Group Theory (Module 210PMA208)
 Department of Pure Mathematics

Week 6

26. (a) What is the order of the group $\left(\mathbb{Z}_{17}^{*}, \cdot\right)$?
(b) Compute the order of 2 in the group $\left(\mathbb{Z}_{17}^{*}, \cdot\right)$.
(c) Compute the order of 6 in the group $\left(\mathbb{Z}_{17}^{*}, \cdot\right)$.
(d) Find an element in \mathbb{Z}_{17}^{*} of order 4.
(e) Which of the numbers $2^{888}-1,6^{888}-1$ and $15^{444}+1$ is a multiple of 17 ?
27. (a) Why is $\left(\mathbb{Z}_{15}^{*}, \cdot\right)$ not a group?
(b) For which $a \in \mathbb{Z}_{15}^{*}$ there is a number $b \in \mathbb{Z}_{15}^{*}$ such that $a \cdot b \equiv_{15} 1$?
28. Let $m \geq 2$. An element $a \in \mathbb{Z}_{m}^{*}$ is called invertible if there is a number $b \in \mathbb{Z}_{m}^{*}$ such that $a \cdot b \equiv_{m} 1$.

Show that $a \in \mathbb{Z}_{m}^{*}$ is invertible if and only if $\operatorname{gcd}(a, m)=1$.
29. Let $m \geq 2$ and let $\varphi(m)=\left\{a \in \mathbb{Z}_{m}^{*}: \operatorname{gcd}(a, m)=1\right\}$.

Show that $(\varphi(m), \cdot)$ is a group. (Notice that if p is prime, then $\varphi(p)=\mathbb{Z}_{p}^{*}$.)
30. (a) What is the order of the group $(\varphi(18), \cdot)$?
(b) What is the order of 7 in $(\varphi(18), \cdot)$?
(c) What is the order of 5 in $(\varphi(18), \cdot)$?
(d) Which of the numbers $5^{333}-1,43^{333}-1$ and $11^{333}+1$ is a multiple of 18 ?

