Group Theory (Module 210PMA208)

Department of Pure Mathematics

Week 11
51. Show that for any $n \geq 3, A_{n}$ is generated by the set of all 3 -cycles of the form $(1,2, k)$, where $k \in\{3, \ldots, n\}$.
52. (a) List all elements of A_{4} and determine their orders.
(b) Find the list of proper subgroups of A_{4}.
(c) Decide which of these subgroups are normal subgroups.
53. (a) Show that if a group G has order $p q^{2}$, where p and q are two different prime numbers such that $p \nmid q^{2}-1$ or $q \nmid p-1$, then G cannot be simple.
(b) Show that a group of order 605 cannot be simple.
54. Show that a group of order 45 is always abelian.

Hint: Use the fact that a group of order p^{2}, where p is prime, is always abelian.
55. (a) How many subgroups of order 2,7 and 9 respectively a group of order 126 could have?
(b) Can a group of order 126 be simple?

