art of Ringing Improved,
W. Godbid, London, 1677 [reprint: Christopher Groome 1990].

95. ALFRED TARSKI, Sur les principes de l’arithmétique des nombres ordinaux
(transfinis),Annales de la Société Polonaise de Mathématique, vol. 3 (1925),
148–149.

96. JEAN VAN HEIJENOORT, From Frege to Gödel. A Source Book in Mathe-
matical Logic, 1879–1931, [Source Books in the History of Science], Harvard
University Press, Cambridge, Massachusetts, 1967.

97. JAN VON PLATO, In the shadows of the Löwenheim-Skolem theorem: Early
combinatorial analyses of mathematical proofs, The Bulletin of Symbolic
Logic, vol. 13 (2007), 189–225.



References 89

98. ALFRED NORTH WHITEHEAD, On cardinal numbers, American Journal of
Mathematics, vol. 24 (1902), 367–394.

99. ERNST ZERMELO, Bericht an die Notgemeinschaft der Deutschen Wis-
senschaft über meine Forschungen betreffend die Grundlagen der Mathe-
matik, typescript, 5 pp., with appendices, 2 pp., dated 3 December 1930, Uni-
versitätsarchiv Freiburg, Zermelo Nachlass, part of C 129/140 (see [104] for a
translation into English).

100. , Beweis, dass jede Menge wohlgeordnet werden kann, Mathematis-
che Annalen, vol. 59 (1904), 514–516 (see [96, 104] for a translation into
English).

101. , Neuer Beweis für die Möglichkeit einer Wohlordnung, Mathemati-
sche Annalen, vol. 65 (1908), 107–128 (see [96, 104] for a translation into
English).

102. , Untersuchungen über die Grundlagen der Mengenlehre. I.,
Mathematische Annalen, vol. 65 (1908), 261–281 (see [96, 104] for a trans-
lation into English).

103. , Über Grenzzahlen und Mengenbereiche. Neue Untersuchungen über
die Grundlagen der Mengelehre,Fundamenta Mathematicae, vol. 16 (1930),
29–47 (see [104] for a translation into English).

104. , Collected Works / Gesammelte Werke, Volume I: Set Theory, Mis-
cellanea / Band I: Mengenlehre, Varia, [Schriften der Mathematisch-natur-
wissenschaftlichen Klasse der Heidelberger Akademie der Wissenschaften,
Nr. 21 (2010)], edited by Heinz-Dieter Ebbinghaus, Craig G. Fraser, and Aki-
hiro Kanamori, Springer-Verlag, Berlin ·Heidelberg, 2010.


