GROUP THEORY (MODULE 210PMA208) Department of Pure Mathematics

Week 10

- 46. Let G be a group. On Hw8.Q38 you showed that for every $x \in G$, the mapping $\varphi_x : G \to G$ defined by $\varphi_x(a) := xax^{-1}$ is an automorphism of G. Such an automorphism is called an inner automorphism of G. Let $\operatorname{Inn}(G)$ denote the set of all inner automorphisms of G, and let Z(G) denote the centre of G. Further, define $\psi : G \to \operatorname{Aut}(G)$ by $\psi(x) := \varphi_x$.
 - (a) Show that ψ is a homomorphism from G to Aut(G).
 - (b) Using (a), show that Inn(G) is a subgroup of Aut(G).
 - (c) Use the First Isomorphism Theorem to show that $G/Z(G) \cong \text{Inn}(G)$.
- 47. Show that for any $n \ge 2$, S_n is generated by (1,2) and $(1,2,\ldots,n)$.
- 48. Let π and ρ be the permutations

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 4 & 5 & 6 & 7 & 2 & 1 & 8 \end{pmatrix} \text{ and } \rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}.$$

- (a) Write π and ρ in terms of disjoint cycles.
- (b) Write π in terms of transpositions.
- (c) Write π as a product of the permutations (1, 2) and $(1, 2, \ldots, 8)$.
- 49. Let π and ρ be as is Question 48.
 - (a) Find the orders of π , ρ , $\pi\rho$ and $\pi^2\rho$.
 - (b) Write π^{147} , ρ^{-1001} , $(\pi\rho)^{514}$, and $(\pi^2\rho)^{-333}$ in terms of disjoint cycles.
- 50. (a) List all 24 elements of S_4 in cycle notation. (b) Show that the subset $V = \{\iota, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}$ is a subgroup of S_4 .

(c) Show that V is a normal subgroup of S_4 . (Use the fact that for any permutations π and ρ , π has the same cycle structure as $\rho \pi \rho^{-1}$.)