Group Theory (Module 210PMA208)
 Department of Pure Mathematics

Week 3
11. Let $S=\{p, q, r, s\}$ be a set and let " \circ " be the operation on S defined by the following multiplication table:

\circ	p	q	r	s
p	r	s	p	q
q	s	r	q	p
r	p	q	r	s
s	r	p	s	r

(a) Find the neutral element of S and show that every element has an inverse.
(b) Show that the operation " \circ " is not commutative.
(c) Is the operation " \circ " associative?
12. Let $\left(G, *_{G}\right)$ and $\left(H, *_{H}\right)$ be groups and let the operation " \circ " on $G \times H$ be defined as follows:

$$
\left\langle g_{1}, h_{1}\right\rangle \circ\left\langle g_{2}, h_{2}\right\rangle:=\left\langle g_{1} *_{G} g_{2}, h_{1} *_{H} h_{2}\right\rangle
$$

Show that $(G \times H, \circ)$ is a group and that it is abelian iff G and H are both abelian.
13. Show that $C_{2} \times C_{3} \simeq C_{6}$.

Hint: Let $C_{2}=\{e, a\}$ and $C_{3}=\left\{e^{\prime}, b, b^{2}\right\}$, and consider c, c^{2}, c^{3}, \ldots, where $c=\langle a, b\rangle$.
14. (a) Show that for any positive integers p and q with $\operatorname{gcd}(p, q)=1$ we have $C_{p} \times C_{q} \simeq C_{p q}$.
(b) Show that $C_{3} \times C_{3}$ is not isomorphic to C_{9}.
15. Let T, C, O, D and I donote the groups of rigid motions of the five Platonic solids, called tetrahedron, cube, octahedron, dodecahedron, and icosahedron. Compute $|T|,|C|,|O|,|D|$ and $|I|$.

