Lorenz Halbeisen

GROUP THEORY (MODULE 210PMA208) Department of Pure Mathematics

Week 3

11. Let $S = \{p, q, r, s\}$ be a set and let " \circ " be the operation on S defined by the following multiplication table:

- (a) Find the neutral element of S and show that every element has an inverse.
- (b) Show that the operation "•" is not commutative.
- (c) Is the operation " \circ " associative?
- 12. Let $(G, *_G)$ and $(H, *_H)$ be groups and let the operation " \circ " on $G \times H$ be defined as follows:

 $\langle g_1, h_1 \rangle \circ \langle g_2, h_2 \rangle := \langle g_1 *_G g_2, h_1 *_H h_2 \rangle$

Show that $(G \times H, \circ)$ is a group and that it is abelian iff G and H are both abelian.

- 13. Show that $C_2 \times C_3 \simeq C_6$. Hint: Let $C_2 = \{e, a\}$ and $C_3 = \{e', b, b^2\}$, and consider c, c^2, c^3, \ldots , where $c = \langle a, b \rangle$.
- 14. (a) Show that for any positive integers p and q with gcd(p,q) = 1 we have C_p × C_q ⊆ C_{pq}.
 (b) Show that C₃ × C₃ is not isomorphic to C₉.
- Let T, C, O, D and I donote the groups of rigid motions of the five Platonic solids, called tetrahedron, cube, octahedron, dodecahedron, and icosahedron. Compute |T|, |C|, |O|, |D| and |I|.