Lorenz Halbeisen

GROUP THEORY (MODULE 210PMA208) Department of Pure Mathematics

Week 4

- 16. Show that every subgroup H of $(\mathbb{Z}, +)$ is of the form $H = m\mathbb{Z}$ (for some $m \in \mathbb{N}$).
- 17. The additive groups $4\mathbb{Z}$, $12\mathbb{Z}$ and $27\mathbb{Z}$ are subgroups of $(\mathbb{Z}, +)$, and so are the groups $4\mathbb{Z} \cap 12\mathbb{Z}$, $4\mathbb{Z} \cap 27\mathbb{Z}$ and $12\mathbb{Z} \cap 27\mathbb{Z}$. Thus, by Question 16, there are $m_1, m_2, m_3 \in \mathbb{N}$ such that

$$\begin{split} 4\mathbb{Z} \cap 12\mathbb{Z} &= m_1\mathbb{Z}, \\ 4\mathbb{Z} \cap 27\mathbb{Z} &= m_2\mathbb{Z}, \\ 12\mathbb{Z} \cap 27\mathbb{Z} &= m_3\mathbb{Z}. \end{split}$$

(a) Compute m_1 , m_2 and m_3 .

(b) Prove that for any $a, b \in \mathbb{N}$, $a\mathbb{Z} \cap b\mathbb{Z} = \operatorname{lcm}(a, b)\mathbb{Z}$, where $\operatorname{lcm}(a, b)$ is the least common multiple of a and b.

- (c) Show that $4\mathbb{Z} \cup 27\mathbb{Z}$ is not a subgroup of $(\mathbb{Z}, +)$.
- 18. (a) Evaluate $|\mathbb{Z}:7\mathbb{Z}|$.
 - (b) Find a transversal for $7\mathbb{Z}$ in \mathbb{Z} which contains only even numbers.
- 19. Let C be the cube-group.

(a) Describe and count the subgroups of C which are isomorphic to C_3 , C_4 , and $C_2 \times C_2$ respectively.

- (b) Does C have a proper non-abelian subgroup?
- 20. Let T be the tetrahedron-group. Let δ be the rotation through $2\pi/3$ about an axis joining a vertex to the centre of the opposite face and let ρ be the rotation through π about an axis joining midpoints of opposite edges.
 - (a) Evaluate the order of δ and ρ , respectively.
 - (b) Evaluate the order of the subgroup $\langle \delta \rangle \cap \langle \rho \rangle$.
 - (c) Show that $\langle \{\delta, \rho\} \rangle = T$.