GROUP THEORY (MODULE 210PMA208) Department of Pure Mathematics

Week 2

- 6. For $m \in \mathbb{Z}$, let $m\mathbb{Z} := \{mx : x \in \mathbb{Z}\}.$
 - (a) What elements are in the sets $0\mathbb{Z}$, $17\mathbb{Z}$, $(-5)\mathbb{Z}$, $5\mathbb{Z}$.
 - (b) Show that for any $m \in \mathbb{Z}$, the set $m\mathbb{Z}$ is the same as the set $(-m)\mathbb{Z}$.
 - (c) Show that for any $m \in \mathbb{Z}$, addition is an associative binary operation on $m\mathbb{Z}$.
 - (d) Show that for any $m \in \mathbb{Z}$, $(m\mathbb{Z}, +)$ is an abelian group.
- 7. On the set $(\mathbb{Q} \times \mathbb{Q})^* := (\mathbb{Q} \times \mathbb{Q}) \setminus \{(0,0)\}$ we define the binary operation "•" as follows:

 $(p_1, q_1) \bullet (p_2, q_2) := (p_1 p_2 - q_1 q_2, p_1 q_2 + q_1 p_2)$

Show that $((\mathbb{Q} \times \mathbb{Q})^*, \bullet)$ is an abelian group.

- 8. Let G be a group with neutral element e. Show that if for all $a \in G$ we have aa = e, then G is abelian.
- 9. Formulate a "right-version" of Proposition 1.2 and prove it.
- 10. Define an associative operation " \diamond " on set \mathbb{Z} such that (\mathbb{Z}, \diamond) has a right-neutral element and each element of \mathbb{Z} has a left-inverse, but (\mathbb{Z}, \diamond) is not a group.