Group Theory (Module 210PMA208)
 Department of Pure Mathematics

Week 1

1. Let $\mathbb{Q}^{*}:=\mathbb{Q} \backslash\{0\}$, where \mathbb{Q} denotes the set of all rational numbers.
(a) Show that $\left(\mathbb{Q}^{*}, \cdot\right)$ has exactly one neutral element.
(b) Show that in $\left(\mathbb{Q}^{*}, \cdot\right)$, every element has exactly one inverse.
2. Let " \circ " be a binary associative operation on the set S, so, for any $x, y, z \in S$ we have $x \circ(y \circ z)=(x \circ y) \circ z$.
Show that for any $a, b, c, d \in S$ we have:

$$
(a \circ b) \circ(c \circ d)=(a \circ(b \circ c)) \circ d
$$

3. Show that the binary operation

$$
\begin{aligned}
\sharp: \mathbb{Z} \times \mathbb{Z} & \rightarrow \mathbb{Z} \\
(x, y) & \mapsto x \cdot(y+1)
\end{aligned}
$$

is neither commutative nor associative.
4. Let $A=\{1,2,3,4,6,12\}$ and let

$$
\begin{array}{cc}
\left.\star: \begin{array}{cc}
A \times A & \rightarrow A \\
(a, b) & \mapsto
\end{array}\right) \operatorname{gcd}(a, b)
\end{array}
$$

where $\operatorname{gcd}(a, b)$ denotes the greatest common divisor of a and b.
(a) Show that the operation " \star " is commutative and associative.
(b) Show that (A, \star) has a neutral element.
(c) Why is (A, \star) not a group?
5. Let "•" be the binary operation on \mathbb{Q}^{*} defined as follows:

$$
\begin{aligned}
\cdot: \quad \mathbb{Q}^{*} \times \mathbb{Q}^{*} & \rightarrow \mathbb{Q}^{*} \\
(p, q) & \mapsto p \cdot(q+q)
\end{aligned}
$$

Show that $\left(\mathbb{Q}^{*}, \bullet\right)$ is an abelian group.

