Lorenz Halbeisen

GROUP THEORY (MODULE 210PMA208) Department of Pure Mathematics

Week 1

- 1. Let $\mathbb{Q}^* := \mathbb{Q} \setminus \{0\}$, where \mathbb{Q} denotes the set of all rational numbers.
 - (a) Show that (\mathbb{Q}^*, \cdot) has exactly one neutral element.
 - (b) Show that in (\mathbb{Q}^*, \cdot) , every element has exactly one inverse.
- Let "∘" be a binary associative operation on the set S, so, for any x, y, z ∈ S we have x ∘ (y ∘ z) = (x ∘ y) ∘ z.
 Show that for any z h ∈ d ∈ C we have:

Show that for any $a, b, c, d \in S$ we have:

$$(a \circ b) \circ (c \circ d) = (a \circ (b \circ c)) \circ d$$

3. Show that the binary operation

$$\begin{array}{rrrrr} \sharp: & \mathbb{Z}\times\mathbb{Z} & \to & \mathbb{Z} \\ & & (x,y) & \mapsto & x\cdot(y+1) \end{array}$$

is neither commutative nor associative.

4. Let $A = \{1, 2, 3, 4, 6, 12\}$ and let

$$\begin{array}{rrrr} \star : & A \times A & \to & A \\ & (a,b) & \mapsto & \gcd(a,b) \end{array}$$

where gcd(a, b) denotes the greatest common divisor of a and b.

- (a) Show that the operation " \star " is commutative and associative.
- (b) Show that (A, \star) has a neutral element.
- (c) Why is (A, \star) not a group?
- 5. Let " \bullet " be the binary operation on \mathbb{Q}^* defined as follows:

•:
$$\mathbb{Q}^* \times \mathbb{Q}^* \to \mathbb{Q}^*$$

 $(p,q) \mapsto p \cdot (q+q)$

Show that (\mathbb{Q}^*, \bullet) is an abelian group.