Group Theory (Module 210PMA208)
 Department of Pure Mathematics

Week 4
16. Show that every subgroup H of $(\mathbb{Z},+)$ is of the form $H=m \mathbb{Z}$ (for some $m \in \mathbb{N}$).
17. The additive groups $4 \mathbb{Z}, 12 \mathbb{Z}$ and $27 \mathbb{Z}$ are subgroups of $(\mathbb{Z},+)$, and so are the groups $4 \mathbb{Z} \cap 12 \mathbb{Z}, 4 \mathbb{Z} \cap 27 \mathbb{Z}$ and $12 \mathbb{Z} \cap 27 \mathbb{Z}$. Thus, by Question 16, there are $m_{1}, m_{2}, m_{3} \in \mathbb{N}$ such that

$$
\begin{aligned}
4 \mathbb{Z} \cap 12 \mathbb{Z} & =m_{1} \mathbb{Z} \\
4 \mathbb{Z} \cap 27 \mathbb{Z} & =m_{2} \mathbb{Z} \\
12 \mathbb{Z} \cap 27 \mathbb{Z} & =m_{3} \mathbb{Z}
\end{aligned}
$$

(a) Compute m_{1}, m_{2} and m_{3}.
(b) Prove that for any $a, b \in \mathbb{N}, a \mathbb{Z} \cap b \mathbb{Z}=\operatorname{lcm}(a, b) \mathbb{Z}$, where $\operatorname{lcm}(a, b)$ is the least common multiple of a and b.
(c) Show that $4 \mathbb{Z} \cup 27 \mathbb{Z}$ is not a subgroup of $(\mathbb{Z},+)$.
18. (a) Evaluate $|\mathbb{Z}: 7 \mathbb{Z}|$.
(b) Find a transversal for $7 \mathbb{Z}$ in \mathbb{Z} which contains only even numbers.
19. Let C be the cube-group.
(a) Describe and count the subgroups of C which are isomorphic to C_{3}, C_{4}, and $C_{2} \times C_{2}$ respectively.
(b) Does C have a proper non-abelian subgroup?
20. Let T be the tetrahedron-group. Let δ be the rotation through $2 \pi / 3$ about an axis joining a vertex to the centre of the opposite face and let ρ be the rotation through π about an axis joining midpoints of opposite edges.
(a) Evaluate the order of δ and ρ, respectively.
(b) Evaluate the order of the subgroup $\langle\delta\rangle \cap\langle\rho\rangle$.
(c) Show that $\langle\{\delta, \rho\}\rangle=T$.

