Lorenz Halbeisen

GROUP THEORY (MODULE 210PMA208) Department of Pure Mathematics

Week 5

- 21. (a) Is $C_3 \times C_4$ a cyclic group?
 - (b) Does $C_3 \times C_4$ contain a cyclic group of order 6?
 - (c) Let $H \leq C_3 \times C_4$. What are the possible values for |H|?
 - (d) Is $C_3 \times C_2 \times C_2$ a cyclic group?
 - (e) Does $C_3 \times C_2 \times C_2$ contain a cyclic group of order 6?
- 22. Let n be a positive integer and let M(n) be the set of all n by n matrices with real numbers as entries. Further, let $GL(n) \subseteq M(n)$ be the general linear group, $SL(n) \subseteq M(n)$ be the special linear group, $O(n) \subseteq M(n)$ be the orthogonal group, and $SO(n) \subseteq M(n)$ be the special orthogonal group.

(a) Find a transversal for SO(n) in O(n) which is also a group and show that this group is isomorphic to C_2 .

(b) Find a transversal for SL(n) in GL(n) which is also a group and show that this group is isomorphic to (\mathbb{R}^*, \cdot) .

- 23. Let $\mathbb{I}^* = \{z \in \mathbb{C}^* : \operatorname{Re}(z) = 0\}$ and let $\mathbb{X} = \mathbb{R}^* \cup \mathbb{I}^*$.
 - (a) Show that $\mathbb{X} \leq \mathbb{C}^*$.
 - (b) Show that $\mathbb{U}/4 = \{e^{i\varphi} : 0 \le \varphi < \pi/2\}$ is a transversal for X in \mathbb{C}^* .
 - (c) Define an operation " \circ " on $\mathbb{U}/4$ such that $(\mathbb{U}/4, \circ)$ is a group.
- 24. Let T be the tetrahedron-group and let ρ_1 , ρ_2 and ρ_3 be the three rotations through π about the axes joining midpoints of opposite edges.
 - (a) Show that $\langle \{\rho_1, \rho_2, \rho_3\} \rangle$ is a subgroup of T of order 4.
 - (b) Give the Cayley table for $\langle \{\rho_1, \rho_2, \rho_3\} \rangle$.
 - (c) Show that $\langle \{\rho_1, \rho_2, \rho_3\} \rangle$ is isomorphic to $C_2 \times C_2$.
- 25. (a) What is the order of the group $(\mathbb{Z}_{15}, +)$?
 - (b) Compute the order of each element of the group $(\mathbb{Z}_{15}, +)$.