Group Theory (Module 210PMA208)
 Department of Pure Mathematics

Week 5

21. (a) Is $C_{3} \times C_{4}$ a cyclic group?
(b) Does $C_{3} \times C_{4}$ contain a cyclic group of order 6 ?
(c) Let $H \leqslant C_{3} \times C_{4}$. What are the possible values for $|H|$?
(d) Is $C_{3} \times C_{2} \times C_{2}$ a cyclic group?
(e) Does $C_{3} \times C_{2} \times C_{2}$ contain a cyclic group of order 6 ?
22. Let n be a positive integer and let $\mathrm{M}(n)$ be the set of all n by n matrices with real numbers as entries. Further, let $\mathrm{GL}(n) \subseteq \mathrm{M}(n)$ be the general linear group, $\mathrm{SL}(n) \subseteq \mathrm{M}(n)$ be the special linear group, $\mathrm{O}(n) \subseteq \mathrm{M}(n)$ be the orthogonal group, and $\mathrm{SO}(n) \subseteq \mathrm{M}(n)$ be the special orthogonal group.
(a) Find a transversal for $\mathrm{SO}(n)$ in $\mathrm{O}(n)$ which is also a group and show that this group is isomorphic to C_{2}.
(b) Find a transversal for $\mathrm{SL}(n)$ in $\mathrm{GL}(n)$ which is also a group and show that this group is isomorphic to $\left(\mathbb{R}^{*}, \cdot\right)$.
23. Let $\mathbb{I}^{*}=\left\{z \in \mathbb{C}^{*}: \operatorname{Re}(z)=0\right\}$ and let $\mathbb{X}=\mathbb{R}^{*} \cup \mathbb{I}^{*}$.
(a) Show that $\mathbb{X} \leqslant \mathbb{C}^{*}$.
(b) Show that $\mathbb{U} / 4=\left\{e^{i \varphi}: 0 \leq \varphi<\pi / 2\right\}$ is a transversal for \mathbb{X} in \mathbb{C}^{*}.
(c) Define an operation " \circ " on $\mathbb{U} / 4$ such that $(\mathbb{U} / 4, \circ)$ is a group.
24. Let T be the tetrahedron-group and let ρ_{1}, ρ_{2} and ρ_{3} be the three rotations through π about the axes joining midpoints of opposite edges.
(a) Show that $\left\langle\left\{\rho_{1}, \rho_{2}, \rho_{3}\right\}\right\rangle$ is a subgroup of T of order 4.
(b) Give the Cayley table for $\left\langle\left\{\rho_{1}, \rho_{2}, \rho_{3}\right\}\right\rangle$.
(c) Show that $\left\langle\left\{\rho_{1}, \rho_{2}, \rho_{3}\right\}\right\rangle$ is isomorphic to $C_{2} \times C_{2}$.
25. (a) What is the order of the group $\left(\mathbb{Z}_{15},+\right)$?
(b) Compute the order of each element of the group $\left(\mathbb{Z}_{15},+\right)$.
